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Abstract. Confidence measures for stereo analysis are not yet a sub-
ject of detailed comparative evaluations. There have been some studies,
but still insufficient for estimating the performance of these measures.
We comparatively discuss confidence measures whose performance ap-
peared to be ‘promising’ to us, by evaluating their performance on com-
monly used stereo test data. Those data are either engineered and come
with accurate ground truth (for disparities), or they are recorded out-
doors and come with approximate ground truth. The performance of
confidence measures varies widely between these two types of data. We
propose modifications of confidence measures which can improve their
performance on outdoor data.

1 Errors or Confidence Values in Stereo Analysis

With the current application of stereo vision to a variety of imaging tasks, the
reliability of stereo vision became also a research topic in itself. On rendered or
engineered data (e.g., data discussed in [14], or Sets 2 and 7 on [2]), state-of-the-
art stereo analysis algorithms are capable of computing depth maps of satisfying
quality. However, this differs on image data taken under adverse lighting condi-
tions as they are common for outdoor scenes (e.g., real-world stereo video data
on [2]). Outdoor scenes are classified in situations in [8], defined by events such
as lighting artefacts, traffic scenes in the night and sun strikes. Stereo recon-
struction appears to be impossible with current methods for such situations. In
an abstract sense, critical situations are, for example, if both camera record-
ings do not satisfy the brightness constancy assumption, or if (e.g. around a
recorded light such as in the “Night” sequence in Set 5 on [2]) intensities are
nearly constant in some image regions.

The quality of disparity maps is usually rated globally (i.e. summarizing for
one disparity map of a given stereo frame). If disparity ground truth is available,
common error measures are the root-mean squared error (RMS) or the normal-
ized cross-correlation (NCC) between given and calculated disparities. [14] initi-
ated a ranking of a large number of stereo matchers but only on a small number
of stereo frames. Current results on those stereo frames show that they do not
represent a true challenge anymore for state-of-the-art stereo algorithms. Predic-
tion error analysis in [16] for the case of optical flow analysis has been adapted
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to disparity error analysis in [10] for stereo frames where disparity ground truth
is not available. The used error measures provide again only one summarizing
value for each stereo frame of a stereo video sequence. Such values are likely to
be meaningless in critical situations as specified above.

Confidence measures are designed to provide local (i.e. pixelwise) evaluations
for identifying regions of failure. Such pixelwise measures are defined based on
values of the data cost function (used in the stereo matcher) at a pixel; the
global minimum of those values defines usually the selected disparity (ignoring
for simplicity the influence of a smoothness term in the stereo matcher). See
Fig. 1 for an example; in our experiments we use semi-global matching [5] with
the census cost function and 8-path optimization (SGM). An example is shown
in Fig. 2.

Confidence measures may be defined on data derived from the cost function
(e.g. “around” the global minimum) of the used stereo matcher. The left-right
consistency check is a common way in stereo matching to accept only results
where left-to-right and right-to-left matching defines (about) the same disparity.
For a compilation of a number of confidence measures, see [1,7]. Both papers
do not provide a comprehensive evaluation of the performance of confidence
measures, in particular for stereo data recorded outdoors.

Sophisticated, but computationally more expensive disparity confidence mea-
sures have been proposed by [13] (used here directly for the stereo matching
process), or in [9] (a perturbation measure) when aiming at improved 3D re-
constructions of outdoor scenes. For these two measures, every single cost value
contributes, and this makes these measures computationally expensive.

A popular confidence measure is the opening of the parabola fitted to the global
minimum (and its immediate neighbours) of the cost function. This opening is
equivalent to the curvature at the vertex of the parabola. It is assumed that a
“wide valley” around the minimum indicates a mismatch, whereas a “narrow
valley” is likely to indicate a correct match. [17] used this confidence measure
for improving scene flow by enhancing the used stereo-analysis module.

Fig. 1. Values of the census cost function at one pixel (of a recorded stereo video)
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Fig. 2. Top row: Outdoor stereo pair (from Set 1 on [2]) and depth map (SGM as spec-
ified in the text without any post-processing). Bottom row: Labels from the left-right
consistency check (green for occluded, red for other mismatches), manually assigned
labels of bad matches (green), and of areas excluded from evaluation (blue); depth map
after interpolating manually labelled areas.

