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Abstract. The security guarantees provided by SSL/TLS depend on the
correct authentication of servers through certificates signed by a trusted
authority. However, as recent incidents have demonstrated, trust in these
authorities is not well placed. Increasingly, certificate authorities (by co-
ercion or compromise) have been creating forged certificates for a range
of adversaries, allowing seemingly secure communications to be inter-
cepted via man-in-the-middle (MITM) attacks. A variety of solutions
have been proposed, but their complexity and deployment costs have
hindered their adoption. In this paper, we propose Direct Validation of
Certificates (DVCert), a novel protocol that, instead of relying on third-
parties for certificate validation, allows domains to directly and securely
vouch for their certificates using previously established user authentica-
tion credentials. By relying on a robust cryptographic construction, this
relatively simple means of enhancing server identity validation is not only
efficient and comparatively easy to deploy, but it also solves other limi-
tations of third-party solutions. Our extensive experimental analysis in
both desktop and mobile platforms shows that DVCert transactions re-
quire little computation time on the server (e.g., less than 1 ms) and are
unlikely to degrade server performance or user experience. In short, we
provide a robust and practical mechanism to enhance server authentica-
tion and protect web applications from MITM attacks against SSL/TLS.

1 Introduction

The Secure Sockets Layer (SSL) protocol and its successor, Transport Layer
Security (TLS), have become the de facto means of providing strong crypto-
graphic protection for network traffic. Their near universal integration with web
browsers arguably makes them the most visible pieces of security infrastruc-
ture for average users. While vulnerabilities are occasionally found in specific
implementations, SSL/TLS are widely viewed as robust means of providing
confidentiality, integrity and server authentication. However, these guarantees
are built on tenuous assumptions about the ability to authenticate the server-
side of a transaction by using digital certificates signed by a trusted third-party
certification authority (CA).
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The security community has long been critical of the Public Key Infrastruc-
ture for X.509 (PKIX) and its CA-based trust model [13,19]. Much of the concern
has focused on the role of the CAs and their ability and motivation to not only
correctly verify and attest the coupling between an identity and a public key,
but also to protect their own resources. Browsers and operating systems deter-
mine what CAs users should trust by default (i.e., trust anchors). However, this
model has resulted in hundreds of CAs, all equally trusted and from more than
50 different countries [11]. Due to this excessive trust, CAs can forge certifi-
cates for any domain that will be accepted as valid by most browsers. Thus,
adversaries can obtain forged certificates by coercing or compromising any CA
and use them to execute man-in-the-middle (MITM) attacks against SSL/TLS
connections. Last year, the number of reported attacks against CAs increased
considerably [18, 22, 23, 34]. In some cases, adversaries were able to forge cer-
tificates for important web domains (e.g., google.com, yahoo.com and live.com).
Even worse, it has been estimated that a forged certificate was used to intercept
close to 300,000 Gmail sessions in Iran [26]. Furthermore, there is evidence that
governments and private organizations are using forged certificates as part of
their surveillance and censorship efforts [27,35,36]. The frequency of these inci-
dents is likely to increase in the future, as more and more web applications rely
on SSL/TLS to protect all their communications.

Multiple solutions have been proposed to deal with the threat imposed by
forged certificates and MITM attacks. The most popular approach is the use of
additional third-parties to extend or replace the rigid CA trust model (e.g., net-
work notaries [30,38], public audit logs [12,25] and secure DNS (DNSSEC) [20]).
In this approach, users can select one or more third-parties to vouch for the au-
thenticity of a certificate, improving the chances of detecting a MITM attack.
However, depending only on third-parties for certificate validation has several
shortcomings such as: significant deployment and operational costs (e.g., addi-
tional infrastructure with high availability requirements), more complex trust
model for users, privacy concerns and more complex revocation procedures.
Therefore, the inherent complexity and costs associated with third-party solu-
tions have prevented their widespread deployment. As a result, most users still
rely on weak certificate validation checks to detect MITM attacks.

In this paper we propose Direct Validation of Certificates (DVCert), an ef-
ficient and easy to deploy protocol that provides stronger certificate validation
and effective detection of MITM attacks without using third-parties. Our mech-
anism comes from a simple observation – users have already established secrets
(e.g., passwords) with their most important web applications. DVCert allows
web applications to use these secrets to directly and securely attest for the au-
thenticity of their certificates without exposing those secrets to offline attacks.
After a single round-trip DVCert transaction, a browser receives the informa-
tion required to validate all the certificates that could be used during a session
with the web application, including certificates from other domains. As a result,
to execute a MITM attack, an adversary not only needs to compromise a CA but
also each targeted web domain. A DVCert transaction uses a modified Password
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Authenticated Key Exchange (PAKE) protocol known as PAK [8,28]. However,
we are not simply applying a known protocol; rather, we modified PAK to provide
only server authentication and integrity protection instead of mutual authentica-
tion and generation of encryption keys (i.e., traditional use of PAKE protocols).
These changes allow better performance and simplify deployment without af-
fecting PAK’s formal security proofs. Our experimental evaluation shows that
an optimized DVCert transaction requires little computation time on the server
(e.g., < 1 ms) and on the browser. More importantly, DVCert transactions are
executed at most once per session; thus, their impact on server performance or
user experience is negligible. DVCert’s design also provides multiple advantages
over third-party solutions: simpler trust model, lower deployment and opera-
tional costs (e.g., no additional infrastructure is required) and no privacy risks.
Finally, DVCert is a readily available mechanism designed to improve the current
CA trust model and be compatible with third-party solutions such as DNSSEC,
once these solutions are deployed in the future. In so doing, we make the following
contributions:

