
On the Design of Hardware Building Blocks

for Modern Lattice-Based Encryption Schemes

Norman Göttert, Thomas Feller, Michael Schneider,
Johannes Buchmann, and Sorin Huss

CASED - Center for Advanced Security Research Darmstadt
Technische Universität Darmstadt, Germany

{norman.gottert,thomas.feller,michael.schneider,
johannes.buchmann,sorin.huss}@cased.de

Abstract. We present both a hardware and a software implementation
variant of the learning with errors (LWE) based cryptosystem presented
by Lindner and Peikert. This work helps in assessing the practicality
of lattice-based encryption. For the software implementation, we give a
comparison between a matrix and polynomial based variant of the LWE
scheme. This module includes multiplication in polynomial rings using
Fast Fourier Transform (FFT). In order to implement lattice-based cryp-
tography in an efficient way, it is crucial to apply the systems over poly-
nomial rings. FFT speeds up multiplication in polynomial rings, which is
the most critical operation in lattice-based cryptography, from quadratic
to quasi-linear runtime. For the hardware variant, we show how this
fundamental building block of lattice-based cryptography can be im-
plemented and evaluated in terms of performance. A second important
component for lattice-based cryptosystems is the sampling from discrete
Gaussian distributions. We examine three different variants for sampling
Gaussian distributed integers, namely rejection sampling, a rounding
based approach, and a look-up table based approach in hardware.

Keywords: LWE, Lattice-Based Encryption, Hardware, FPGA.

1 Introduction

Lattice-based cryptography is currently enjoying high attention in the crypto-
graphic community. Related systems offer an alternative security background
to factoring and discrete logarithm based schemes. Moreover, while the latter
two may be broken using quantum computers, so far there is no quantum com-
puter algorithm known that solves hard lattice problems faster than classical
algorithms. Unlike factoring and discrete logarithms, there are even no subexpo-
nential time attacks known against lattice systems on classical computers. Last,
but not least, lattice-based cryptosystems only apply simple and fast arithmetic
operations and asymptotically allow for quasi-linear runtimes, which is nearly
optimal. Lattice-based schemes are usually accompanied by very strong security
proofs, which relate breaking the system to solving worst-case problems in lat-
tices (compared to basing the security on average-case problems only, like we

E. Prouff and P. Schaumont (Eds.): CHES 2012, LNCS 7428, pp. 512–529, 2012.
c© International Association for Cryptologic Research 2012

On the Design of Hardware Building Blocks 513

know from other areas of cryptography). All these facts distinguish lattice-based
cryptosystems as promising candidates to replace systems based on number the-
oretic problems, like factoring and computing discrete logarithms.

Originally, most lattice systems require the storage of huge matrices over in-
teger rings and are quite inefficient both in runtime and storage space. The
idea of replacing matrices by polynomials over ideals in integer rings allows
to reduce both. Hence, replacing lattices by ideal lattices results in very ef-
ficient systems. Instead of storing huge matrices of space O(n2), where n is
larger than 128, it is sufficient to store just O(n logn) elements. Moreover, the
multiplication of elements of ideal lattices can be performed efficiently using
the Fast Fourier Transform (FFT) [CT65] in time O(n log n) for a serial and
in O(log n) for a parallel implementation, instead of O(n2) for straightforward
multiplication.

Based on lattice problems, many cryptographic primitives were already de-
veloped in theory. Among others, there are a hash function [ADL+08], digital
signatures [Lyu09], encryption schemes [SS11, LP11], fully homomorphic encr-
pytion [Gen09], and many more. The security of most encryption schemes is
based on the learning with errors problem (LWE). Regev [Reg05] and Peik-
ert [Pei09] proved that the LWE problem is at least as hard as solving cer-
tain lattice problems in the worst case, which is the background of the strong
security of LWE-based cryptosystems. What is missing for nearly all lattice-
based encryption systems, however, are implementations. To the best of our
knowledge, there is no publicly available implementation of any provably secure
lattice-based cryptosystem available yet. The NTRUEncrypt system [HPS98] is
a special case, where implementations are provided, but they are protected by
patents. Further, the original NTRUEncrypt scheme lacks a security proof. In
order to show that lattice-based cryptography is ready for practical real-world
applications, the schemes have to be implemented first. The asymptotic advan-
tage gained by FFT is well-known, however, it lacks a practical evaluation for this
application.

For sampling of Gaussian distributed integers, the situation is similar. The
theoretical evaluation of rejection sampling is known meanwhile, but the prac-
tical efficiency of this approach is still unclear. We are also not aware of any
comparison to the rounding-based approach as presented by Devroye in [Dev86].

When lattice-based cryptography is to be used in practice, efficient hardware
components are required as well. Therefore, it is necessary to investigate into
design optimizations of current cryptosystems as hardware modules. Hence, we
present efficient hardware modules for the fundamental building blocks of lattice-
based encryption schemes, such as the FFT-based polynomial multiplication and
a Gaussian sampler.

