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Abstract. Prototype-based classification schemes offer very intuitive
and flexible classifiers with the benefit of easy interpretability of the
results and scalability of the model complexity. Recent prototype-based
models such as robust soft learning vector quantization (RSLVQ) have
the benefit of a solid mathematical foundation of the learning rule and
decision boundaries in terms of probabilistic models and corresponding
likelihood optimization. In its original form, they can be used for stan-
dard Euclidean vectors only. In this contribution, we extend RSLVQ to-
wards a kernelized version which can be used for any positive semidefinite
data matrix. We demonstrate the superior performance of the technique,
kernel RSLVQ), in a variety of benchmarks where results competitive or
even superior to state-of-the-art support vector machines are obtained.

1 Introduction

A variety of powerful classification, regression, and inference techniques being
available, machine learning has revolutionized the possibility to deal with large
electronic data sets and to infer models for complex settings where standard
statistical models are no longer sufficient. Because of its high flexibility and
its usually excellent classification and generalization performance, the support
vector machine (SVM) constitutes one of the current flagships of supervised
machine learning. With machine learning techniques becoming more and more
popular in diverse application domains, there is an increasing need for models
which can easily be used by applicants outside the field of machine learning or
computer science. Moreover, due to more and more complex data and settings,
the tasks become more and more complex and, often, applicants do not only
have to apply a machine learning technique but also to inspect and interpret
the result. Based on insight gained this way, an improvement or focus of the
model can be done [23]. In this setting, a severe drawback of many state-of-
the-art machine learning tools occurs: they act as black-boxes. In consequence,
applicants cannot interpret the results and it is hardly possible to substantiate a
machine classification by a semantic explanation, or to change the functionality
of the model based on this insight.

Prototype-based methods enjoy a wide popularity in various application do-
mains due to their very intuitive and simple behavior: they represent their de-
cisions in terms of typical representatives contained in the input space and a
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classification is based on the distance of data as compared to these prototypes
[12]. Thus, models can be directly inspected by experts since prototypes can
be treated in the same way as data. Popular techniques in this context include
simple learning vector quantization (LVQ) schemes and extensions to more pow-
erful settings such as variants based on cost functions or metric learners [I8J21].
Robust soft LVQ (RSLVQ) as proposed in [21] constitutes one particularly in-
teresting approach since it is based on a generic probabilistic modeling of data
in terms of mixture models and it derives a learning rule based on this model
by optimizing the likelihood ratio. A behavior which closely resembles standard
LVQ2.1 results if modes are represented as Gaussians and the limit case of small
bandwidth is considered. While the limit case as well as standard LVQ2.1 do not
achieve optimum behavior already in simple model situations, as investigated in
the context of the theory of online learning in the approach [I] for example,
RSLVQ displays excellent generalization ability in the standard intermediate
case, see e.g. the approach [20] for an extensive comparison of the technique.

With data sets becoming more and more complex, input data are often no
longer given as simple Euclidean feature vectors, rather structured data or dedi-
cated formats can be observed such as bioinformatics sequences, graphs, or tree
structures as they occur in linguistics, time series data, functional data aris-
ing in mass spectrometry, relational data stored in relational databases, etc. In
consequence, a variety of techniques has been developed to extend powerful sta-
tistical machine learning tools towards non-vectorial data such as kernel methods
using structure kernels, recursive and graph networks, functional methods, rela-
tional approaches, and similar [GJTRIT7IT0]. Recently, popular prototype-based
algorithms have also been extended to deal with more general data. Diverse
techniques rely on a characterization of the data by means of a matrix of pair-
wise similarities or dissimilarities only rather than explicit feature vectors. In
this setting, median clustering as provided by median self-organizing maps, me-
dian neural gas, or affinity propagation characterizes clusters in terms of typical
exemplars [7[T3I5]. More general smooth adaptation is offered by relational ex-
tensions such as relational neural gas or relational learning vector quantization
[9]. A further possibility is offered by kernelization such as proposed for neural
gas, self-organizing maps, or different variants of learning vector quantization
[I5BIT6]. By formalizing the interface to the data as a general similarity or dis-
similarity matrix, complex structures can be easily dealt with: structure kernels
for graphs, trees, alignment distances, string distances, etc. open the way towards
these general data structures [14U8].

