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Abstract. Gradient-following algorithms are deployed for efficient adap-
tation of exploration parameters in temporal-difference learning with dis-
crete action spaces. Global and local variants are evaluated in discrete
and continuous state spaces. The global variant is memory efficient in
terms of requiring exploratory data only for starting states. In contrast,
the local variant requires exploratory data for each state of the state
space, but produces exploratory behavior only in states with improve-
ment potential. Our results suggest that gradient-based exploration can
be efficiently used in combination with off- and on-policy algorithms such
as @-learning and Sarsa.
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1 Introduction

In reinforcement learning (RL), one of the most challenging tasks is balancing
the amount of exploration and exploitation [I]. If the behavior of an agent is
purely exploratory, the outcome of random actions prevents from maximizing
short-term reward. In contrast, if an agent is purely exploitative, the selection
of sub-optimal actions possibly prevents from maximizing long-term reward,
because of underestimating the outcome of optimal actions. Conclusively, the
optimal balance is somewhere in between, dependent on many parameters such
as the learning rate, discounting factor, learning progress, and of course on the
learning problem itself.

Many different approaches exist for tackling the trade-off between exploration
and exploitation. Based on a single exploration parameter, some basic policies
select random actions either equally distributed (e-Greedy) or value sensitively
(Softmax) [1], or by a combination of both [2], with the advantage of not re-
quiring to memorize any exploratory data. In contrast, other approaches utilize
counters for every state (exploration bonuses) direct the exploration process to-
wards finding the optimal action-selection strategy in polynomial time under
certain circumstances [3| [4]. Nevertheless, basic policies such as e-Greedy and
Softmax are known to be very effective having a proper exploration parameter
configured, which has been successfully shown for example in board games with
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huge discrete state spaces like Othello [5] or English Draughts [6]. In such state
spaces, utility functions are hard to approximate and experiments for determin-
ing a proper exploration parameter can be time consuming. A non-convergent
counter function is even harder to approximate than a convergent value func-
tion [7]. Interestingly, Daw et al. revealed in biologically-motivated studies on
exploratory decisions in humans that there is [...] no evidence to justify the in-
troduction of an extra parameter that allowed exploration to be directed towards
uncertainty (softmax with an uncertainty bonus): at optimal fit, the bonus was
negligible, making the model equivalent to the simpler softmax [8]. However, the
search for an appropriate exploration parameter for such a policy remains as a
challenging pattern-recognition task based on sensorimotor observations.

In the following, stochastic neurons are deployed for adapting exploration
parameters by gradient-following algorithms. Adaptation of such parameters is
with regard to the learning progress, instead of being tuned by hand in advance.
We evaluate the presented approach in discrete and continuous state spaces using
variants of the cliff-walking and mountain-car problems. The global variant of
the presented algorithm was recently introduced in former research work [9].
Therefore, the contribution of this paper is an extended version in more detail
also considering the local variant.

2 Methods

The learning problems considered in this paper can be described as Markov
Decision Processes (MDP) that basically consist of a set of states, S, and a set
of possible actions within each state, A(s) € A,Vs € S [1]. A stochastic transition
function P(s,a, s’) describes the (stochastic) behavior of the environment, i.e.
the probability of reaching successor state s’ after selecting action a € A(s)
in state s. The selection of an action is rewarded by a numerical signal from
the environment, r € MR, used for evaluating the utility of the selected action.
The goal of an agent is finding an optimal policy, 7* : S — A, maximizing the
cumulative reward. In the following, it is allowed for & to be continuous, but
assumed that A is a finite set of actions. Action-selection decisions are taken at
regular time steps, ¢t € {1,2,...,T}, until a maximum number of T" actions is
exceeded or a terminal state is reached.

2.1 Learning Algorithms

In temporal-difference learning, policies can be derived from utility functions
representing so far learned knowledge [I]. An action-value function, Q(s,a), de-
notes the cumulative and discounted reward for following policy m, when starting
in state s and taking action a

Q(s,a) = Er {Z Vorerls = s.a = a} : (1)

k=0
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where 0 < v < 1 is a discounting factor used for weighting future rewards in
Q(s,a). Since Q(s,a) depends on rewards received in the future, the cumulative
reward is considered to be an expected value E {-}.