In addition to providing a reference software implementation of the matrix and
polynomial variants of the encryption scheme, we detail a fully engineered hard-
ware implementation using FFT for polynomial multiplication. Furthermore, an
evaluation of all these implementation variants is given.

514 N. Göttert et al.

1.1 Related Work

Regev introduced the first worst-case hardness proof for the LWE problem to-
gether with the first LWE-based encryption scheme in 2005 [Reg05]. Various
improvements of this scheme appeared later, such as [ACPS09, LPR10, Mic10].
In 2011, Lindner and Peikert proposed in [LP11] an adaption of the system of
[Mic10] and various efficiency improvements. This is the most recent and at the
same time the most promising LWE-based encryption scheme. These authors
detail an improved security analysis and multiple parameter sets for different se-
curity levels. They introduce a matrix-based variant as well as an instantiation
based on polynomials over residue rings.

The encryption scheme of [SS11] is a variant of the NTRUEncrypt system
equipped with a quantum security reduction. Its security is based on the LWE
problem in polynomial rings in the standard model. To our knowledge there is
no practical investigation of this scheme available so far. We expect its efficiency
to be comparable to the LWE scheme of [LP11].

1.2 Our Contribution

To the best of our knowledge we present the first practical evaluation of an
LWE-based cryptosystem. This paper details a performance comparison of two
realization variants based on matrix and polynomial operations, whereas the
latter one is using FFT for fast multiplication. Further, real-world implications
are evaluated by a comparison of the measured error-rate to theoretical expec-
tations. Moreover, we present an optimal set of parameters for hardware im-
plementations, which allow for optimizations of the largest hardware modules.
In our hardware implementation we apply the FFT approach of [CLRS09]. Ad-
ditionally, well-known improvements related to the inverse FFT allow for the
removal of half of the residue class multipliers, together with the reduction of
the critical path and hence provide a higher performance.

We propose efficient hardware modules for evaluation of the FFT as well
as for the discrete Gaussian sampler. Both modules can be used for numer-
ous lattice-based encryption [LPR10, LP11] and signature schemes as in, e.g.
[GPV08, Lyu12].

Our experiments illustrate the sizes of the keys, the message expansion fac-
tor, and the timing results for the hardware and software implementations. The
polynomial variant of LWE performes as expected: The size of private and public
keys grows linearly in the security parameter. For the medium security parame-
ters given in [LP11], the size of the secret key is 0.5 KB, whereas the public key is
1 KB in size. In software, key generation for the same security level takes 3.1ms,
whereas encryption and decryption take 1.5ms and 0.6ms, respectively. In con-
trast, dedicated hardware modules speed-up encryption by a factor of nearly 200
and decryption by nearly 70 for this level of security. The message expansion fac-
tor, i.e., the size of a ciphertext divided by the size of a plaintext, is about 50.
While the polynomial variant is superior in all other measured characteristics,
the matrix variant features smaller message expansion factors.

On the Design of Hardware Building Blocks 515

2 Preliminaries

The authors of [LP11] propose two implementation variants, which exploit either
a matrix-based or a polynomial-based representation. For this reason we refer to
these representations as LWE-Matrix and LWE-Polynomial, respectively.

2.1 The LWE Problem

The security background of the cryptosystem under examination is the LWE
problem, which was introduced by Regev in 2005.

Consider a dimension n > 1, an integer module p ≥ 2 and an error distribution
χ. The distribution χ will be the discrete Gaussian error distribution. Given a
vector s ∈ Z

n
q , a vector a ∈ Z

n
q is chosen uniformly at random. Further, an

error term e ← χ is chosen and the pair (a, t = 〈a|s〉 + e mod p) is computed.
The search version of LWE asks to find s given an arbitrary number of sample
pairs (ai, ti). The decision version of LWE asks to distinguish between arbitrary
numbers of sample pairs (ai, ti) and uniformly drawn samples from Z

n
q × Zq.

For hardness results on LWE we refer the reader to the work of [Reg05, Pei09].
Practical attacks on the LWE-based cryptosystems were described in [LP11]. The
ring LWE problem defined in [LPR10] is the adaption of LWE to polynomial
rings. It is important as security background for the LWE-Polynomial scheme.
An attacker breaking the LWE-Polynomial encryption system is able to solve the
ring LWE problem instance, and thus is able to solve certain lattice problems in
all lattices of a certain smaller dimension (the so-called worst-case hardness).

2.2 LWE-Based Encryption

Here we recall the more efficient polynomial variant, for the matrix variant we
refer to [Mic10, LP11]. Define the polynomial rings R = Z[X]/〈f(x)〉 and Rq =
Zq[X]/〈f(x)〉 for a polynomial f(x) that is monic and irreducible. Example
choices are f(x) = xn + 1 for n being a power of 2. Further, χk and χe are
error distributions over R for key generation and encryption, respectively. Useful
parameters for different levels of security were presented in [LPR10, LP11].

