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Abstract. Correlation power-analysis (CPA) attacks are a serious
threat for cryptographic device because the key can be disclosed from
data-dependent power consumption. Hiding power consumption of en-
cryption circuit can increase the security against CPA attacks, but it
results in a large overhead for cost, speed, and energy dissipation. Mask-
ing processed data such as randomized scalar or primary base point
on elliptic curve is another approach to prevent CPA attacks. However,
these methods requiring pre-computed data are not suitable for hard-
ware implementation of real-time applications. In this paper, a new CPA
countermeasure performing all field operations in a randomized Mont-
gomery domain is proposed to eliminate the correlation between target
and reference power traces. After implemented in 90-nm CMOS process,
our protected 521-bit dual-field elliptic curve cryptographic (DF-ECC)
processor can perform one elliptic curve scalar multiplication (ECSM) in
4.57ms over GF (p521) and 2.77ms over GF (2409) with 3.6% area and
3.8% power overhead. Experiments from an FPGA evaluation board
demonstrate that the private key of unprotected device will be revealed
within 103 power traces, whereas the same attacks on our proposal can-
not successfully extract the key value even after 106 measurements.

Keywords: Elliptic curve cryptography (ECC), side-channel attacks,
power-analysis attacks, Montgomery algorithm.

1 Introduction

Elliptic curve cryptography (ECC) independently introduced by Koblitz [1] and
Miller [2] has been widely applied to provide a confident scheme for information
exchange. For the past several years, many previous works [3], [4], [5], [6] have
been published for ECC hardware implementation aiming at the performance
improvement. However, even the ECC is secure at cryptanalysis, the private
data of a unprotected hardware device can be extracted by the physical attacks
due to side-channel leakage. The power-analysis attacks, initially presented by
Kocher [7], can reveal the key value by analyzing the power information of a
cryptographic implementation such as on an ASIC, FPGA or microprocessor.
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During the device processing, simple power-analysis (SPA) attacks can distin-
guish the key value through visual inspection because of the specifically active
circuit with direct hardware scheduling. The unified elliptic curve (EC) point
calculation [8], [9] is usually used to avoid the variation of power consumption
over time. However, the correlation power-analysis (CPA) attacks [10] comput-
ing the correlation between target power traces and power model by statistical
approach can reveal the key value due to the existence of key-dependent opera-
tions in every round of calculation. For ECC primitives specified in IEEE P1363
[11], the CPA attacks can be applied to EC integrated encryption system, single
pass EC Diffie-Hellman or single pass EC Menezes-Qu-Vanstone key agreement
because the private key is kept invariant for a long time duration.

Hiding technique with algorithm-independent dedicated circuit is a common
approach to protect cryptographic processors from attackers collecting the key-
dependent characteristics of power traces. In [12], wave dynamic differential logic
circuit with regular routing algorithm is exploited to equalize the current be-
tween rising and falling transitions. However, at least double hardware latency,
area cost, and energy for unprotected encryption engines are required due to
precharging for half cycle, and generating complementary logic outputs from
divided single ended modules with equivalent power consumption. Switched ca-
pacitor [13] is able to isolate the encryption core from the external power sup-
plies, but this approach results in 50% speed loss for replenishing charge every
cycle. In order to avoid the throughput degradation, a countermeasure circuit
using digital controlled ring oscillators [14] is designed outside of the critical
path. The concept is to generate random noise power to dominate the power
consumption of arithmetic unit, and then the correlation peak would not be
found even matching the correct key value. But this demands extra 100% power
overhead for the key-dependent processing element.