Action-value function are learned from sensorimotor interactions of an agent
with its environment. Two commonly used algorithms for learning Q(s,a) are
Sarsa for on-policy learning [7]

ASarsa — [TtJrl + ’YQ (stJrla atJrl) - Q (sta at)]
Q(st,at) + Q(st,ar) + alsarsa » (2)

and Q-learning for off-policy learning [10]

b* + argmax Q(St41,b)
beA(st41)

AQlearning — [TtJrl + 7@ (StJrla b*) - Q (Sta at”
Q(sta at) <~ Q(sta at) + OlAQlearning 5 (3)

where « denotes a stepsize parameter [I1]. The technical difference between both
algorithms is the inclusion of successor-state information used for evaluating ac-
tion a; in state s;. Sarsa includes the discounted value of the actual selected ac-
tion in the successor state, Q(S¢+1, at+1), for which reason the algorithm belongs
to the family of on-policy algorithms. In contrast, Q-learning includes the dis-
counted value of the estimated optimal action in the successor state, Q(s¢11,0*),
for which reason it is an off-policy algorithm. On-policy algorithms have the ad-
vantage of including into Q(s, a) respective costs from stochastic action-selection
policies, but have in turn no convergence guarantee, except when the policy has
a greedy behavior [1].

2.2 Basic Exploration Policies

e-Greedy. One basic policy for trading-off exploration/exploitation is selecting
in state s an equally-distributed random action with probability 0 < ¢ < 1,
which is called an e-Greedy policy. With probability 1 — ¢, a greedy action from
the set of so far estimated optimal actions, A*(s) = argmax,¢ 4(,) Q(s,a), is
selected

1—¢ e A .
(e, s,a) = AG) 14 if a € A (s) @
o \ Ais)\ otherwise .

Softmax. A disadvantage of e-Greedy is that exploration actions are selected
equally distributed among all possible actions, which may cause the income
of high negative rewards from several bad actions, even if their true utility is
correctly estimated. Therefore, an alternative is determining the selection prob-
abilities according to a Boltzmann distribution (the Softmax policy), which also
takes so far estimated utility into account

L2
(7, 8,a) = QG - (5)

Zbe i



Gradient Algorithms for Exploration/Exploitation Trade-Offs 63

Low settings of the exploration parameter 7 (temperature) cause greediness,
however high settings cause randomness.

MBE. A known problem of Softmax is that it [...] has large problems of fo-
cusing on the best actions while still being able to sometimes deviate from them
[2]. This issue can be improved by combining Softmax with e-Greedy into the
Maa-Boltzmann Ezploration (MBE) rule [2], which selects exploration actions
according to Softmax instead of being equally distributed

random action from A*(s) with probability 1 — ¢
Softmax action 7 (7, s,a) with probability &

(e, T,8,a) = { (6)

VDBE-Softmax. A drawback of the above policies is that an appropriate
exploration parameter (¢ or 7, or both for MBE) needs to be found for optimizing
the cumulative reward. Such parameter varies dependently on learning progress,
and typically an exploratory behavior is desired at the beginning of the learning
process or in cases non-stationary environment responses are received. For this,
some approaches make use of a decreasing exploration rate [12] [I3], but which
is known as to be inefficient for non-stationary environments. As a solution, we
proposed the VDBE-Softmax policy in former research [14, [15], which adapts the
exploration rate of MBE, state dependently based on fluctuations in the utility
function
o) = 1—e O g

et1(8) =0 f(st,a,0) + (1 —0) - e(s) , (7)

where ¢ is a positive constant called inverse sensitivity and § € [0,1) a parameter
determining the effect of the selected action on the exploration rate. The second
parameter (temperature) is set constantly to the value of 7 = 1, using normalized
Q-values within the interval [—1, 1].