The LWE-Polynomial encryption is denoted as (KeyGen,Enc,Dec), where

– KeyGen(a): choose r1, r2 ← χk and let p = r1 − a · r2. Output public key p
and secret key r2.

– Enc(a, p,m ∈ Σn): choose e1, e2, e3 ← χe. Let m̄ = encode(m) ∈ Rq. The
ciphertext is then (c1 = a · e1 + e2, c2 = p · e1 + e3 + m̄) ∈ R2

q .

– Dec((c1, c2), r2): output decode(c1 · r2 + c2).

Decoding fails if |e1 · r1 + e2 · r2 + e3| is bigger than the threshold t = �q/4�. This
per-symbol error probability is denoted δ. It is depending on the error distribu-
tions χk and χe. More exactly, δ is an upper bound on the error probability per
symbol. Following the proposal of [LP11], we choose χk = χe = χ. The Gaussian

516 N. Göttert et al.

standard deviation s for the distribution χ is selected depending on the dimension
n, threshold t, parameter c, and the error probability δ by means of

s2 =

√
2π

c
· t
√
2n · ln(2/δ) . (1)

The variant LWE-Matrix is denoted in a similar manner, it uses matrices over
Zq instead of polynomials over the ring R. Since the arithmetic in polynomial
rings can be performed more efficiently, the polynomial variant seems to be more
appropriate in practice. A possible disadvantage of LWE-Polynomial concerns
security. The system is provably secure as long as the decision ring LWE problem
is hard. LWE-Matrix only requires the decision LWE problem to be hard, which
is a weaker assumption, since it is unknown if the additional ring structure
influences the hardness of the LWE problem.

Message Encoding. Error-tolerant encoder and decoder functions are required
by the presented encryption system. In the following the message encoding of
LWE-Polynomial is detailed, which can analogously be applied to LWE-Matrix.

A message m, represented as a bit-vector m ∈ Σn = {0, 1}n, is trans-
formed into a vector m̄ ∈ Rq. Therefore, the encoding and decoding are func-
tions encode:Σ → Rq and decode:Rq → Σ, respectively. The equation encode(
decode(m) + e mod q) = m is satisfied as long as all coefficients of the error-
polynomial e ∈ Rq are within the threshold t, for which we selected [−t, t) =
[−� q4�, � q4�).

2.3 Fast Fourier Transform

The FFT is used to convert the coefficient representation of the polynomial to a
point-value representation. The multiplication using the coefficients of two poly-
nomials with degree n takes O(n2) time. In point-value representation, the mul-
tiplication is performed in O(n log n) as serial implementation and in O(log n)
if implemented in parallel, which we selected for hardware implementation.

Algorithm 1 characterizes the polynomial multiplication, which applies the
FFT to convert the polynomials from coefficient to point-value representation.

To exploit the full potential of the FFT and speed-up the polynomial reduction
(cf. Appendix A), we restrict the choice of the irreducible polynomial f(x) to a
cyclotomic one with the form f(x) = xn+1, where n is a power of 2. This allows
for further improvements which are detailed in Section 4.3.

There are multiple reasons why we favour FFT over other polynomial multi-
plication approaches (e.g., Toom-Cook[Coo66]). FFT is easily parallelizable, and
the asymptotic runtime of the parallel FFT is O(logn) compared to O(n1+ε),
where 0 < ε < 1 for Toom-Cook. Additionally, the FFT hardware implemen-
tation greatly benefits from the utilized polynomial f(x) = xn + 1 with n a
power of 2, as this saves a lot of hardware resources. However, the Toom-Cook
approach might be faster for practical parameters, but the comparison of poly-
nomial multiplication algorithms is out of scope of this work.

On the Design of Hardware Building Blocks 517

Algorithm 1. Polynomial Multiplication using FFT

Input: a, b ∈ Z
2n
q , ωm

Output: c ∈ Z
2n
q

1 A = FFT (a,ωm)
2 B = FFT (b,ωm)
3 for i = 0 to 2n− 1 do
4 C[i] = A[i] · B[i]
5 end
6 c = FFT−1(C,ωm)
7 return c

3 Software Implementation

The general purpose of the software implementation presented herein was to
provide a reference implementation of the LWE based encryption scheme and to
assess its real-world properties. We are using C++ on a Linux-based operating
system, with the GCC 4.6.1 compiler. We integrated the NTL library [Sho] in
version 5.5.2, which comprises data types for matrices and vectors over residue
classes Zq as well as elements in polynomial rings Zq[X] and in factor rings
Zq[X]/〈f(x)〉. NTL applies FFT for its polynomial multiplication routines. Our
outlined software implementation contains both variants – LWE-Matrix as well
as LWE-Polynomial, which are available online.1 The tested parameter sets of
n, q, c, and s, for different values of δ are denoted in Table 1. The first column
is taken from [LP11] and the values for the standard deviation of Gaussian
sampling s are computed according to (1). It should be noted that the toy
parameter set for n = 128 can not be considered secure in practice. For n = 256
and δ = 10−2 the estimated runtime/advantage ratio of the strongest (so-called
decoding) attack is 2120 seconds, which is compared to the security of AES-
128 in [LP11]. Unfortunately, an approach to compute “real” security estimates
(bit-security) for lattice-based cryptosystems is not known so far.

x

y

f(x)

k · g(x)

u · k · g(x)

x

reject
accept

Fig. 1. Rejection sampling for

f(x) = 1
s
· e−π·x2

s2 , g(x) = 1
n
and k =

⌈
n
s

⌉
.