In this contribution, we propose an extension of RSLV(Q towards a kernel
variant. This way, a statistically well motivated model is obtained which achieves
excellent results as we will show in several benchmarks. Interestingly, albeit the
method, strictly speaking, requires a semi positive definite kernel, it also yields
good results if applied to arbitrary dissimilarity matrices. Corrections which
turn the latter towards valid kernels can further improve the results. Now we
first shortly review RSLVQ and we explain how this technique can be extended
to a kernelized version. We evaluate the behavior for several benchmarks and
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also show first visualizations which emphasize the interpretability of the resulting
models in terms of prototypes. We conclude with a discussion.

2 Robust Soft Learning Vector Quantization

Learning vector quantization (LVQ) constitutes a very popular class of intuitive
prototype based learning algorithms with successful applications ranging from
telecommunications to robotics [12]. Basic algorithms as proposed by Kohonen
include LVQ1 which is directly based on Hebbian learning, and improvements
such as LVQ2.1, LVQ3, or OLVQ which aim at a higher convergence speed or
better approximation of the Bayesian borders. These types of LVQ schemes have
in common that their learning rule is essentially heuristically motivated and a
valid cost function does not exist [2]. One of the first proposals which derives
LVQ from a cost function can be found in [I8] with an exact computation of the
validity at class boundaries in [11]. One very elegant LVQ scheme which is based
on a probabilistic model and which can be seen as a more robust probabilistic
extension of LVQ2.1 has been proposed in [21]. This method, robust soft LVQ
(RSLVQ) models data by means of a mixture of Gaussians and derives learning
rules thereof by means of a maximization of the log likelihood ratio of the given
data. In the limit of small bandwidth, a learning rule which is similar to LVQ2.1
but which performs adaptation in case of misclassification only, is obtained.

Assume data & € R™ are labeled y; where labels stem from a finite number
of different classes. A RSLVQ network models data by means of a mixture dis-
tribution characterized by m prototypes w; € R™ with priorly fixed labels c(w;)
and bandwidths ;. Mixture component j defines the probability

p(El7) = K () - exp(f (&, wj, 03))

with normalization constant K (j) and function f chosen e.g. as follows

F(&wj,0%) = =€ — w;]|?/o?

based on the Euclidean distance or a generalization thereof. This induces the
probability of an unlabeled data point

pEIW) = ZP p(€l7)

with prior P(j) and parameters W of the model. The probability of a labeled
data point is

p&yW) = > P()-pElj)-
c(wj)=y
Learning aims at an optimization of the log likelihood ratio

fk‘ayk|W)
log .
L= Z p(&kW)
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A stochastic gradient ascent yields the following update rules, given data point

(&ks yr)

Aws = o - {(Py(ﬂfk) — P(jlér)) - K(j) - Of (Ex,wy, 07) /0wy if c(w;) =
! —P(jlék) - K(§) - Of (&, wj, 02)/Ow; if e(wy) # yk

with learning rate a > 0 and the probabilities

P(j) exp(f (&, wj, 03))

P = g PG exp(f sy, 2)

and _ )
Pyle) — T ERU s o)

> P() exp(f (&, wj,0%))
With the standard Euclidean distance, equal class priors, and small bandwidth,
a learning rule similar to LVQ2.1, learning from mistakes, results thereof.

Given a novel data point &, its class label can be determined by means of the
most likely label y corresponding to a maximum value p(y|&, W) ~ p(&, y|W).
For typical settings, bandwidths are chosen of equal size 0]2 = ¢2, and priors
are equal P(j) = const. Further, the simple Euclidean distance is used. Then,
this rule can usually be approximated by a simple winner takes all rule, i.e. £
is mapped to the label c(w;) of the closest prototype w;. It has been shown
n [21], for example, that RSLVQ often yields excellent results while preserving
interpretability of the model due to prototypical representatives of the classes in
terms of the parameters w;.