– Designing and implementing an efficient and easy to deploy mecha-
nism to detect MITM attacks against SSL/TLS without third-parties:
We develop a protocol that provides more robust certificate validation and de-
tects MITM attacks, even if the adversary uses forged certificates. By allowing
web applications to attest directly for their certificates, our mechanism avoids
many of the challenges hindering the deployment of third-party solutions. We
implemented a proof-of-concept extension for Firefox and Firefox for mobile
browsers and a PHP-based server component to demonstrate the deployability
of our solution.

– Conducting an extensive performance analysis in multiple platforms:
We characterize DVCert’s performance using our prototype implementation in
both desktop and mobile browsers. Our results show that an optimized DVCert
transaction requires 0.54 ms of computation time on the server and 12.03 and
97.70 ms on a laptop and on a smartphone respectively. Compared to a näıve
implementation, these results represent a 94.96%, 55.07% and 77.82% improve-
ment on the server, laptop and smartphone correspondingly. Furthermore, we
apply ProVerif [6] to formally verify DVCert’s resilience to offline attacks.

– Making our DVCert implementation available to the com-
munity: The DVCert extension for Firefox and Firefox for mobile
as well as the server PHP code are available for evaluation at:
http://www.cc.gatech.edu/~idacosta/dvcert/index.html.

The remainder of this paper is organized as follows: Section 2 offers impor-
tant background information on SSL/TLS and MITM attacks and presents our
motivation; Section 3 provides the design and formal description of DVCert;
Section 4 presents our security analysis of DVCert; Section 5 shows our exper-
imental analysis and results; Section 6 offers additional analysis and discussion
of our proposed protocol; Section 7 provides an overview of important related
work; and Section 8 presents our conclusions.

http://www.cc.gatech.edu/~idacosta/dvcert/index.html
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Fig. 1. Example of a MITM attack against SSL/TLS

2 Background and Motivation

2.1 The SSL/TLS Protocols and Web Applications

The SSL/TLS protocols [10, 17] are the main security mechanisms used to
protect the communications between browsers and web applications. By pro-
viding a transparent encryption layer, SSL/TLS guarantee the confidentiality
and integrity of the data traveling across the Internet. Moreover, SSL/TLS al-
low browsers to authenticate web application’s servers via X.509 digital certifi-
cates [2]. A digital certificate binds the server’s identity (i.e., domain name) to
the server’s public key and it is signed by a Certification Authority (CA) trusted
by both the server and the browser. Initially, due to performance considerations,
most web applications used SSL/TLS only to protect requests carrying private
data (e.g., passwords, credit card numbers). However, due to the increasing num-
ber of attacks against web sessions (e.g., session hijacking), many applications
have been forced to protect all their communications with SSL/TLS. For this
reason, is common that during a session, a browser establishes multiple SSL/TLS
connections not only with web application’s servers but also with servers from
third-party domains (e.g., CDNs and ads networks). Through a short survey
from the Alexa Top 20 US sites and popular online banking sites (15 in total),
we determined that an average of 12 certificates per domain were validated by
the browser, with a minimum of 4 and a maximum of 22. Moreover, most sites
included at least one certificate from a third-party domain.

2.2 MITM Attacks against SSL/TLS

The security guarantees offered by SSL/TLS rely on the correct authentication
of the server. All such guarantees are rendered ineffective if an adversary is able
to convince users to accept an illegitimately generated certificate, as shown in
Figure 1. First, the adversary positions herself in the network path between the
victim’s computer and the server. When the victim sends a request for estab-
lishing a new SSL/TLS connection with the server (message 1), the adversary
intercepts and responds to it (message 4) using a forged certificate (Cert’). If the
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victim accepts this certificate, then she completes the SSL/TLS setup with the
adversary (messages 5 and 8), who has, as a result, successfully masqueraded
as the server. Simultaneously, the adversary establishes a new SSL/TLS connec-
tion with the server (messages 2, 3, 6, and 7). At this point, the adversary has
two active SSL/TLS connections: one with the victim and one with the server.
However, from the victim’s and server’s perspectives, there is only one secure
connection in place. The adversary can now decrypt, re-encrypt and forward all
the messages exchanged between the victim and the server (messages 9 to 12).
As a result, the adversary can access private information (e.g., passwords) or
even modify it (e.g., code injection).