Algorithm 2.
Rejection Sampling

1 repeat

2 x
$← Z ∩ [−t, t]

3 u
$← R ∩ [0, 1]

4 until u · k · g(x) < f(x)
5 return x ∈ Zq following a

Gaussian distribution

1 https://www.cdc.informatik.tu-darmstadt.de/de/cdc/

personen/michael-schneider/

https://www.cdc.informatik.tu-darmstadt.de/de/cdc/personen/michael-schneider/
https://www.cdc.informatik.tu-darmstadt.de/de/cdc/personen/michael-schneider/

518 N. Göttert et al.

Table 1. Computed values for parameter s in dependence of combinations of all used
tuples (n, c, q) and δ, as proposed in [LP11]. For δ = 10−2 this reflects the classifications
toy, low, medium, and high for n set to 128, 192, 256, and 320, respectively

(n, c, q) sδ=10−2 class[LP11] sδ=10−3 sδ=10−4 sδ=10−5 sδ=10−6

(128, 1.35, 2053) 6.77 toy 6.19 5.79 5.5 5.26
(192, 1.28, 4093) 8.87 low 8.11 7.59 7.2 6.9
(256, 1.25, 4093) 8.35 medium 7.63 7.15 6.78 6.5
(320, 1.22, 4093) 8.0 high 7.31 6.84 6.5 6.22
(384, 1.2, 4451) 8.04 – 7.34 6.87 6.52 6.25

(448, 1.184, 4723) 8.02 – 7.33 6.86 6.51 6.23
(512, 1.172, 4987) 8.01 – 7.32 6.85 6.5 6.23

−10 −5 0 5 10
0

5

10

15

Sampled value

%

Rejection Sampling

Devroye Sampler

Cont. Gaussian

Fig. 2. Histogram of 108 samples of rejection sampling and the sampler of Devroye

We denote the expression x
$← S for a value of x that is being sampled uni-

formly at random from the set S. For sampling Gaussian distributed integers, we
apply the rejection sampling approach. This method is, among others, exploited
in [GPV08] already. Algorithm 2 and Fig. 1 illustrate the rejection sampling ap-
proach. An exercise of this method revealed that for the chosen parameters the
sampling success rate is approx. 20%. This is due to the fact that in the second
sampling step in Algorithm 2, values far from the origin being accepted with
a very small probability. Tests with the Gaussian Sampler of Devroye [Dev86,
Chap. 3, Exercise 3] with standard deviation of σ = 1√

2π
·s showed a success rate

of 85.2% for this sampler. The generation of 108 samples on our test platform
took 19s compared to 75s for the rejection sampler. Therefore, using Devroye’s
sampler would allow for faster sampling in the encryption system. Unfortunately,
the output of this sampler differs from the continuous Gaussian distribution, as
shown in Fig. 2. Further, the performance benefits by using a Devroye sampler
were negligible in our tests, although the success rates differ significantly.

The performance tests presented in this paper have been executed on an Intel
Core 2 Duo CPU running at 3.00 GHz and 4Gb of RAM. As clearly visible from
Fig. 3, LWE-Polynomial benefits from the fewer coefficients and outperforms
LWE-Matrix by at least a factor of 4. The superior performance results, the
smaller memory footprint, and less key data were the reasons to consider only
LWE-Polynomial for hardware implementation. To be more specific, the analysis
of the memory footprint revealed that LWE-Polynomial utilized 3.8 to 23 times
less memory during key generation, 2.6 to 17.2 times while encrypting, and
decryption took 2 to 5 times less memory resources than LWE-Matrix.

On the Design of Hardware Building Blocks 519

128 192 256 320 384 448 512

100

101

102

103

n

ti
m
e
in

[m
s]

Matrix-KeyGen

Matrix-Encrypt

Matrix-Decrypt

Poly-KeyGen

Poly-Encrypt

Poly-Decrypt

Fig. 3. Computation times of LWE software variants for all basic functions KeyGen,
Encrypt, and Decrypt (cf. Table 2).

Table 2. LWE-Matrix vs. LWE-Polynomial: Time in milliseconds for key generation,
encryption, and decryption of a 16 byte plaintext.