3 Kernel Robust Soft Learning Vector Quantization

RSLVQ, albeit offering a very powerful learning algorithm, is restricted to Eu-
clidean data only. Here we propose a kernelization of the method such that the
technique becomes applicable for more general data sets which are implicitly
characterized in terms of a Gram matrix only. We assume that a kernel k is
fixed corresponding to a feature map &, hence

kit o= (&, &) = D(&)'D(&)

holds for all data points &k, &. We assume that prototypes are represented as
linear combinations of data in the feature space

wj = Z’ij@(gm) :

It is reasonable to assume that they are contained in the convex hull of the
data, i.e. coefficients 7;,, are non-negative and sum up to 1. The cost function
of RSLVQ becomes

B 2 )=y
L= 8 pwiate)l)
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We assume equal bandwidth o = o7, constant prior P(j) and mixture com-
ponents induced by normalized Gaussians. These can be computed in the data
space based on the Gram matrix because of the identity

de(gl) wj||2 = ||d5 52 Zij gm - kn -2 Z’ijkzm + Z’Vjsﬁ)/jtkst

s,t

where the distance in the feature space is referred to by || - |2. Thus the update
rules become Aw; = > Ayjm®@ (&) =

o K()- { (P, (1(6)) — PUIP(E))) (BE) — 3 vimP(Em)) i clw;) = v
~PIP(E) (B(6) — 3 1imP(Em)) if c(u;) #

Hence a gradient technique yields the following adaptation rules for the coeffi-
cients yjpm:

e - Py (7P _desfk — Yjm ignglcy clw;) =
Am = KUY Pl i 6 £ €0 cluy) £
—P(j|D(&k)) (1 = vjm) if Em = &k c(wy) # Yk

Note that this adaptation performs exactly the same updates as RSLVQ in
the feature space provided that the prototypes can be expressed as linear com-
binations of data points in the feature space. To guarantee non-negative and
normalized coefficients, simple normalization takes place after every adaptation
step. This restriction to the convex hull of the feature space is reasonable: it
has been demonstrated e.g. in [20] that RSLVQ, by learning from mistakes, does
not necessarily place prototypes at typical positions of the data space if this
does not further improve the classification accuracy, rather orthogonal transfor-
mations are accepted in this case, leading to unintuitive representations of the
data. These ambiguities of the solution are avoided by referring to the convex
hull.

4 Experiments

We compare the method to the support vector machine (SVM) and a k-nearest
neighbor classifier (k-NN) on a variety of benchmarks as introduced in [4]. The
data sets represent a variety of similarity matrices which are, in general, non-
Euclidean. It is standard to symmetrize the matrices by taking the average of
the matrix and its transposed. Further, the substitution of a given similarity
by its normalized variant constitutes a standard preprocessing step, arriving
at diagonal entries 1. Even in symmetrized and normalized form, the matrices
do not necessarily provide a valid kernel. Hence k-NN is directly applicable,
while SVM and, strictly speaking, kernel RSLVQ, are not. We observe, however,
that, unlike SVM, kernel RSLVQ can deal with these data directly without any
correction due to its direct optimization of the cost function by means of a
gradient descent method.
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There exist different standard preprocessing tools which transfer a given sim-
ilarity matrix into a valid kernel, as presented e.g. in [4/I4]. In general, the sim-
ilarity matrix can posses negative eigenvalues which yield to an invalid kernel.
Corrections are:

— Spectrum clip: simply set negative eigenvalues of the matrix to 0. Since this
can be realized as a linear projection, it directly transfers to out-of-sample
extensions.

— Spectrum flip: negative eigenvalues are substituted by their positive values.
Again, this can be realized by means of a linear transformation.

— Spectrum shift: the absolute value of the smallest negative eigenvalue is added
to all eigenvalues. For spectrum shift there does not exist an according linear
transform. Since the transform only affects self-similarities, a possible out-
of-sample extension is to let the new similarities unchanged.

These transforms are tested for kernel RSLVQ in comparison to SVM with ac-
cording preprocessing and a k-nearest neighbor approach with kernel ridge re-
gression weights. For the latter, we report results taken from [4]. We use training
data in analogy to []. For all data sets, we also report the signature, i.e. the
number of positive and negative eigenvalues of the Gram matrix, indicating the
degree of non-Euclideanity of the data.