3 Exploration-Parameter Control

Finding an appropriate exploration parameter by hand can be time consum-
ing, and conclusively it is desired having algorithms adapting this parameter
based on current operating conditions. The proposed solution for this problem
is adapting the exploration parameter a. of an action-selection policy, 7(ae, -, ),
towards improving the outcome of m based on some reasonable performance
measure p. For maximizing p in the future, we deploy Williams’ “REINFORCE
with multiparameter distributions” algorithm using a stochastic neuron model
[16], originally designed for reinforcement learning in continuous action spaces.
The input of such neuron is a weighted parameter vector #, from which the
neuron determines the adaptable stochastic scalar as its output (the continuous-
valued action). However, here we use discrete actions, thus the algorithm is
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applied for adapting the continuous-valued exploration parameter, i.e. REIN-
FORCE Exploration-Parameter Control (REC). For example, if 7(a., -, -) is an
e-Greedy policy, the exploration parameter a. refers to the exploration rate ¢,
i.e. a. = €. In connectionist networks, such stochastic neurons can easily be
integrated with compatibility to backpropagation [16]. The observed state s of
the environment is typically the input to such network, which determines the
parameter vector 6 as its output to be processed by REC. However, in the fol-
lowing we use a tabular approximation of 6 for the reason of measuring unbiased
results.

At first, we show how a. can be globally adapted with regard to the episodic
cumulative reward, which is of interest for episodic learning problems consisting
of a small set of starting states. Thereafter, a local variant is presented for
determining a. state dependently, aiming at producing exploratory behavior
only in regions with improvement potential. However, the simple episodically
version is an interesting variant because of being computational and memory
efficient.

3.1 Global Episodic Control

In the following formulation, a single starting state ss is assumed (for better
readability), but which can easily be extended to multiple starting states as it
will be discussed afterwards. The REC algorithm determines at each time step a
continuous-valued action from a multiparameter distribution [16], representing
the exploration parameter a.. For this purpose, we use a normal (Gaussian)
distribution with parameters p (mean) and o (standard deviation), which are
given to the neuron as inputs.

At the beginning of each learning episode, the exploration parameter, being
valid over the whole episode, is determined from the distribution (i.e. the acti-
vation function of the stochastic neuron), a. ~ N (u, o), whose density function
g is given by

]. 2 2
— —(ae—n)*/20

Qe by e . 8

9( H U) 0\/277 ( )

Let 6 denote the vector of adaptable parameters consisting of

0= (g) . (9)

Our goal is adapting the components of 6 at the end of episode ¢ towards the
gradient

Oiv1 ~0; + aVyp . (10)

For improving the future performance of 7(a., -, ), the policies outcome can be
measured as the cumulative reward in episode 4

pi=FE{ri+ro+ - +rp|lmae,-,-)} . (11)
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Next, the characteristic eligibility of each component of 6 is estimated by

Olng(ae, ph,0) e —

ou T2 (12)
2 2
alng(;;,,u,a) _ (ae—Z?s -0 7 (13)
and a reasonable algorithm for adapting p and o has the following form
Ap=arlp—p)" " (14)
a0 =antp—p)\" ) T (15)

being applied at the end of each learning episode. The learning rate ag has to
be chosen appropriately, e.g. as a small positive constant, ar = ao?, [16]. The
baseline p is adapted by a simple reinforcement-comparison scheme

p=p+alp—p) . (16)

Analytically, in Equation [[4] the mean p is shifted towards a. in case of p > p.
On the contrary, u is shifted towards the opposite direction if p is less than p.
Similarly, in Equation [I5] the standard deviation o is adapted in a way that the
occurrence of a. is increased if p > p, and decreased otherwise (see proof in [16]).
In simple words, the standard deviation controls exploration in the space of a..

A proper functioning of the algorithm depends on some requirements. The
exploration parameter, mean, and standard deviation need to be bounded for
obtaining reasonable performance (see Table [I). Furthermore, if the learning
problem consists of more than one starting state, the parameters u, o and p must
be associated to each occurring starting state, i.e. u — u(s),c — o(s) and p —
p(s), because way costs might affect p unevenly. However, if a learning problem
consists of just one starting state, all utilized parameters can be considered as
being global parameters.

Table 1. Parameter bounds for determining a.