KeyGen Encrypt Decrypt
n tMatrix tPoly tMatrix/tPoly tMatrix tPoly tMatrix/tPoly tMatrix tPoly tMatrix/tPoly

128 141.3 2.51 56.2 3.01 0.76 3.98 1.24 0.28 4.40
256 604.9 3.10 195.3 11.01 1.52 7.23 2.37 0.57 4.15
384 1311.2 4.05 323.6 23.41 2.51 9.34 3.41 0.98 3.46
512 2338.5 4.53 516.5 46.05 3.06 15.04 4.52 1.18 3.84

Table 3. Filesizes in bytes of LWE public and private keys as well as size of a ciphertext
for a 16 byte plaintext. It is remarkable that the ciphertext of the matrix variant is
smaller than that of the polynomial variant.

Public Key Private Key Cyphertext
n Matrix Poly Matrix/Poly Matrix Poly Matrix/Poly Matrix Poly Matrix/Poly
128 146811 1154 127.22 53602 394 136.05 1142 1143 1.00
256 465851 2435 191.31 108298 883 122.65 1816 2423 0.75
384 935676 3659 255.72 162232 1271 127.64 2433 3650 0.67
512 1567516 4912 319.12 216624 1665 130.10 3058 4893 0.62

The filesize of the generated key material is depicted in Table 3. We directly
used the NTL [Sho] output, which is on the one hand clearly not an optimal
representation for the data, but allowed for interoperability with other tools. The
theoretical key and ciphertext sizes for the software implementation are given in
(2) and (3), respectively. Here, n denotes the dimension and l the message length
in bits. For software based approaches a short integer (16 bit) length has been
selected instead of �log2(q)� for the required bit width, which has been chosen for
the hardware implementation. The ratios between the filesizes of LWE-Matrix
and LWE-Polynomial are on the other hand good estimations for the real values.

SizeMatrix,Public = (n · l + n2) · �log2(q)� SizeMatrix,Private = n · l · �log2(q)�
SizePoly,Public = 2 · n · �log2(q)� SizePoly,Private = n · �log2(q)�

(2)

520 N. Göttert et al.

SizeMatrix,Cipher = (n+ l) · �log2(q)� SizePoly,Cipher = 2n · �log2(q)� (3)

Another noteable result of our software evaluation revealed that the ciphertext
for higher dimensions is smaller in LWE-Matrix compared to LWE-Polynomial,
as denoted in Table 3. Further on, we noticed that different values of the error
probability δ have only a marginal impact on the related runtimes.

4 Hardware Implementation

As aforementioned, only the LWE-Polynomial variant has been selected for
hardware implementation, as the software evaluation indicated the performance
benefits of this representation (see Fig. 3). The evaluation platform of the hard-
ware implementation is a Xilinx ML-605 evaluation board providing a Virtex-6
LX240T FPGA. Hardware modules have been designed in a vendor independent
manner, which allows the utilization of FPGAs from other vendors as well as a
representation as an Application Specific Integrated Circuit (ASIC) implemen-
tation. Additionally, we also present related synthesis results using a Virtex-7
device in Table 6.

The parameters exploited for the hardware implementation are given in Ta-
ble 4 and we assigned δ = 10−2. Recall that the parameter set with n = 128 does
not supply sufficient security guarantees (“toy” parameters). The FFT requires
for all roots of unity that q−1 is a multiple of 2n (see Corollary 30.4 [CLRS09]).

The dataflow for the three primitive operations of the LWE-based scheme are
depicted in Fig. 4. In contrast to the rejection sampling approach applied in the
software variant, which would require floating point arithmetic, the Gaussian
sampler has been implemented by means of a look-up table. Integers in the
range of [−�2 · s�, �2 · s�] are selected by applying the random output of a linear
feedback shift register (LFSR) as an address to an array of Gaussian distributed
values. In order to save resources, this array has been embodied using only start
and end addresses of the values. An unoptimized Gaussian array would require
(resolution · �log2(q)�) bits, whereas the optimized version requires 3 · (2 · �2s�+
1) · �log2(q)� only. For example, with s = 6.67, q = 3329 and a resolution of
1023 the optimized version requires 1044 bits (c.f. Table 5) whereas a straight
forward array would require 12288 bits, which saves in this case approx. 92% of
the memory. Additionally, the uniform sampler, required during key generation
is realized by an LFSR (cf. Sect. 4.1). For the look-up-table with interval size
of 4s, the probability of a sample outside of this interval is 4.6 · 10−6. This
probability can be lowered further by choosing a larger interval.

Table 4. LWE parameters for hardware tests using δ = 10−2 and the bit width
(�log2(q)�) for representing coefficient values.

n q s ω �log2(q)�
128 3329 8.62 17 12
256 7681 11.31 62 13
512 12289 12.18 49 14

On the Design of Hardware Building Blocks 521

Table 5. Implemented approach of the Gaussian array

Start/End-address 157 237 238 337 338 451 452 570 571 684 685 784 785 865

Gaussian value . . . -3 -2 -1 0 1 2 3 . . .