At the algorithm level, masking the processed data independent of power
consumption is another approach to avoid the CPA attacks. Since the scalar
K of EC point calculation is periodic with the point order #E, a randomized
scalar technique proposed by Coron [15] can be adopted to change the key value
by adding α ·#E for every elliptic curve scalar multiplication (ECSM) such as
KP = (K+α ·#E)P , where α is a random integer and P is a primary base point
on EC. However, with this method, the throughput overhead is inevitable due
to extending the key length. In [9], the ECSM of 521-bit key extended with a 32-
bit random value needs 10% more execution time to be carried out than that of
unprotected approach. Another CPA countermeasure also presented in [15] is to
mask the primary base point with pre-computed random points R and S = KR.
Then the ECSM is achieved by computing K(P +R) = KP ′ and subtracting S
before returning such that KP ′ − S = KP . For every next ECSM calculation,
the random points R and S are refreshed by performing R ← (−1)β2R and
S ← (−1)β2S with a single random bit β. But the time-cost random point
generation is not suitable for real-time applications as the EC parameters are
various with different users. In [16], the EC isomorphism method can randomize
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the primary base point by simple finite field operations without pre-computing
random points. However, it is limited to be applied in single finite field GF (p).

In this brief, we propose a new efficient countermeasure to overcome the CPA
attacks by computing overall dual-field ECC functions in a randomized Mont-
gomery domain. The feature of our approach is to mask the intermediate values
in not only the arithmetic but also the temporary register. Thus it is unnecessary
to extend the key length, customize circuit and modify the routing algorithm
in ASIC or FPGA design flow. Since our proposed design adopts simple logic
circuit to counteract CPA attacks, the hardware cost overhead could be signifi-
cantly reduced, and the maximum operating frequency of protected design is the
same as that of unprotected design using conventional Montgomery algorithm.
Additionally, by reducing the iteration time of the division, which dominates
other field operations in computation time, the speed can be improved further.

The remainder of the paper is outlined as follows. CPA attacks applied on the
ECC device are introduced in Section 2. The proposed countermeasure method
and design architecture are given in Section 3 and Section 4, respectively. Sec-
tion 5 shows the FPGA power measurement and ASIC implementation results.
Section 6 concludes this work.

2 CPA Attacks on ECC Device

Algorithm 1 presented in [8] is a usually adopted approach to counteract SPA
attacks by regularly performing the ECSM KP = P + · · · + P , where K is the
m-bit private key and P is a point on elliptic curves (ECs). But the intermediate
values of elliptic curve point doubling in Step 3 and Step 4 still have dependence
on the zero and non-zero bit of the key value. Hence, with a chosen point P , the
key value can be distinguished by matching the power trace segment of accessing
the memory storage for point coordinates P1 or P2.

Algorithm 1. Montgomery ladder ECSM algorithm

Input: K and P
Output: KP
1. Let P1 ← P , P2 ← 2P
2. For i from m− 2 to 0 do
3. If Ki = 1 then P1 ← P1 + P2, P2 ← 2P2

4. else P2 ← P1 + P2, P1 ← 2P1

5. Return P1

Fig. 1 illustrates the scenario of CPA attacks. For ECC primitives, the primary
base point is commonly public. Thus the power model can be characterized from
the hamming distance of memory storage for key-dependent point coordinates
by measuring the device sample before the statistical analysis, which computes
the correlation between the measured target power traces and the power model.
The correlation value of correct hypothesis will be larger than that of the others
due to the same hamming distance of processed data. Through this approach,
the overall binary key can be extracted after m− 1 rounds in linear time.
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Fig. 1. CPA attacks on an ECC device operating in a specific domain

3 Proposed Algorithm against CPA Attacks

The fundamental concept of CPA countermeasure is to break the dependency
between intermediate values and power traces. For achieving the EC point calcu-
lation, the well-known Montgomery algorithm [17] is usually adopted to perform
the field arithmetic in a specific domain such that A ≡ a · r (mod p), where
a is in the integer domain and r ≡ 2m (mod p) is the Montgomery constant
with m-bit field length. In this work, we introduce an approach to resist the
CPA attacks at modular algorithm by calculating the operands in a randomized
Montgomery domain A ≡ a · 2λ (mod p), where the domain value λ equals the
hamming weight (HW) of an n-bit random value α. Note that n is the maxi-
mum field length and the bit values of (αn−1, αn−2, . . . , αm) are set to zero for
preventing λ from exceeding m. By exploiting this approach, the intermediate
values can be masked because they are various with different domain values
such as 2g (mod p) �= 2h (mod p) when 0 ≤ g �= h < m. Since the proposed
method is to randomize intermediate values in basic modular operations, the
SPA resistant ECSM algorithm shown in Algorithm 1 can still be applied with-
out computation overhead from extended scalar length, and there is no need for
pre-computed EC points. The overall randomized Montgomery operations for
input operands X ≡ x · 2λ (mod p) and Y ≡ y · 2λ (mod p) are summarized
in Table 1.