The peak ratio (basic idea as known from feature matching) is a confidence
measure based on comparing two values of a cost function. The second-smallest
cost value is usually a neighbour of the global minimum; the peak ratio uses
that local minimum of the cost function having the second smallest cost value
(considered to be a competing matching candidate). Figure 1 illustrates a pixel
where the peak ratio would not be a ‘reasonable’ confidence value.

There is still a lack of comparative evaluations of such disparity confidence
measures, and also of a more systematic approach towards the possible design
of new measures. Due to the general lack of disparity ground truth for out-
door scenes, evaluations are typically restricted to rendered or engineered indoor
stereo data, and only in a few rare cases to outdoor stereo data with approxi-
mated disparity ground truth. This paper contributes to such comparative eval-
uations, suggests new ways for designing confidence measures, and also shows
ways how to use recorded outdoor stereo data more widely in these studies.

The paper is structured as follows: Section 2 provides formal definitions of
confidence measures with our proposed modifications. Section 3 explains the
evaluation method for confidence measures. Section 4 contains results and dis-
cussion. Section 5 concludes.

2 Disparity Confidence Measures

A confidence measure C is defined pixelwise for the selected disparity values.
These disparities are usually defined by the global minimum of a cost function c.
In our case, c is resulting from enforcing smoothness constraints to the disparity



Disparity Confidence Measures on Engineered and Outdoor Data 627

values by aggregating according to the semi global matching heuristic. For a
pixel in the left image, c is defined for disparities in an interval [dmin, dmax];
c(d) is the cost for disparity d.

We identify two special disparities: d0, where c(d0) is the global minimum,
and d1, where c(d1) also defines a local minimum but which is only the second
smallest globally.
Curvature. Local curvature of c at the cost minimum d0 is a widely used confi-
dence measure. We use the inverse of the opening of a fitted parabola:

C0 =
1

−2c(d0) + c(d0 − 1) + c(d0 + 1)
(1)

Perturbation. The perturbation measure, proposed in [9], computes the deviation
from an ideal cost function that has a single minimum at location d0 and is ‘very
large’ everywhere else. Nonlinear scaling is applied:

C1 =
∑

d �=d0

e−
(c(d0)−c(d))2

σ2 (2)

Parameter σ is chosen to obtain a valid range of confidence values regarding
numerical precision limits.

Peak ratio. The peak ratio indicates low confidence if there are two candidates
with similar matching costs. It is defined as

C2 =
c(d0)

c(d1)
(3)

Right-left consistency check. Right-left consistency compares the selected dispar-
ities of left-to-right and right-to-left matching. Let dR0 be the global minimum
of the cost function for right-to-left. Then,

C4 = |d0 − dR0 | (4)

Large disparity differences between both views show an incorrect match, at least
for one of both. In practice, a difference of more than one pixel is considered to
be an indication of a mismatch. Defining values smaller than 1 is of questionable
value for a confidence measure.

Proposed Modifications. Inspired by the observation that the neighbourhood
of the global cost function minimum on recorded stereo frames contains little
information about the correctness of the match (see the plot of the curvature
measure in Fig. 4), we exclude a neighbourhood of size n from the confidence
computation, where n equals (about) half of the matching window size. The
perturbation measure is then defined as follows:

C1(x, y) =
∑

d∈[dmin,d0−n]∪[d0+n,dmax]

e−
(c(d0)−c(d))2

σ2 (5)

For the peak ratio, in addition to being a local minimum of c, the following
constraint is applied for the selection of d1: d1 < d0 − n and d1 > d0 + n.
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(a) C2 (b) C1 (c) C2 modified (d) C1 modified

Fig. 3. Visualisation of peak ratio (a) and perturbation measure (b) and their modified
counterparts (c),(d) for the stereo frame displayed in Fig. 2. Lighter grey values indicate
locations with lower confidence into the calculated disparity.

3 Synthetic, Engineered and Recorded Data

We tested confidence measures defined on accumulated cost of SGM (defined
above) using a census [3] cost function instead of the originally used mutual
information [5]. This choice is justified by good overall performance of census
costs, as, for example, reported in [6].

We use a sparsification strategy for comparing the performance of measures:
initially, the number of bad pixels is counted on the disparity map with full
density; successively, pixels with lowest confidence (or highest score assigned,
respectively) are removed, resulting in semi-dense disparity maps; for each dis-
parity density, the number of bad pixels is counted, until the set of points in the
disparity map is empty.