— Amazonj7: This data set consists of 204 books written by four different
authors. The similarity is determined as the percentage of customers who
purchase book j after looking at book 4. This matrix is fairly sparse and
mildly non-Euclidean with signature (191, 13,0). Class labeling of a book is
given by the author.

— Aural Sonar: This data set consists of 100 wide band solar signals corre-
sponding to two classes, observations of interest versus clutter. Similari-
ties are determined based on human perception, averaging over 5 random
probands for each signal pair. The signature is (62, 38,0). Class labeling is
given by the two classes: target of interest versus clutter.

— Face Rec: 945 images of faces of 139 different persons are recorded. Images
are compared using the cosine-distance of integral invariant signatures based
on surface curves of the 3D faces. The signature is given by (794, 151,0). The
labeling corresponds to the 139 different persons.

— Patrol: 241 samples representing persons in seven different patrol units are
contained in this data set. Similarities are based on responses of persons in
the units about other members of their groups. The signature is (116,125, 0).
Class labeling corresponds to the seven patrol units.

— Protein: 213 proteins are compared based on evolutionary distances compris-
ing four different classes according to different globin families. The signature
is (171,72,0). Labeling is given by four classes corresponding to globin fam-
ilies.

— Voting: Voting contains 435 samples with categorical data compared by
means of the value difference metric. Class labeling into two classes is present.
The signature is (225,210, 0).
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For these data sets, results for the SVM and a weighted k-NN classifier have
been reported in [4]. Thereby, data are preprocessed using shift, clip, or flip
to guarantee positive definiteness for SVM. The latter is used with the RBF
kernel and optimized meta-parameters in [4]. For multi-class classification, the
one versus one scheme has been used.

In comparison, we train a kernel RSLVQ network using the real data or its
clip, flip, or shift, respectively. Results of a ten-fold cross-validation with the
same partitioning as proposed in [4] are reported. Prototypes are initialized by
means of normalized random coefficients ;. where the prior class label c(w;)
determines the non-zero elements. Further, while training, we guarantee that
prototypes are contained in the convex hull of the data by enforcing non-negative
coefficients and normalized vectors after every adaptation step. The number of
prototypes is taken as a small multiple of the number of classes, exact values
being displayed in Tab.[Il Other meta-parameters are optimized on the data sets
using cross-validation.

The results obtained on these data sets are reported in Tab.[Il whereby results
for k-NN and SVM are taken from [4]. Since SVM requires a positive semidefinite
matrix, only results for the corrected data are reported for SVM. For kernel RSLVQ),
albeit it is defined for valid kernels only in the strict sense, a direct application for
the original data leads to (often very competitive) results which are reported in
Tab.[Il For every data set, the best achieved result is shown in boldface. Interest-
ingly, in half the cases, kernel RSLV(Q achieves the best result. For four out of six
cases, already the performance for the original data beats the SVM result for pre-
processed data. Only in two cases (Protein and Voting), kernel RSLVQ is substan-
tially worse as compared to SVM, albeit the result still stays in the same order of
magnitude. Overall, it can be inferred that kernel RSLVQ constitutes a very com-
petitive algorithm with excellent classification results overall.

Since prototypes are represented only implicitly by means of coefficient vec-
tors, a direct inspection of a kernel RSLVQ classifier in the same way as a stan-
dard LVQ network by inspecting the prototype vectors is not possible. There
are two possibilities which still allow an intuitive inspection of the result: since
prototypes are contained in the convex hull of the data, it is possible to ap-
proximate prototypes by means of the closest data point without too much loss
of information. This approximation by exemplars enables its inspection in the
same way as data points. As an alternative, pairwise dissimilarities of data and
prototypes are given for both, prototypes in its original form as well as exem-
plar based approximations. Thus it is possible to display data and prototypes
in two dimensions by means of a standard non-linear dimensionality reduction
technique such as t-SNE which relies on dissimilarities only [22].