3.1 Randomized Montgomery Multiplication

Algorithm 2 shows our proposed randomized Montgomery multiplication which
contains two operating steps in every iteration to change the intermediate do-
main value λ′, and these steps are determined by the ith bit of random value α.
If αi = 1, the domain value of output operand R decreases by one in Step 4 such
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Table 1. Operations in Randomized Montgomery Domain

Operation Arithmetic

Randomized Montgomery multiplication (RMM) RMM(X,Y ) ≡ x · y · 2λ (mod p)

Randomized Montgomery division (RMD) RMD(X,Y ) ≡ x · y−1 · 2λ (mod p)

Randomized addition (RA) RA(X,Y ) ≡ (x+ y) · 2λ (mod p)

Randomized subtraction (RS) RS(X,Y ) ≡ (x− y) · 2λ (mod p)

as R = (R + V0 · S)/2 (mod p); the domain value remains the same as αi = 0
in Step 5 such as R = (R + V0 · S) (mod p). The initial values of operands
(V,R, S) are set to be (X, 0, Y ). In further iterative calculation, the bit value V0

is equal to the ith bit value of X , and the operand S doubles its value as αi = 0.
Base on these, the functionality can be derived as follows:

– For 1st iteration, the intermediate result of R is (X0 · Y ) · 2−α0 (mod p).
– For 2nd iteration, R becomes ((X0 · Y ) · 2−α0 (mod p) +X1 · (21−HW(α0) ·

Y )) · 2−α1 (mod p).
– Untilmth iteration, the final result ofR is (· · · (((X0 ·Y )·2−α0 (mod p)+X1·

(21−HW(α0) ·Y )) ·2−α1 (mod p)+X2 ·(22−HW(α1,α0) ·Y )) ·2−α2 (mod p)+
· · ·+Xm−1 · (2m−1−HW(αm−2,···,α1,α0) · Y )) · 2−αm−1 (mod p)
≡ (X0·Y ·2−HW(αm−1,...,α0)) (mod p)+(X1·Y ·2−HW(αm−1,...,α0)+1) (mod p)+
· · ·+ (Xm−1 · Y · 2−HW(αm−1,...,α0)+m−1) (mod p)
≡ X · Y · 2−HW(αm−1,...,α0) (mod p)
≡ X · Y · 2−λ (mod p).

Hence, the randomized Montgomery multiplication in Algorithm 2 can be per-
formed in m iterations, the same as those in conventional radix-2 Montgomery
multiplication.

Algorithm 2. Radix-2 randomized Montgomery multiplication

Input: X,Y, p, and α
Output: R = RMM(X,Y )
1. Let V = X, R = 0, S = Y
2. For i from 0 to m− 1 do
3. R ≡ R + V0 · S (mod p), V = V/2
4. If αi = 1 then R ≡ R/2 (mod p)
5. else S ≡ 2S (mod p)
6. Return R

Algorithm 3 shows a radix-4 approach to Algorithm 2 for almost 50% iteration
reduction. The domain value of R is determined by the HW of two continuous
bits of random value α in Steps 5, 6, and 7. For the case of HW = 2, it is reduced
by two through performing quartering operation such as R ≡ R/4 (mod p).
While halving R and doubling S operations are performed as HW = 1, these are
deduced by computing one iteration of radix-2 Montgomery reduction and one
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iteration of radix-2 modular reduction in single period. For the rest case of HW
= 0, the operand S ≡ 4S (mod p) is performed due to the unchanged domain
value of R.