Policy fimin; aé“i“ Hmax; e Omin  Omax
REC e-Greedy: 7(e, -, ) 0.0 1.0 0.001 5.0
REC MBE: 7(e,-,-) 0.0 1.0 0.001 5.0
REC Softmax: m(7,-,) 0.001 1000.0 0.1 5000.0
REC VDBE-Softmax: 7(¢, -, ) 0.001 1000.0 0.1 5000.0

3.2 Local Step-Wise Control

The results from the previous section can easily be extended for obtaining a
local variant, aiming at producing exploratory behavior only in states with im-
provement potential. In general, all utilized parameters become local parameters
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associated to each state, i.e. u — u(s),0 — o(s) and p — p(s). The mean and
standard deviation are readapted after evaluating action a performed in state s
(by @-learning or Sarsa). In prior to an action selection in state s, an exploration
parameter a. is determined based on p(s) and o(s)

ac ~ N(u(s),o(s)) - (17)

For evaluating the utility of a., the estimated utility of the actual taken action,
Q1+1(st, ar), is considered
p=Qit1(st,ar) - (18)

The following equations now readapt the distribution parameters from state s;
based on the policies outcome using its current parameter a.

Buts) = anlp = o), 1 (19)
Ao(st) = ar(p — p(st)) (g - u(jzl)j)g_ ole)” (20)

Finally, the baseline 5(s) is readapted analogously to Equation
p(se) = p(se) +alp — p(se)) - (21)

4 Experiments

The presented policies are evaluated in two environments using off-policy Q-
learning and on-policy Sarsa learning. First, a variation of the cliff-walking
problem [I] is proposed as the non-stationary cliff-walking problem comprising
a non-stationary environment. Second, a variation of the mountain-car problem
is investigated comprising a continuous-valued state space approximated by a
table, which causes partial observability of the actual coordinates. Investigated
basic exploration policies are e-Greedy, Softmax, MBE and VDBE-Softmax, us-
ing REC adaptation with parameter bounds according to Table [l Since MBE
requires two parameters to be set (e and 7), we only adapt € of this policy, while
setting the temperature parameter constantly to the value of 7 = 1, and nor-
malizing all Q-values in state s into the interval [—1, 1]. For the VDBE-Softmax
policy, the inverse sensitivity parameter ¢ is adapted.

4.1 The Non-stationary Cliff-Walking Problem

The non-stationary cliff-walking problem is a modification of the cliff-walking
problem presented by Sutton and Barto [1], which additionally comprises non-
stationary responses of the environment. The goal for the agent is learning a
path from start state S to goal state GGy, which is rewarded with the absolute
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Goal 1

Goal 2

Rewards:
Phase a)
Episode 1...200
3

b)
201...1000
21

1001...3000
‘ [_4 I -1.2 -0.5 0.3
500 Position

(a) (b)

el
pet] n/a n/a

Fig. 1. The non-stationary cliff-walking problem (a) and the mountain-car problem
with two goals (b)

costs of the shortest path minus 1 if successful (see Figure . The reward for
each action is defined as 7gep = —1 (Way costs). The environment also comprises
unsafe cliff states, which lead to a high negative reward of r.;¢7 = —100, and also
reset the agent back to the starting state S.

At the beginning of an experiment, learning takes place in phase (a) having
one cliff state at left border. After 200 learning episodes, the grid world changes
to phase (b), now comprising 10 cliff states. This change requires adapting the
already learned behavior for circumventing the additional cliffs. After additional
800 episodes, the problem is tightened as shown in phase (c), where the number
of cliffs is increased to 20. An alternative goal state G2 also appears, which is
much higher rewarded with rgz = 500 when entered.

Each episode begins in the starting state S, and terminates when either a
goal state is entered or a maximum number of Ty, = 200 actions is exceeded.
Throughout the experiment, the step-size parameter « is constantly set to the
value of & = 0.2. Since the learning problem is episodic, no discounting (y = 1) is
used. Finally, all action values are optimistically initialized with Q:—o(s,a) = 0.