2.3 Problems with Third-Party Solutions

A considerable number of mechanisms have been proposed to improve server-
side authentication and protect against MITM attacks (see Section 7). The most
popular approach is the use of additional third-party entities that can also vouch
for the authenticity of server certificates. Third-party solutions provide a number
of benefits: protection of the first connection to a new domain, scalable attes-
tation of certificates for all public domains and minimal requirements for web
applications. Unfortunately, this approach also faces several critical challenges.
First, these mechanisms have significant deployment and operational costs. The
additional infrastructure needed can be expensive to deploy and operate due to
requirements such as high-availability, data consistency, performance and secu-
rity. Even web applications can be affected by the operational overheads required
by these mechanisms. Second, the resulting trust model is more complex. The
use of multiple trusted entities to choose from can make the trust model more
complex to evaluate and understand. Thus, average users are likely to rely on
default trust configurations. Moreover, trust is dynamic – a trusted entity today
may become an adversary tomorrow. Third, these mechanisms introduce new
privacy risks. Users’ browsing activity is disclosed to third-party entities. Pre-
venting this problem can add complexity to these solutions. Fourth, certificate
revocation procedures become more complex. The use of multiple entities make
revocation more difficult because of the additional overhead required to revoke
multiple proofs of authenticity (e.g., signatures). Finally, captive portals typically
interfere with these mechanisms. In places such as airports and hotels, captive
portals can block requests for certificate validation to external entities before
user registration. Thus, captive portals need to be modified to allow additional
certificate validation mechanisms.

3 Direct Validation of SSL/TLS Certificates

We present Direct Validation of SSL/TLS Certificates (DVCert), an efficient and
practical mechanism that improves certificate validation and provides stronger
protection against MITM attacks. Instead of relying on third-parties, DVCert
uses the existing shared secrets between the user and the web application to
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directly validate server certificates. DVCert overcomes the limitations of third-
party solutions while also reducing the risks associated with using low-entropy
keys in network protocols.

3.1 Scenario and Threat Model

Our scenario assumes a large, highly distributed web application. The application
uses SSL/TLS to protect all the communications with its users (i.e., always-
on HTTPS). To establish SSL/TLS connections, the application has multiple
certificates signed by a trusted CA. In addition, the application’s web pages
include content from third-party servers. These servers also communicate using
SSL/TLS and have their own valid certificates. We assume that SSL/TLS are
correctly configured in the application’s servers as well as in the third-party
servers. Furthermore, users share a password with the application and use HTML
forms for authentication. Instead of plaintext passwords, the application stores
password salted hashes using public salt values. Finally, we assume that users
follow a robust password policy that is enforced by the application.

We consider a polynomial-time (PPT) adversary that has access to all the
communication between the web application and its users. The adversary’s goal
is to eavesdrop and tamper with this communication by executing MITM attacks
against SSL/TLS. To perform such attacks, we assume that it is possible for the
adversary to obtain forged certificates for any domain that are signed by some
trusted CA. However, the adversary does not have access to users’ passwords,
password salted hashes or server’s private keys. Moreover, we do not consider
attacks against user computers or application servers to obtain such information
and attacks that exploit SSL/TLS implementation or configuration errors.

3.2 Desired Protocol Properties

We identified properties required to achieve an effective and practical defense
against MITM attacks and use them to design DVCert. (1) Effective detection
of MITM attacks: the proposed mechanism must provide robust server authenti-
cation and effective detection of MITM attacks against SSL/TLS, even if illegit-
imately obtained certificates are used. (2) Robustness against offline attacks: the
proposed mechanism should not leak information about the user’s authentication
credentials and must be resilient to offline attacks such as dictionary and crypt-
analytic attacks. (3) Deployability: the proposed mechanism should not require
additional hardware or software, only small changes to the browser and web
application. In addition, it should be simple to configure in both the browser
and the web application. (4) Performance: the proposed mechanism must be
efficient. It must not affect the overall performance and scalability of the web
application. Moreover, it should not introduce risks of DoS attacks. (5) Privacy:
the proposed mechanism should not disclose user information to third-parties
and adversaries. (6) Compatibility: the proposed mechanism must not interfere
with existing functionality in the browser and web application. Browsers not
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Fig. 2. High level overview of DVCert. (1) The browser uses a DVCert transaction
to obtain a fresh DCL (Domain Certificate List); (2) it uses the DCL to validate
certificates used in all the SSL/TLS connections with the application.

supporting the proposed mechanism should still be able to access the web ap-
plication. Moreover, the proposed mechanism must be compatible with other
certificate validation protocols. (7) Usability: the proposed mechanism should
require minimal user intervention and have minimal impact on user experience.
(8) Simple trust model: the proposed mechanism should have an easier to un-
derstand trust model in comparison to third-party solutions. Users must not be
required to make additional trust assessments.