The message encoding, as outlined in Sect. 2.2, is performed by the encode and
decode modules depicted in Fig. 4(a) and Fig. 4(c), respectively. The encryption
datapath, as displayed in Fig. 4(a), shows how Gaussian distributed random
errors are introduced within the cipertext by multiplication and addition. As
a result of the encryption, the two vectors c1 and c2 contain the ciphertext.
Decryption of the ciphertext (c1, c2) is performed by a multiplication of the
private key r2 with c1 followed by an addition of c2 as detailed in Fig. 4(c).

(a) Encryption (b) KeyGen

(c) Decryption

Fig. 4. Overview of LWE Encryption Scheme Datapaths

The modular multiplication of polynomials is by far the most expensive op-
eration in this scheme. Therefore, we apply the FFT for polynomial reduction
and a Montgomery multiplier [Mon85] to realize the modular multiplication of
the polynomial coefficients as depicted in Fig. 5.

4.1 Random Numbers for Keys and Errors

Uniformly distributed random numbers are required by the Gaussian sampler.
In this work we emphasize on the implementation of the Gaussian sampler and
therfore the quality of the LFSR-based RNG is not in the scope of this paper. For
the practical use of the herein proposed scheme, attacks on the random number
generators, such as frequency injection [MM09], have to be considered. Novel
concepts for RNGs addressing reconfigurable hardware have been presented in
previous works, such as [KG04], [Gün10], [VD10] and [MKD11].

522 N. Göttert et al.

Fig. 5. Arithmetic unit for polynomial multiplication

4.2 Resource Utilization

The utilization of device resources are depicted in Fig. 6 and correspond to the
data of the Virtex-6 columns in Table 6. Taking a closer look at the actual values,
one can find that dimensions n > 128 did not fit into the Virtex-6 device, which
we used for evaluation. Therefore, we additionally provide synthesis results for a
Virtex-7 series device (cf. Table 6). Using this device enabled the implementation
of the whole scheme for the largest dimension considered in this paper. Our
primary goal was performance, which naturally leads to larger implementations.

128 192 256 320 384 448 512
0

2

4

6

·105

n

#
o
f
R
es
o
u
rc
es

KeyGen, LUT

KeyGen, Register

Encrypt, LUT

Encrypt, Register

Decrypt, LUT

Decrypt, Register

Fig. 6. Hardware resource utilization of the top-modules LWE-KeyGen, LWE-Encrypt,
and LWE-Decrypt for n = {128, 256, 512}. Detailed data is denoted in Table 6.

4.3 Design Improvements

The choice of parameters allows for some optimizations of certain modules. As
an example, the inverse FFT can be considerably improved in the case that if the
reduction polynomial for the residue ring follows the structure of f(x) = xn + 1
for which n is a power of 2, i.e., it is cyclotomic. The root of unity ω ∈ Zq is
selected such that ω2n = 1 mod q with q is prime and q − 1 is a multiple of
2n. Based on Collary 30.4 in [CLRS09], ω is determined by ωn = −1 mod q

On the Design of Hardware Building Blocks 523

Table 6. Top-level module resource utilization of KeyGen, Encrypt, and Decrypt on
a Xilinx XC6VLX240T FPGA and XC7V2000T for n = {128, 256, 512}

(a) LWE-KeyGen

Virtex-6 LX240T Virtex-7 2000T
n = 128 % n = 256 % n = 512 % n = 128 % n = 256 % n = 512 %

Registers 37918 12 82463 27 174757 57 37918 1 85472 3 174757 7
LUTs 64804 42 146718 97 314635 208 69140 5 163209 13 348204 28

(b) LWE-Encrypt

Virtex-6 LX240T Virtex-7 2000T
n = 128 % n = 256 % n = 512 % n = 128 % n = 256 % n = 512 %

Registers 65680 21 143396 47 296207 98 65680 2 143396 5 296207 12
LUTs 131254 87 298016 197 618934 410 131187 10 320816 26 634893 51

(c) LWE-Decrypt

Virtex-6 LX240T Virtex-7 2000T
n = 128 % n = 256 % n = 512 % n = 128 % n = 256 % n = 512 %

Registers 31884 10 65174 21 134036 44 31884 1 65174 2 134036 5
LUTs 56311 37 124158 82 263083 174 56313 4 124265 10 260772 21

throughout this paper and it is used as a common parameter of all butterfly
modules. Generally speaking, this eliminates the final polynomial reduction step,
resulting in a cut of half the residue class multipliers.

Assume that the inputs of a butterfly module are denoted by xi and xi+n

and the outputs are denoted by yi and yi+n. Then the inner calculation of the
butterfly module is given by

yi = xi + ωjxi+n

yi+n = xi − ωjxi+n .
(4)

In the last step of the inverse FFT each coefficient is multiplied by the inverse
element of 2n in the residue class ring Zq. Applying this multiplication to every
output of a butterfly module results in

yi · (2n)−1 = xi · (2n)−1 + ωjxi+n · (2n)−1

yi+n · (2n)−1 = xi · (2n)−1 − ωjxi+n · (2n)−1 .
(5)

Applying the reduction step of cyclotomic polynomials (cf. (10)), both outputs
of a butterfly module are subtracted as follows

yi · (2n)−1 − yi+n · (2n)−1 =xi · (2n)−1 + ωjxi+n · (2n)−1

− xi · (2n)−1 + ωjxi+n · (2n)−1

=2ωj(2n)
−1 · xi+n .