Results. Figure shows the reward per episode averaged over 500 exper-
iments. Averages of the mean and standard deviation for episodic policies are
shown in Figure It is observable that VDBE-Softmax maximizes the re-
ward /episode in the episodic case. MBE shows best performance of the remaining
three basic policies with the advantage of not requiring to memorize any further
exploratory data such as utilized by VDBE-Softmax. The Sarsa algorithm shows
better results for all four investigated policies when using episodic adaptation,
but which is not the case for local adaptation. This discrepancy is for the reason
that local adaptation tends to fast to become greedy, thus finding the second
goal state in phase (c) more seldom. For comparison, all REC policies are better
in episode 3000 compared to when using a pure greedy policy, which always con-
verges to a reward per episode of 0, and which is only the optimal policy within
the first 1000 episodes. In contrast, a pure random policy converges to —2750
respectively.
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Fig. 2. The non-stationary cliff-walking problem: Averaged results (smoothed) for in-
vestigated REC policies using @-learning and Sarsa. Note the dynamics of exploration
for non-stationary environment responses.
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4.2 The Mountain-Car Problem with Two Goals

In the mountain-car problem [I7], the goal is driving an underpowered car up
a mountain road, by initially standing in the valley between two mountains.
The problem is that gravity is stronger than the car’s engine, thus reaching the
mountain top by full throttle only is not possible. Instead the car has to swing
up for collecting enough inertia for overcoming gravity. In the here presented
modification of the original learning problem, two goal states are utilized as
depicted in Figure which are rewarded differently upon arrival.

Once the car reaches one of the two goals, an episode terminates and the car is
instantly set back to the middle of the valley. The idea of utilizing two differently
valued goals is for the reason of measuring performance improvements achieved
by various exploration policies, because a simple greedy policy (e-Greedy with
e = 0) leads to optimal performance in the original description of the learning
problem. The state variables are continuously valued consisting of the position
of the car, —1.2 < z < 0.3, and its velocity, —0.07 < & < 0.07. The dynamics of
the environment are described by differential equations

1 = bound [xt + i‘t+1]
&1 = bound &y + 0.001a; — 0.0025 cos (3z)] . (22)

At each discrete time step, the agent can chose between one of seven actions, a; €
{-1.0,-0.66,—0.33,0,0.33,0.66, 1.0}, each rewarded by 741 = —1, except for
reaching the right goal that is rewarded by 7441 = 1000. An episode terminates
when either one of the two goals has been arrived or when a maximum number
of actions, Tax = 10000, is exceeded. At the beginning of each episode the
car is positioned in the valley at position x = —0.5 with initial velocity & =
0.0. The state space is approximated by a 100 x 100 matrix, which causes the
actual positions to be partially observable. Throughout the experiment, the step-
size parameter « is constantly set to the value of @ = 0.7. Since the learning
problem is episodic, no discounting (y = 1) is used. Finally, all action values are
optimistically initialized with Q¢—o(s,a) = —200.

Results. The results are averaged over 200 runs as shown in Figure[3l In general,
best results are achieved for any policy using @-learning in combination with lo-
cal adaptation. Episodic adaptation of MBE outperforms e-Greedy and Softmax.
Furthermore, the Sarsa algorithm shows only to be advantageous in combination
with e-Greedy and Softmax using episodic adaptation, in contrast to MBE and
VDBE-Softmax behaving more efficiently in combination with @-learning. In the
first phase of learning a degradation of performance is recognizable for episodic
MBE and VDBE-Softmax. This is for the reason of learning at first a path to
the left goal, and thereafter finding the right (better) goal. For comparison, a
greedy policy converges to an average reward per episode of 114, in contrast to
a pure random policy converging to —5440.
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Fig. 3. The mountain-car problem with two goals: Averaged reward (smoothed) for
investigated REC policies using ()-learning and Sarsa

5 Discussion and Conclusions

In this paper, new exploration policies are proposed for adapting the explo-
ration parameter of basic exploration policies by gradient-following algorithms.
Local and global variants have been evaluated in two different learning prob-
lems requiring to properly trade off exploration and exploitation. Results from
the non-stationary cliff-walking problem show how the exploration parameter
is readapted based on learning progress when non-stationary environment re-
sponses are received. For basic exploration policies in combination with REC,
MBE shows to be most efficient in terms of performance. However, additional
exploratory data might improve results as shown using episodic VDBE-Softmax
in the non-stationary cliff-walking problem, but which is not always the case
as it is observable in the mountain-car problem with two goals. When com-
paring local and global adaptation, the performance shows to be nearly the
same for MBE, suggesting to use the memory and computational efficient global
variant in episodic learning problems. Finally, the presented results show that
gradient-following algorithms can be effectively used for balancing the explo-
ration/exploitation dilemma inherent to reinforcement learning.
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