3.3 Protocol Description

MITM attacks against SSL/TLS connections are possible because server certifi-
cates are validated using only a single third-party signature and mutual authen-
tication is weak. DVCert addresses these problems by allowing web applications
to use already available shared secrets to vouch directly for the authenticity of
certificates instead of relying only on third-parties. Figure 2 shows a high level
description of the DVCert protocol. First, the browser establishes a SSL/TLS
connection with the web application and then executes a DVCert transaction
based on the user’s password and a modified PAKE protocol (step 1). In this
transaction, the browser authenticates the web application and receives its lat-
est certificate information. The certificate information is shared using a Domain
Certificate List (DCL), a data structure maintained by the web application that
contains the fingerprints1 of all the certificates that could be used during a session
with the application. The DCL not only includes the fingerprints of the appli-
cation’s certificates but also of third-party’s certificates used in the application
(e.g., CDNs and ads networks). Second, the browser stores the DCL temporarily
and uses it to validate the certificates of each SSL/TLS connection with the
application (step 2), including the SSL/TLS channel established in step 1. If a
certificate is not found in the DCL, then the corresponding SSL/TLS connection
is flagged as untrusted (i.e., probable MITM attack). Once the DCL expires, a

1 A certificate fingerprint is the cryptographic hash of the binary representation (e.g.,
DER encoding) of the certificate.
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Shared information: g, p, d = domain, s = H(u|d). Hash functions H, H1, H2, H3, H4

Information held by Browser: u = username, pw = password
Information held by Server: P = H(pw|s), DCL = domain certificate list

Browser Server
a ∈ Zq

P = H(pw|s)
m1 = ga ×H1(u|d|P )(mod p) (1)

u, m1−−−−−−−−−−−−−→ m1 mod p
?

�= 0
b ∈ Zq

gab = (
m1

H1(u|d|P )
)b(mod p)

m2 = gb ×H2(u|d|P )(mod p)

r = (u|d|P |ga|gb|gab)
h1 = H3(r|H(DCL))

gab = (
m2

H2(u|d|P )
)a(mod p) (2)

m2, h1, h2, DCL←−−−−−−−−−−−−−−−−− h2 = H4(r)

r = (u|d|P |ga|gb|gab)

h1
?
= H3(r|H(DCL))

h2
?
= H4(r)

Operations:
x|y: concatenation of strings x and y
Hi(x): i-th standard cryptographic hash of x
Hi(x): special agreed-on cryptographic hash of x [9, 21]

Fig. 3. Detailed description of a DVCert transaction. On each transaction, the server
is authenticated and the browser securely receives a new DCL.

new DVCert transaction is executed (step 1) to update it. Finally, to avoid ask-
ing for the user’s password on each transaction, the browser securely stores the
password salted hash (PSH) together with the DCL.

DVCert achieves our goals by building on a significantly modified version of
PAK [8, 9, 21, 28]. PAK (and the PAKE family of protocols) is based on the
Diffie-Hellman (DH) key exchange and allows the use of low entropy secrets
such as passwords to securely establish a session secret (i.e., authenticated Diffie-
Hellman). PAK was selected as a starting point for our work because of its formal
security proof and its ability to use shorter exponents [29] for better performance
when compared to other related PAKE-based protocols. The major difference
in our approach is that DVCert uses PAK only for server authentication in-
stead of mutual authentication and generation of encryption keys (standard use
of PAKE protocols), and include features to protect the integrity of the DCL
and distinguish between tampering of the DCL and password errors. In other
words, only the browser verifies the session secret established during the trans-
action. By not providing user authentication, DVCert requires fewer messages
and, more importantly, avoids changes to the browser login user interface – a
major challenge for the deployment of PAKE protocols in web applications [15].
Hence, DVCert is compatible with current user authentication mechanisms (e.g.,
HTML form-based authentication).

Figure 3 shows the details of a DVCert transaction (step 1 on Figure 2). First,
the browser establishes a SSL/TLS connection with the server. This connection is
used to protect protocol information (e.g., usernames) from eavesdroppers. Next,
the browser generates a random exponent a (browser’s DH secret), computes the
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DH value ga and uses it and the password salted hash P to compute m1. If the
password salted hash is not available for this domain (e.g., first DVCert trans-
action with this domain), then the browser prompts the user for her username
u and password pw, computes the password salted hash P and stores it in a se-
cure location for future transactions (i.e., the user is prompted only once for her
password). Once m1 has been calculated, the browser sends it and the username
u to the server using a special header field in a HTTP request (message 1) over
SSL/TLS. After receiving the DVCert request, the server verifies that m1 �= 0
to prevent a known attack, uses the username u to retrieve the password salted
hash P from the server’s database, generates the random exponent b (server’s
DH secret) and computes the DH value gb. The server now obtains the browser’s
DH value ga from m1, calculates the session secret gab and computes m2 and h2.
In addition, the server uses the latest version of the DCL to compute h1. Next,
the server sends m2, h1, h2 and the DCL to the browser in the HTTP response
(message 2). Then, the browser uses the received values to obtain the server’s
DH value gb and to calculate the session secret gab. Next, the browser uses the
session secret gab and other protocol state information to compute new h1 and
h2 values. The browser now compares the computed h1 with the one received
from the server. If the values match, then the DVCert transaction was success-
ful. Thus, the DCL file is trusted (i.e., has not been tampered with) and can
be used to validate certificates. In addition, the successful verification of h1 also
proves the server’s identity. If the h1 values do not match, then the browser pro-
ceeds to verify h2. If this verification succeeds, then the DCL has been modified
and there is a high probability that a MITM is in progress. Therefore, neither
the DCL nor any communication with the server can be trusted. The browser
displays a warning to the user and halts the communications with the server.
If the h2 values are different, then the transaction could have failed due to a
password error (e.g., user typed the wrong password) or a MITM attack. Thus,
the browser displays a warning and prompts the user for a new password for
a limited number of attempts. If the protocol still fails after several attempts,
then the browser halts all communications with the server. In other words, h2 is
used to differentiate between protocol failures due to a MITM attacks or due to
password errors.