This evaluation requires disparity ground truth. For synthetic scenes, ground
truth is available with very high accuracy, without any mismatches; see Set 2 on
[2]. Accurate ground truth for indoor scenes can be obtained using the structured
lighting technique [15]. Subpixel accuracy is available on downsampled images.
Several data sets with ground truth, generated using structured lighting, have
been published in conjunction with [14,12].

For outdoor scenes, one of the few methods to generate depth measurements
is using a laser range-finder [4,11]. Drawbacks of this technique include: misregis-
tration of camera and range-finder sensors, non-overlapping occluded areas, low
density of laser measurements, and numerous measurement artefacts on specular
surfaces.

For the evaluation of disparity confidence measures we count the number of
bad pixels (according to some criterion), not the total deviation from ground
truth (e.g., as done with RMS). Therefore it is more important to have accurate
maps of gross mismatches than very accurate disparity measurements itself. For
the evaluation of recorded data, we choose to manually enhance a disparity map
by labelling bad pixels; see Fig. 2. To compensate for unavoidable inaccuracies
on real-world data, we identify as bad matches only disparities that differ from
the ground truth value by eight units or more. On synthetic and engineered data,
a difference of more than 1 defines a bad match.
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Fig. 4. Sparsification plots of confidence measures. Top to bottom: synthetic, engi-
neered, and outdoor-recorded stereo input data.
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4 Results

Results from sparsification are plotted in Fig. 4. The curvature measure is gen-
erally the worst performing one, despite its popularity. On the recorded data set
it even provides no information about confidence at all. The proposed modifica-
tions of perturbation and peak ratio measure are not advantageous on synthetic
and engineered data. The modified peak ratio significantly outperforms the orig-
inal peak ratio measure on the recorded dataset. Improvements in sparsification
(see Fig. 4)for the modified perturbation measure are minor for the used dataset,
in contrast to what the visualization in Figure 3 suggests. With the modification
of the peak ratio feature, an effective noise reduction in feature space can be
achieved: See, e.g., in Fig. 3 that areas depicting trees in the recorded images
(see Fig. 2) are well estimated by the used stereo matcher, and the modified peak
ratio measure better reflects this than the original one. The main advantage of
the proposed feature modification is avoiding false positives in detecting stereo
errors.

In the following, we discuss reasons for deviations in confidence measure ac-
curacies. For the curvature measure, it is important to note that due to limited
sharpness in recorded data, the global minimum of the accumulated cost func-
tion is never a sharp peak. Therefore, parabola fits at the cost minimum (and
immediate neighbours) never yield large values for curvature, except at noisy
patches. However, such patches may not generate a correct match. Extending the
parabola fit to, for example, a least-squares fit of a wider neighbourhood might
help. In the perturbation measure, for the same reason as explained above, ex-
cluding a neighbourhood of the global cost minimum gives more weight to other
minima, and can enhance the distinctiveness of this feature. The largest poten-
tial for confidence measure accuracy improvements seems to be in peak ratio
modifications: In recorded data, due to inherent noise, there is often another
local minimum only a few (e.g. two) disparities away from the global minimum
(see, e.g., Fig. 1). This local minimum usually has an associated cost very close
to that of the global minimum, hence produces a very high peak ratio, or a low
confidence, respectively. However, such matches are often correct or have a mi-
nor disparity inaccuracy. So, it is not desirable to exclude them from subsequent
computations using these disparities. It may be of interest to scale n, the exclu-
sion window size, depending on disparity d, as matching errors in more distant
objects produce larger absolute errors in object space. Note, however, that this
does not influence evaluations based on metrics using the number of bad pixels.

5 Conclusion

We have shown that popular confidence features behave significantly different
on synthetic or engineered data on the one hand, compared to outdoor data on
the other hand. We conclude that conclusions from evaluations of such measures
on synthetic or engineered data are of no value for outdoor data.

However, characterizing different confidence measures on outdoor data in
terms of their properties (e.g. performance in dependence of given situations,
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as discussed in [8]) requires more extensive experiments than reported in this
paper. This will also help to identify particular signal or geometry cases where
stereo matchers may fail and need to be improved.
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