To illustrate this possibility, we visualize the Aural Sonar and the Voting
data set by means of t-SNE. For both cases, a kernel RSLVQ model is trained
using only one prototype per class. The respective closest exemplar is marked
in the projection. Fig. [[l displays the results. Obviously, representative discrim-
inative positions are chosen as prototypes which have the potential to offer
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Table 1. Results of kernel RSLVQ in comparison to SVM and k-NN on different bench-
mark data. The test error is reported, the standard deviation is given in parenthesis
and best results are shown in boldface.

k-NN SVM kernel RSLV(Q prototypes
Amazond7  16.95 (4.85) 75.98 (7.33) 15.00 (0.33) 94
clip 17.68 (4.75) 81.34 (4.77) 14.63  (0.26)
flip 17.56 (4.91) 84.27 (4.33) 16.70 (0.33)
shift 17.68 (4.75) 77.68 (6.14) 13.78 (0.23)
Aural Sonar 17.00 (7.65) 14.25 (7.46) 12.50 (0.48) 10
clip 14.00 (6.82) 13.00 (5.34) 12.50 (0.48)
flip 12.75 (6.42) 13.25 (5.31) 12.00 (0.35)
shift 13.50 (6.73) 14.00 (5.61) 13.00 (0.43)
Face Rec 4.23 (1.43) 3.92(1.29) 3.67 (0.02) 139
clip 415 (1.32) 4.18 (1.25) 3.67 (0.02)
flip 415 (1.32) 4.18 (1.32) 3.65 (0.02)
shift 4.07 (1.33)  4.15 (1.33) 3.88 (0.01)
Patrol 11.88 (4.42) 40.73 (5.95) 17.29 (0.36) 24
clip 11.56 (4.54) 38.75 (4.81) 17.91 (0.18)
flip 11.67 (4.24) 47.29 (5.90) 18.43 (0.24)
shift 13.23 (4.48) 40.83 (5.37) 23.33 (0.30)
Protein 29.88 (9.96) 2.67 (2.97) 29.06 (0.27) 20
clip 30.35 (9.71) 5.35 (4.60) 10.00 (0.26)
flip 31.28 (9.63) 1.51 (2.36) 3.13 (0.10)
shift 30.35 (9.71) 23.49 (7.31) 34.65 (0.31)
Voting 5.80 (1.83) 5.52 (1.77) 9.42 (0.05) 20
clip 5.29 (1.80) 4.89 (2.05) 9.42 (0.05)
flip 5.23 (1.80) 4.94 (2.03) 9.42 (0.05)
shift 5.29 (1.80) 5.17 (1.87) 9.42 (0.05)
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Fig. 1. Visualizing the Aural Sonar (left) and Voting data (right) sets together with
representative exemplars approximating the prototypes of a kernel RSLVQ classifier
using t-SNE
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interpretability of the results. Thereby it is vital that, unlike support vectors in
SVM, representative positions are chosen as prototypes and its number is fixed
a priori.

5 Discussion

We have proposed an extension of RSLVQ to a kernel variant and we have shown
that this technique yields excellent results on a variety of benchmarks, reaching
the classification accuracy of the SVM in all cases. Thereby, unlike SVM, a
representation of the data in terms of representative prototypes is given, and
the model can be interpreted as a probabilistic mixture model induced by the
prototypes, provided the considered similarity measure is a valid kernel. The
latter can be achieved by using e.g. flip or clip. In most cases, also the raw
similarity matrix can be used albeit it does not constitute a valid kernel. Since
data and classification is based on similarities, standard visualization tools such
as t-SNE allow to non-linearly project data onto the plane and to inspect the
obtained result. We have demonstrated this opportunity for two simple cases,
the visualization of more advanced settings being the subject of ongoing work.

While kernelization greatly enhances the applicability of RSLVQ to complex
settings, it has the drawback that it trades linear complexity by quadratic one
caused by the quadratic size of the similarity matrix. This makes the technique
unsuited if large data sets are dealt with. Popular approximation algorithms in-
clude e.g. the Nystrom approximation to substitute the full Gram matrix by a
low-rank counterpart, or patch processing which processes streaming data con-
secutively in patches relying on a linear subpart of the full Gram matrix only.
See e.g. the publications [2425] for these techniques and [25] for first success-
ful applications in the context of prototype based methods and LVQ schemes.
These techniques can directly be integrated into kernel RSLVQ inducing linear
time approximation schemes. It is the subject of future work to evaluate the
performance of these approximation schemes.

Acknowledgement. This work has been supported by the DFG under grant
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