After a successful DVCert transaction, the browser stores the DCL and the
password salted hashes in a secure location isolated from other browser com-
ponents. The browser stores one DCL per domain for a limited period of time
according to a domain policy (e.g., once per session). Thus, the total num-
ber of DVCert requests per user is significantly lower than the total number of
SSL/TLS connections. When a SSL/TLS connection is established with a server,
the browser checks that the certificate is in the corresponding DCL (step 2 in
Figure 2). If the certificate is not in the DCL, then a MITM attacks is likely
to be in progress. Thus, the browser displays a warning to the user and halts
the communications with the server. Once a DCL expires, the browser sends an
automatic request (i.e., no user intervention) for a new DVCert transaction to
update the DCL.
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Finally, DVCert assumes that PAK constants, the prime number p and the
generator g, are publicly known. For example, they can be hardcoded in DVCert’s
browser and server components. This measure is important to prevent an adver-
sary from sending bogus p and g values and tricking the user into an improper
DVCert exchange that could leak password information. Moreover, DVCert as-
sumes that the web application stores password salted hashes (P = H(pw|s))
and that salt values (s) are also publicly known. If the salt is not known in
advance, the browser can send an additional request to the server to obtain it.

4 Security Analysis

DVCert main’s goal is to detect MITM attacks against SSL/TLS. DVCert
achieves this by effectively binding the SSL/TLS layer to the application layer
(i.e., channel binding [4, 39]). As a result, a MITM adversary trying to avoid
detection by modifying the DCL is not only forced to compromise a CA to ob-
tain a forged certificate but also to compromise each of the targeted domains to
obtain users’ authentication credentials.

An adversary can try to capture DVCert messages and use offline attacks
to obtain user authentication credentials. However, the attacker needs to ex-
ecute a MITM attack first to access DVCert messages. Thus, such attempts
will be detected by DVCert. Furthermore, PAK’s formal proofs of security for
standard [8] and short exponents [29] (i.e., 384 bits) provide strong guarantees
that the adversary will not learn password information from DVCert messages.
DVCert modifications to PAK do not affect these proofs. For example, PAK and
DVCert transmit the same number of hash values (2) over the network. The
main difference is that DVCert uses one message less and uses the DCL as part
of the computation of h1.

We used ProVerif [6], an automatic cryptographic protocol verifier, to for-
mally characterize DVCert. Using ProVerif, we successfully demonstrated that
DVCert does not leak password information (i.e., resilience to offline attacks).
Due to space limitations, ProVerif configuration details and results are available
in DVCert’s web site.

DVCert information stored in the browser or the server cannot be used to
impersonate the user because DVCert does not provide user authentication.
Therefore, DVCert offers resilience to server compromise similar to augmented
PAKE protocols. The adversary can still use offline dictionary attacks against
the stolen credentials, but the use of strong passwords can mitigate this risk.

The DCL includes fingerprints of certificates from third-party domains be-
cause these certificates cannot be validated directly (users do not share secrets
with these domains). This is important because a MITM attack against a third-
party SSL/TLS connection could be used to compromise the session with the
web application (e.g., code injection attacks). The web application is responsible
for maintaining the latest certificate information from third-party domains in the
DCL. For example, the web application could rely on existing secure connections
with third-party domains to obtain their certificate information. Alternatively,
the application could rely on third-party validation mechanisms.
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A concern with PAKE protocols is the risk of denial of service attacks due
to the cost of public key operations. DVCert mitigates this risk by optimizing
such operations without reducing security. For example, DVCert can use shorter
exponents for better performance without affecting formal proofs of security.
PAK allows the use of exponents with a minimum size of 384 bits (1024 bits
DH group) [29] while maintaining a similar level of security. Another suggested
optimization is the use of static parameters in the server (i.e., b, gb and m2)
to reduce the number of operations (see Section 5). This technique affects the
protocol’s perfect forward secrecy property; however, DVCert does not require it
(i.e., the session secret is not used for encryption). Finally, the web application
could also monitor and limit the number of DVCert requests a user can make
per day according to a domain policy.