Algorithm 3. Radix-4 randomized Montgomery multiplication

Input: X,Y, p, and α
Output: R = RMM(X,Y )
1. Let V = X, R = 0, S = Y
2. For i from 0 to

⌈
m
2

⌉− 1 do
3. If m (mod 2) ≡ 1 and i =

⌈
m
2

⌉− 1 then
R ≡ R + V0 · S (mod p), V = V

2

4. else
R ≡ R + V0 · S + V1 · 2S (mod p), V = V

4

5. If (α2i+1, α2i) = (1, 1) then
R ≡ R

4
(mod p)

6. else if (α2i+1, α2i) = (1, 0) or (0, 1) then
R ≡ R

2
(mod p), S ≡ 2S (mod p)

7. else
S ≡ 4S (mod p)

8. Return R

3.2 Randomized Montgomery Division

To achieve the division in Montgomery domain, Kaliski [18] first proposed an
iterative algorithmwhich needsm ∼ 2m iterations of successive reduction, 0 ∼ m
iterations for degree recovery (reduce intermediate domain value λ′ to be m as
λ′ > m), and two additional Montgomery multiplications with a final modular
reduction p−R. The algorithm presented in [18] is formulated from the identical
equations as follows:

{
Y ·R ≡ −U · 2λ′

(mod p)

Y · S ≡ V · 2λ′
(mod p).

Based on Kaliski’s method, we derive a new randomized Montgomery division
which is described in Algorithm 4. To directly achieve the division operation
without additional multiplication and final modular reduction, our method is to
modify the initial values of (U, V,R, S) to be (p, Y, 0, X) in Step 1 and the RS
data path with modular subtraction in Steps 10, 11, 13, 14. Then the identities
become {

X−1 · Y ·R ≡ U · 2λ′
(mod p)

X−1 · Y · S ≡ V · 2λ′
(mod p).

Similar to RMM, the RS data path between the Montgomery domain and integer
domain is determined by the ith bit value of α. The domain value of operands
R and S increases by one as αi = 1 and remains the same as αi = 0.

For further reducing the degree recovery phase, the RS data path turns into
dividing values by two in Steps 5, 8, 11, 14 to keep the intermediate domain
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Algorithm 4. Radix-2 randomized Montgomery division

Input: X, Y, p, and α
Output: R = RMD(X,Y )
1. Let U = p, V = Y,R = 0, S = X
2. While (V > 0) do
3. If U is even then U = U/2
4. If αi = 1 then S ≡ 2S (mod p)
5. else R ≡ R/2 (mod p)
6. else if V is even then V = V/2
7. If αi = 1 then R ≡ 2R (mod p)
8. else S ≡ S/2 (mod p)
9. else if U > V then U = (U − V )/2
10. If αi = 1 then R ≡ R − S (mod p), S ≡ 2S (mod p)
11. else R ≡ (R − S)/2 (mod p)
12. else V = (V − U)/2
13. If αi = 1 then S ≡ S −R (mod p), R ≡ 2R (mod p)
14. else S ≡ (S −R)/2 (mod p)
15. If i < m then i = i+ 1
16. Return R

value in λ = HW(α) as i = m. Thus the identities in Algorithm 4 are given as
follows:

If i < m, then

{
X−1 · Y · R ≡ U · 2λ′

(mod p)

X−1 · Y · S ≡ V · 2λ′
(mod p)

else

{
X−1 · Y ·R ≡ U · 2λ (mod p)
X−1 · Y · S ≡ V · 2λ (mod p).

Before the last iteration, both U and V are 1 because the initial values of U and
V are relatively prime. Then after finishing the iterative operations in Step 2, the
values of (U, V,R, S) become (1, 0, X ·Y −1 ·2λ (mod p), 0). As a result, the pro-
posed randomized division algorithm requires at most 2m iterations of successive
reduction. Table 2 shows the expected operation time and the comparison with
related works on modifying radix-2 Montgomery division algorithm. With ran-
domization capability, Algorithm 4 will also benefit the hardware design owing
to the low latency.