(6)

An important consequence of (6) is that not every input xi is required to calculate
the inverse FFT. If this consequence is considered for the inputs of the inverse
FFT, only those inputs characterized by an odd index are used. So, each input
with an odd index is connected to a wire that is placed in the lower half of the
parallel FFT depicted as in Fig. 7. The term 2ωj(2n)

−1 in (6) is precomputed
in order to further reduce the ammount of utilized resources.

524 N. Göttert et al.

Fig. 7. Optimization of the inverse FFT followed by a polynomial reduction (cf. (6))

5 Evaluation and Practical Implications

An evaluation of the presented results shows that for the LWE-Polynomial im-
plementation, encryption and decryption differ only by a factor of roughly 2.6 for
the software version. The hardware implementation as presented in this paper is,
because of its full parallel structure, able to perform encryption and decryption
at the same speed. The LWE-Matrix does not share this property as the size of
the matrix grows quadratically with the dimension n.

To compare the performance of each implementation, the achieved through-
puts of both, the hardware and software implementation variants are depicted
in Fig. 8. Due to the increased parallelism and the structure of the encryp-
tion scheme, the hardware outperforms the software by a factor up to 316 for
encryption and of 122 for decryption. For the key generation the results are
even better and show a performance gain of roughly 400 in all three dimensions
(n = {128, 256, 512}). The reason for this considerable gain is the difference be-
tween the rejection sampling approach in software and the look-up table method
in hardware. Additionally, the hardware benefits from a full parallel implemen-
tation for sampling values, in contrast to the serial software implementation.

5.1 Message Expansion Factors

The estimated message expansion factor for the dimension n = 128 and the
parameters q = 2053 and s = 6.77 is 22. For the software-based implementations
of LWE-Matrix and LWE-Polynomial a short integer (16 bit) has been chosen
to represent the coefficient values, resulting in the difference in Table 7. As
aforementioned, the parameters for the hardware variant have been selected to
improve the FFT, hence the message expansion factors are also different (as q is
set to 3329). A comparison of all implementation variants is detailed in Table 7.
Obviously, using the optimal representation for the polynomial coefficients, the
message expansion factor of 24 is still very close to the expected factor of 22.

On the Design of Hardware Building Blocks 525

128 192 256 320 384 448 512

0

0.2

0.4

n

T
h
ro
u
g
h
p
u
t
in

[M
B
it
/
s]

LWE-Encrypt-Matrix

LWE-Decrypt-Matrix

(a) Software

128 192 256 320 384 448 512

14

16

18

20

n

T
h
ro
u
g
h
p
u
t
in

[M
B
it
/
s]

LWE-Encrypt-Poly

LWE-Decrypt-Poly

(b) Hardware

Fig. 8. Throughput values of evaluated implementation variants

Table 7. Ciphertext in bytes for 16 byte plaintext and corresponding expansion factors

LWE-Matrix LWE-Polynomial LWE-Hardware
n Cipher Cipher/Plain Cipher Cipher/Plain Cipher Cipher/Plain
128 512 32 512 32 384 24
192 640 40 768 48 – –
256 768 48 1024 64 832 52
320 896 56 1280 80 – –
384 1024 64 1536 96 – –
448 1152 72 1792 112 – –
512 1280 80 2048 128 1792 112

5.2 Error Rates

An interesting result of the software implementaion tests, is the practical error
rate that can be observed during decryption, as depicted in Figure 9. As a part of
the evaluation we assessed the error rates, which represent the error probability
per symbol, against the upper bound δ outlined in Sect. 2.2. We state that the
practical error rate is more than a factor 100 smaller than its upper bound δ,
whereas the error rate increases with the dimension n.

The exact measurement values for the encountered bit errors for LWE-Matrix
and LWE-Polynomial are given in Table 8 and Table 9, respectively.

A reduction of the error probability may be achieved by changing the pa-
rameters which determine s (cf. (1)) q and n. The Gaussian standard deviation
s decreases when δ decreases as well. For the security guarantee to hold, it is
necessary that s · q > 2

√
n holds. This implies that, for the same security level

n, q has to be increased when smaller δ (and with this smaller s) is required.
A second way to deal with decryption errors is the application of error correct-
ing codes. This approach allows to keep the system parameters unchanged, but
enlarges the message expansion factor.