5 Experimental Analysis

We implemented DVCert browser and server components (see Figure 2) to eval-
uate their performance and deployability. The DVCert browser component was
implemented as an extension for Firefox 10.0.x and Firefox for mobile (Fennec)
4.03b. The extensions were written mainly in Javascript, but we also used C code
for modular exponentiation operations through Firefox’s js-ctypes API and the
GMP library2. Approximately 500 lines of code were required for both exten-
sions. The DVCert server component was implemented in PHP and required ap-
proximately 400 lines of code. More importantly, the DVCert server component
is completely independent of the web application code; only access to the user
database is required. PAK implementation details as well as test vectors were
obtained from the RFC 5683 [9] and the ITU-T Recommendation X.1035 [21].
The experiments used a laptop (Apple MacBook Pro with dual core 2.53 GHz
processor, 4GB of memory and Mac OS X 10.6) and a smartphone (Samsung
Galaxy S 4G with a 1 GHz Cortex-A8 processor, 512 MB of memory and An-
droid 2.2.1) as our clients. On the server side, we used a Ubuntu 10.10 server
with 2 quad-core 2.00 GHz processors, 16 GB of memory and Gigabit Ethernet.
The server was configured with Apache 2.2, PHP 5.3 and a 2048 bits RSA cer-
tificate. Finally, our prototype DVCert implementation is currently available for
evaluation at http://www.cc.gatech.edu/~idacosta/dvcert/index.html.

Certificate validation operations using the DCL are inexpensive. For example,
for each SSL/TLS connection, the browser executes one hash operation and one
search operation. Assuming an ordered DCL, binary search is used to determine
if a certificate is in the DCL with time O(log n), where the DCL’s size n is in
the order of tens of certificates. In addition, the size of the DCL is small (e.g.,
a SHA-1 certificate fingerprint requires only 160 bits). Hence, the impact on
network bandwitdh due to the DCL is negligible. Therefore, our experimental

2 Javascript-only DVCert add-ons for Firefox required an execution time at least one
order of magnitude higher than add-ons using C native code for modular expo-
nentiation, particularly in the smartphone. Ultimately, we envision DVCert to be
implemented directly in the browser and using native code for its operations.

http://www.cc.gatech.edu/~idacosta/dvcert/index.html
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evaluation focused on the costs associated with DVCert transactions where more
complex operations take place.

First, we measured the time required to generate a DVCert request (tg) and
the time required to verify the corresponding response (tv) in the browser for
different exponent sizes: 2048, 1024 and 384 bits. Morevoer, we used a DCL with
one certificate fingerprint in all the experiments. Table 1 shows the results for
100 DVCert transactions per configuration using a laptop and a smartphone,
including 95% confidence intervals. The results show that for 2048 bits expo-
nents, an often recommended size for standard key exchange protocols [7], the
browser required 26.78 ms and 440.58 ms of total computation time (tg + tv)
on the laptop and on the smartphone respectively. While these computation
times should not affect the user experience due to the low frequency of DVCert
transactions, we can see that using 384 bits exponents decreased these times to
12.03 ms on the laptop (55.07% improvement) and 97.70 ms on the smartphone
(77.82% improvement); thus, such delays are unlikely to be noticed by users.

Second, we measured the server response time using network traces for single
HTTPS requests (i.e., our baseline) and HTTPS requests with DVCert. Each
request retrieved a small HTML page (≈ 500 bytes. We chose this small size to
measured only the overhead added by SSL/TLS and DVCert). Moreover, our
measurements did not include SSL/TLS setup times. For HTTPS request with
DVCert, we evaluated different exponent sizes (2048, 1024 and 384 bits) and the
use of dynamic (tr) and static (trsp) server parameters. Based on these mea-
surements, we estimated how much time the server spent on DVCert operations
(td and tdsp) by subtracting the baseline time from the HTTPS+DVCert server
response times. The results for 100 DVCert transactions per configuration are
shown in Table 2, including 95% confidence intervals. The most robust con-
figuration, 2048 bits and dynamic parameters, required 10.71 ms of additional
server computation time, while the most efficient configuration, 384 bits and
static parameters, required around 0.54 ms (94.96% improvement). Thus, the
most efficient DVCert configuration requires less time than serving a HTTPS
request (1.17 ms) and it is smaller than the average network jitter in the US
(0.67 ms [5]). Also, Table 2 shows how static parameters can reduce DVCert
processing time on the server by at least 38%. Overall, these results show that
DVCert operations have similar processing requirements to other server opera-
tions (e.g., SSL/TLS setup, HTTPS requests processing) while still maintaining
robust security guarantees. Thus, DVCert should not degrade performance or
increase the risk of DoS attacks.

Finally, we evaluated the overall impact of DVCert on server throughput in
the hypothetical scenario where each SSL/TLS connection includes a DVCert
transaction (i.e., upper bound). For this purpose, we measured the rate of
HTTPS requests (using one SSL/TLS connection per request) and the rate of
HTTPS+DVCert requests that the server can handle. As before, we evaluated
DVCert with different exponent sizes (2048, 1024 and 384 bits) and one setup
with static parameters and 384 bits exponents. The test load was generated
with httperf, a HTTP traffic generator tool. Figure 4 shows the results of this
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Table 1. DVCert request generation time (tg) and response verification time (tv),
including 95% confidence intervals, on a laptop and on a smartphone for different
exponent sizes.