Table 2. Analysis of Various Division Algorithms

Algorithm 4 TCAS-I’06 [3] ESSCIRC’10 [9]

Iteration Time m ∼ 2m m ∼ 2m m ∼ 3m

Multiplication 0 2 ∼ 3 0

Domain Random 2λ, 0 ≤ λ ≤ m Fixed 2m Fixed 2m

Algorithm 5 shows the radix-4 randomized Montgomery division derived from
Algorithm 4, and there are more branches in the algorithm as the radix becomes
lager. To remain the domain value of R unpredictable in the flexible range of
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[0,m−1), it is determined by the HW of random value αi or (αi+1, αi). The values
of UV is reduced to at least UV/4 except U ≡ 1 (mod 4), V ≡ 3 (mod 4) or
U ≡ 3 (mod 4), V ≡ 1 (mod 4) in Steps 17 and 18. With this approach and
a radix-4 RMM given in Algorithm 3, the EC point calculation can be carried
out faster in affine coordinates than that in projective coordinates [19], where
the iteration time ratio RMD/RMM ∼= 1.32 over GF (p) and 1.44 over GF (2m).

4 Hardware Architecture of DF-ECC Processor

Fig. 2 shows the block diagram of the proposed dual-field ECC (DF-ECC) pro-
cessor. For the CPA resistance, all field operations over GF (p) and GF (2m) are
performed by the Galois field arithmetic unit (GFAU) in a randomized Mont-
gomery domain. The operating domain is determined by the value in domain
shift register, which is sourced from a 1-bit random number generator (RNG)
and refreshed before the next ECSM calculation. For the flexibility, we use an
all-digital RNG utilizing the cycle-to-cycle time jitter in free-running oscillators
with a synchronous feedback post-processor [20]. The overall architecture of CPA
countermeasure circuit is shown in Fig. 3. Besides, to efficiently store the long
bit length operands including EC parameters and points, a block memory of
register file is exploited.
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DF-ECC/Field  
Arithmetic Functions

Address DecoderCPA 
Countermeasure 

Circuit

Fig. 2. Overall diagram for the DF-ECC processor
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Algorithm 5. Radix-4 randomized Montgomery division

Input: X, Y, p, and α
Output: R = RMD(X,Y )
1. Let U = p, V = Y,R = 0, S = X, i = 0
2. While (V > 0) do
3. c ≡ U (mod 4), d ≡ V (mod 4), t = 2
4. If i = m− 1 then

R ≡ 2R (mod p), S ≡ 2S (mod p), t = 1
5. else if c = 0 then U = U

4
, S ≡ 4S (mod p)

6. else if d = 0 then V = V
4
, R ≡ 4R (mod p)

7. else if c = d then
8. If U > V then U = U−V

4
,

R ≡ R − S (mod p), S ≡ 4S (mod p)
9. else V = V −U

4
,

S ≡ S −R (mod p),R ≡ 4R (mod p)
10. else if c = 2 then

11. If U
2
> V then U =

U
2
−V

2
,

R ≡ R − 2S (mod p), S ≡ 4S (mod p)

12. else V =
V −U

2
2

, U = U
2
,

S ≡ 2S −R (mod p), R ≡ 2R (mod p)
13. else if d = 2 then

14. If U > V
2

then U =
U−V

2
2

, V = V
2
,

R ≡ 2R − S (mod p), S ≡ 2S (mod p)

15. else V =
V
2
−U

2
,

S ≡ S − 2R (mod p), R ≡ 4R (mod p)
16. else
17. If U > V then U = U−V

2
,

R ≡ R − S (mod p), S ≡ 2S (mod p), t = 1
18. else V = V −U

2
,

S ≡ S −R (mod p),R ≡ 2R (mod p), t = 1
19. If i < m then
20. If i = m− 1 or t = 1 then
21. If αi = 1 then R ≡ R (mod p), S ≡ S (mod p)
22. else R ≡ R

2
(mod p), S ≡ S

2
(mod p)

23. else
24. If (αi+1, αi) = (1, 1) then

R ≡ R (mod p), S ≡ S (mod p)
25. else if (αi+1, αi) = (1, 0) or (0, 1) then

R ≡ R
2

(mod p), S ≡ S
2

(mod p)
26. else

R ≡ R
4

(mod p), S ≡ S
4

(mod p)
27. i = i+ t
28. else R ≡ R

2t
(mod p), S ≡ S

2t
(mod p)

29. Return R
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Fig. 3. The domain flag is to randomly assign operating domain for GFAU