Exp. Size Laptop tg (ms) Laptop tv (ms) Phone tg (ms) Phone tv (ms)

2048 bits 10.36 (±0.09) 16.42 (±0.29) 171.92 (±1.79) 268.66 (±9.64)

1024 bits 3.95 (±0.07) 9.55 (±0.14) 48.68 (±2.11) 71.88 (±7.87)

384 bits 3.26 (±0.09) 8.77 (±0.14) 33.58 (±0.72) 64.12 (±7.44)

Table 2. Server response time (tr) for a HTTPS request and a HTTPS request with
DVCert using dynamic and static parameters (trsp) and different exponent sizes. By
subtracting the time of a single HTTPS request, we estimated the cost of DVCert op-
erations with dynamic (td) and static (tdsp) parameters and determined the percentage
of improvement (% Imp.) due to static parameters.

Request Type tr (ms) td (ms) trsp (ms) tdsp (ms) % Imp. (tdsp)

HTTPS only 1.17 (±0.01) – 1.17 (±0.01) – –

DVCert 2048 bits 11.88 (±0.01) 10.71 6.66 (±0.01) 5.49 48.74%

DVCert 1024 bits 3.02 (±0.01) 1.85 2.20 (±0.01) 1.03 44.32%

DVCert 384 bits 2.04 (±0.01) 0.87 1.71 (±0.01) 0.54 37.93%

experiment for 10 measurements per point (300 in total), including 95% confi-
dent intervals. This figure shows that, even if every SSL/TLS connection uses
a DVCert transaction, using 384 bits exponents allows a maximum throughput
close to the one obtained using single HTTPS requests. Moreover, 1024 bit expo-
nents could also allow a similar performance if static parameters are used (based
on the results shown in Table 2). Thus, using 1024 bits exponents or shorter
and static parameters reduces the risk of DoS attacks, eliminating the need for
additional DoS defenses (e.g., client puzzles).

6 Discussion

6.1 DVCert Benefits

In addition to meeting the design goals described in Section 3.2, DVCert solves
most of the problems hindering the deployment of third-party defenses against
MITM attacks (see Section 2.3). First, DVCert is easier to deploy and maintain.
In most scenarios, DVCert should not require additional infrastructure due to
its low processing costs. Only minor modifications are required to add DVCert
support to the web application and the browser (see Figure 2). For example,
DVCert only needs access to the application’s user database and certificate in-
formation (i.e., the DCL). Hence, DVCert can be deployed as an independent
service without modifying any existing functionality in the application. In the
browser, DVCert can also be implemented as an independent component that
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Fig. 4. Comparison of the web server throughput for single HTTPS request and
HTTPS requests with DVCert in the hypothetical case that DVCert transactions
are executed per SSL/TLS connection (i.e., upper bound). HTTPS+DVCert config-
urations used different exponent sizes and one configuration used static parameters
(HTTPS+DVCert-sp).

only requires the certificate information used on each SSL/TLS connection and
secure storage for the password salted hashes and DCL data. Moreover, by re-
lying on passwords, users do not need to deal with additional secrets or devices
and can benefit from DVCert on a wider range of platforms. Second, DVCert
has a simpler trust model. It relies on existing trust relationships between users
and web applications; hence, users do not need to assess and establish new trust
relationships with third-parties. Third, DVCert does not introduce new privacy
risks. User browsing activity is not revealed to third-parties when a certificate is
validated using DVCert. This property is particularly important for users with
high privacy and anonymity requirements (e.g., Tor users). Fourth, certificate re-
vocation is simpler. For instance, a certificate can be revoked by just removing it
from the DCL. Thus, there is no need for mechanisms such as CRLs and OCSP,
both criticised due to their ineffectiveness [24]. Fifth, DVCert is more resilient
to compromise than third-party approaches. Third-party solutions can vouch for
certificates belonging to a large number of domains. However, if compromised,
then all the protected domains could be affected by MITM attacks. In contrast,
DVCert is deployed independently per domain; thus, attacks against one domain
will not affect other domains. Finally, DVCert is compatible with captive portals
in certain scenarios. For instance, DVCert could verify the certificates of captive
portals that already share a secret with the user (e.g., Wi-Fi provider account) or
where the user receives a shared secret via a secondary channel (e.g., a receipt).

6.2 DVCert Limitations

DVCert allows web applications to vouch for their certificates using existing au-
thentication credentials. Thus, DVCert can only protect web applications where
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the user has an account and a shared secret. However, this is not a major limi-
tation because most of the web applications that are likely to be targeted by ad-
versaries (e.g., sites with private information) require authentication credentials.
A related case are web applications that rely on federated identity management
(e.g., OpenID) or Single sign-on (SSO) systems. Here, users share a password
with an identity provider instead of the web application. Still, DVCert can be
extended to validate certificates in such scenarios. For instance, the web applica-
tion can provide its DCL to the identity provider during the login process. Then,
the browser can execute a DVCert transaction to obtain not only the DCL of
the identity provider but also of the targeted application. We plan to explore
this idea in our future work. Another limitation is that DVCert cannot be used
to protect the first connection to a web application. DVCert is by design a trust-
on-first-use (TOFU) [38] mechanism such as the SSH protocol. Therefore, when
registering to a web application for the first time, users can only rely on CA
signatures and other third-party mechanisms to validate certificates. However,
for most scenarios, it is unlikely that adversaries will be monitoring users before
they have created an account with a web application. Moreover, applications
with high security requirements could also use secondary channels to protect the
user registration process.

7 Related Work

Multiple browser-based mechanisms have been proposed to detect forged certifi-
cates. For instance, browser extensions can keep track of the certificates used by
the browser and can detect certificate changes [1, 36]. While simple, the effec-
tiveness of this approach is affected by false positives and lack of user training.
A related technique, known as certificate pinning [16], uses a white-list of certifi-
cates for important domains that are hardcoded in the browser. This solution is
less prone to false positives; however, it is neither flexible nor scalable. A more
robust approach is the use of secondary channels such as cellular networks [33]
and Tor [3] to obtain additional copies of the server certificate. Unfortunately,
this approach is difficult to deploy and can introduce significant delays.

Most research in the area of MITM defenses focuses on using additional third-
parties to improve or replace the CA trust model. For example, mechanisms such
as Perspectives [38] and Convergence [30] allow users to choose multiple network
notaries that can complement or replace CAs signatures. The Mutually Endors-
ing CA Infrastructure (MECAI) [14] proposes a similar approach, but instead of
introducing new notaries, MECAI uses existing CAs as notaries. A different tech-
nique is presented by the Electronic Frontier Foundation (EFF) Sovereign Keys
(SK) project [12]. In SK, domain certificates include an additional integrity sig-
nature created with the domain’s sovereign key. To verify this signature, browsers
can obtain the corresponding sovereign key from a semi-centralized, append-only
public data structure. Google’s Certificate Transparency (CT) [25] proposal also
relies on a similar data structure, but instead of storing keys, it stores records of
each certificate emitted by a CA; thus, browsers can check this public audit log
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to validate they are using the correct certificate. The IETF DNS-based Authen-
tication of Named Entities (DANE) working group [20] is developing protocols
that use secure DNS (DNSSEC) extensions to bind certificates to domain names.
Finally, while third-party based solutions offer several benefits, their adoption
has been hindered by multiple problems such as deployment and operational
costs, lack of user training, false positives and others (see Section 2.3).

To a lesser degree, researchers have also explored the use of shared secrets
(e.g., passwords) to defend against MITM attacks. For example, the TLS-SRP
protocol [37] uses SRP [40] for mutual authentication and SSL/TLS key deriva-
tion based on the user’s password (i.e., certificates and CAs are not required).
However, TLS-SRP requires inter-layer communication between the application
and the SSL/TLS stack, breaking SSL/TLS transparency. A different technique
is to use shared secrets for channel binding [39], as proposed in the Session Aware
(TLS-SA) user authentication protocol [32]. To detect MITM attacks, TLS-SA
uses authentication codes based on user credentials and SSL/TLS session infor-
mation, effectively binding the application and SSL/TLS layers. TLS-SA, how-
ever, requires client certificates and hardware tokens to resist offline dictionary
attacks, affecting its adoption. Finally, the Mutual Authentication Protocol for
HTTP [31] also combines user authentication with SSL/TLS channel binding,
but it relies on the user’s password instead of client certificates. To provide mu-
tual authentication and prevent offline guessing attacks, this mechanism relies
on the direct implementation of a PAKE protocol. However, this mechanism
requires additional server state, only protects the login connection and requires
changes to the browser and web application login UI (a significant challenge for
deploying PAKE-based protocols [15]).

8 Conclusions

As recent incidents have demonstrated, adversaries are exploiting weaknesses in
the CA trust model to compromise communications protected by SSL/TLS via
MITM attacks. This trend is likely to accelerate as more and more web applica-
tions adopt SSL/TLS to protect all their communications. Currently proposed
solutions face multiple challenges due to their complexity and deployment and
operational costs; thus, they are unlikely to be widely available in the near
future. We present DVCert, a practical mechanism that relies on previously es-
tablished shared secrets to allow the web application to directly and securely
vouch for the authenticity of its certificates. By using a single round-trip trans-
action with the web application, based on a modified PAK protocol, the browser
learns the information required to locally verify all the certificates that could be
used during a session with the application. Our experimental analysis shows that
DVCert transactions require little execution time on the server and the browser;
therefore, they should not have a serious impact on server performance or user
experience. Finally, DVCert could be extended to protect not only the integrity
of SSL/TLS certificates but also other application’s resources such as Javascript
code and binary objects. We intend to explore this approach in our future work.
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