As the iterative operations in Algorithm 4 and Algorithm 5 are performed
in one cycle, the critical path is to calculate the results of R or S consisting of
the UV comparison with modular operations. For the modular division by 2 or
4 in Steps 5, 8, 11, 14 of Algorithm 4 and Steps 22, 25, 26, 28 of Algorithm 5,
multiples of the prime p are added to enable the lowest part of R or S is zero
so that they can be carried out by simple shift logic operator. Further, since
the results of R, S are irrelevant to the results of operands U or V , a fully-
pipelined stage can be inserted between the UV and RS data path to moderate
the critical path. As the UV data path is determined, then the next cycle is
to set the values of the operands R, S and simultaneously determine the next
case until V = 0. Although one additional cycle is needed after pipelining, this
is negligible as the operation takes hundreds or thousands of cycles. The timing
flow of pipelined scheme is shown in Fig. 4. Besides, to reduce the hardware
cost, symmetric modular operations such as R ≡ (R − S)/2 (mod p) and S ≡
(S−R)/2 (mod p) in Algorithm 4, R ≡ (R−S)/4 (mod p) and S ≡ (S−R)/4
(mod p) in Algorithm 5 can be executed by the same computational unit with
a swap logic circuit, which is to switch the input operands of RS data path.
In Algorithm 4, the RS data path can be classified into two groups: the first
group includes Steps 4, 5 and Steps 10, 11; the second one consists of Steps
7, 8 and Steps 13, 14. In Algorithm 5, the two groups of RS data path are
classified as follows: Steps 6, 9, 12, 15, and 18 belong in the first group; the
second one consists of the others. The data flows of R and S are switched as the
processing group is different from the group in previous cycle. Moreover, since the
EC point calculation is a serial field operation, both of the temporary registers
and modular operations can be shared for the operands V, S,R in Algorithm 2
and Algorithm 4 (or Algorithm 3 and Algorithm 5). These multiple modular
operations in the iterative calculation can be effectively implemented by using
a programmable data path of bit-level architecture, which consists of the carry-
save adders with a carry-lookahead adder at last stage. The detailed radix-2 and
radix-4 GFAU architecture is shown in Fig. 5 and Fig. 6, respectively.

5 Power Measurement and Implementation Results

Based on our proposed architecture using Montgomery ladder ECSM method,
four different 160-bit DF-ECC processors with radix-2 and radix-4 algorithms are
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independently designed on an FPGA platform to evaluate the CPA resistance.
The performance results are given in Table 3, and the verification environment
is shown in Fig. 7.

Table 3. FPGA Implementation Results

Design Area (Slices) f max (MHz) Field Arithmetic

I 7,573 (32%) 27.7 Radix-2 Montgomery

II 8,158 (34%) 27.7 Radix-2 Randomized Montgomery

III 9,828 (41%) 20.2 Radix-4 Montgomery

IV 10,460 (43%) 20.2 Radix-4 Randomized Montgomery

As shown in Algorithm 1, the point coordinate value P2 is dependent on
the bit value of the key in every iteration. Fig. 8(a) and Fig. 8(b) illustrate
the CPA attacks on the unprotected Design-I and Design-III, respectively, using
conventional Montgomery algorithm [21] to reveal the key value. The correlation
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Fig. 7. (a) Environment of power measurement. (b) Current running through the DF-
ECC processor recorded by measuring the voltage drop via a resistor in series with the
board power pin and FPGA power pin.

coefficients for all possible hamming distances of the point coordinate P2 are
plotted over power traces, and that of the correct key hypothesis is plotted in
black. In this case, as more than 103 power traces are used, the correlation of the
correct key is the highest one among that of all the other key hypotheses, and
then the key value can be found easily. However, even after collecting 106 power
measurements from the Design-II and Design-IV using randomized Montgomery
operations, the correlation coefficients of correct and incorrect hypothesis shown
in Fig. 9 cannot be scattered, and they are near zero because the processed data
are uncorrelated to power model. This means that there is no information bias
of the key value extracted by the CPA attacks.
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Fig. 8. Correlation coefficients of the target traces and power model over power traces
obtained from the (a) Design-I (b) Design-III performing arithmetic in a fixed domain
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Fig. 9. Correlation coefficients of the target traces and power model over power traces
obtained from the (a) Design-II (b) Design-IV performing arithmetic in a randomized
domain.

Table 4. Implementation Results Compared with Related Works

Technology
Field Area

KGates
Galois f max Time Energy AT

Length (mm2) Field (MHz) (ms/ECSM) (μJ/ECSM) Product

Ours (Radix-2) 90-nm 160 0.21 61.3
GF (p160) 277 0.71 11.9 1

GF (2160) 277 0.61 9.6 1

Ours (Radix-4) 90-nm 160 0.29 83.2
GF (p160) 238 0.43 11.2 0.82

GF (2160) 238 0.39 8.97 0.87

TCAS-II’09 [5] 0.13-μm 160 1.44 169
GF (p160) 121 0.61 42.6 1.63*

GF (2160) 146 0.37 30.5 1.16*

Ours (Radix-2) 90-nm 521 0.58 168
GF (p521) 250 8.08 452 1

GF (2409) 263 4.65 246 1

Ours (Radix-4) 90-nm 521 0.93 265
GF (p521) 232 4.57 435 0.89

GF (2409) 238 2.77 238 0.94

ESSCIRC’10 [9] 90-nm 521 0.55 170
GF (p521) 132 19.2 1,123 2.40

GF (2409) 166 8.2 480 1.78

* Technology scaled area-time product = Gates × (Time × t), where t = 90-nm/0.13-μm.

Our proposed DF-ECC processor was also implemented by UMC 90-nm CMOS
technology, and the post-layout simulations for ASIC implementation with com-
parisons are given in Table 4. In terms of area-time product, our DF-ECC pro-
cessor outperforms other approaches. By reducing the division iteration time and
randomizing intermediate values in field arithmetic without increasing the key
size, our work using radix-2 approach is at least 44% faster than the previous
521-bit design [9] with comparable hardware complexity. Compared with a four



562 J.-W. Lee et al.

Table 5. Overhead for CPA Resistance

Ours (Radix-2) Ours (Radix-4) ESSCIRC’10 [9] JSSC’06 [12] JSSC’10 [13]

Design 521 DF-ECC 521 DF-ECC 521 DF-ECC 128 AES 128 AES

Area 4.3% 3.6% 10% 210% 7.2%

Time 0 0 14.0%a 288% 100%

Energy 5.2% 3.8% 20.8%b 270% 33%

Overhead = Result differences between protected and unprotected circuit
Results of unprotected circuit

×100%.

a. Estimated by cycle count×clock period.

b. Estimated by operation time×average power.

multipliers based ECC processor without power-analysis protection [5], our fully-
pipelined and highly-integrated radix-4 GFAU architecture achieves competitive
speed with 51% less gate counts.

For the CPA resistance, our approach is to mask the processed data uncorre-
lated with power traces without lengthening the hardware latency and without
dominating the power consumption of key-dependent operations. From the com-
parison given in Table 5, our proposed countermeasure is superior to others not
only in operation time but also in energy dissipation.

6 Conclusion

In this paper, we introduced a randomized dual-field Montgomery algorithm
which is suitable for ECC hardware implementation against the CPA attacks.
Without modifying logic circuit and without pre-computing data from host sys-
tem, the relationship between target power traces and power model can be bro-
ken by performing the field arithmetic in a unpredictable operating domain.
The proposed CPA countermeasure approach has been analyzed on an FPGA
platform. Attacks on the unprotected designs reveal the private key within one
thousand power traces, while the key value of the protected core cannot be
extracted after one million power traces. Circuit overhead for randomly deter-
mining the operating domain can be integrated into the system without speed
degradation. Implemented by an UMC 90-nm technology, our protected 521-
bit DF-ECC processor using radix-4 randomized Montgomery operations, with
3.6% area and 3.8% average power overhead, can perform one GF (p521) ECSM
in 4.57ms and one GF (2409) ECSM in 2.77ms. We believe that both high perfor-
mance and efficient CPA countermeasure are achieved in our proposed DF-ECC
processor.
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