526 N. Göttert et al.

128 192 256 320 384 448 512

10−7

10−6

10−5

10−4

n

E
rr
o
r
R
a
te

LWE-Matrix, errδ=10−2

LWE-Matrix, errδ=10−3

LWE-Matrix, errδ=10−4

LWE-Poly, errδ=10−2

LWE-Poly, errδ=10−3

LWE-Poly, errδ=10−4

Fig. 9. Rate of bit-errors for LWE-Matrix and LWE-Polynomial for δ ∈
{10−2, 10−3, 10−4} for 1, 600, 000 byte plaintext, as detailed in Table 8 and Table 9

Table 8. LWE-Matrix: Bit errors and error rate for a 1, 600, 000 byte plaintext

δ = 10−2 δ = 10−3 δ = 10−4 δ = 10−5 δ = 10−6

n Errors % Errors % Errors % Errors % Errors %
128 189 0.001477 4 0.000031 1 0.000008 0 0.00 0 0.00
192 467 0.003648 8 0.000063 0 0.00 0 0.00 0 0.00
256 650 0.005078 15 0.000117 0 0.00 0 0.00 0 0.00
320 994 0.007766 26 0.000203 2 0.000016 0 0.00 0 0.00
384 1304 0.010188 31 0.000242 3 0.000023 0 0.00 0 0.00
448 1567 0.012242 47 0.000367 0 0.00 0 0.00 0 0.00
512 1820 0.014219 68 0.000531 2 0.000016 0 0.00 0 0.00

Table 9. LWE-Polynomial: Bit errors and error rate for a 1, 600, 000 byte plaintext

δ = 10−2 δ = 10−3 δ = 10−4 δ = 10−5 δ = 10−6

n Errors % Errors % Errors % Errors % Errors %
128 94 0.000734 0 0.00 0 0.00 0 0.00 0 0.00
192 586 0.004578 4 0.000031 0 0.00 0 0.00 0 0.00
256 474 0.003703 7 0.000055 1 0.000008 0 0.00 0 0.00
320 766 0.005984 13 0.000102 0 0.00 0 0.00 0 0.00
384 1031 0.008055 42 0.000328 1 0.000008 0 0.00 0 0.00
448 1108 0.008656 40 0.000313 2 0.000016 0 0.00 0 0.00
512 1329 0.010383 46 0.000359 5 0.000039 0 0.00 0 0.00

6 Future Work

Usage of error correcting codes, such as Viterbi[Vit67], in order to overcome
decryption errors will be addressed in future work. Another not yet addressed
aspect is that error detection itself is not sufficient since it allows for a correlation
with the private key if decryption fails; error corection however may interact with
the security guarantees of the whole scheme. Applying the central limit theorem
enables the precomputation of expected error rates instead of upper bounds,
which leads to a better estimation than the upper bound δ.

On the Design of Hardware Building Blocks 527

We consider as additional goals for the hardware implementation to investi-
gate into an architecture which exploits resource sharing in order to reduce the
amount of required resources. Further, a hardware version without the use of
an FFT is envisaged to quantify the tradeoff between resource utilization and
throughput. An investigation on the benefits of constant multipliers, to further
improve the design, is part of future work.

Acknowledgements. This work was supported by CASED (www.cased.de).
We thank Richard Linder for his contributions and fruitful discussions. We also
thank the anonymous reviewers for their helpful comments.

References

[ACPS09] Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast Cryptographic Prim-
itives and Circular-Secure Encryption Based on Hard Learning Problems.
In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer,
Heidelberg (2009)

[ADL+08] Arbitman, Y., Dogon, G., Lyubashevsky, V., Micciancio, D., Peikert, C.,
Rosen, A.: SWIFFTX: A proposal for the SHA-3 standard. In: The First
SHA-3 Candidate Conference (2008)

[CLRS09] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to
Algorithms, 3rd edn. The MIT Press (2009)

[Coo66] Cook, S.A.: On the minimum computation time of functions. PhD thesis.
Harvard Univ., Cambridge (1966)

[CT65] Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of
complex fourier series. Mathematics of Computation 19(90) (1965)

[Dev86] Devroye, L.: Non-uniform random variate generation. Springer-Verlag New
York (1986)

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC.
ACM (2009)

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In: STOC. ACM (2008)

[Gün10] Güneysu, T.: True random number generation in block memories of recon-
figurable devices. In: FPT. IEEE (2010)

[HPS98] Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A Ring-Based Public
Key Cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423,
pp. 267–288. Springer, Heidelberg (1998)

[KG04] Kohlbrenner, P., Gaj, K.: An embedded true random number generator for
FPGAs. In: ACM/SIGDA FPGA (2004)

[LP11] Lindner, R., Peikert, C.: Better Key Sizes (and Attacks) for LWE-Based
Encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–
339. Springer, Heidelberg (2011)

[LPR10] Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning
with Errors over Rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 1–23. Springer, Heidelberg (2010)

[Lyu09] Lyubashevsky, V.: Fiat-Shamir with Aborts: Applications to Lattice and
Factoring-Based Signatures. In: Matsui, M. (ed.) ASIACRYPT 2009.
LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009)

www.cased.de

528 N. Göttert et al.

[Lyu12] Lyubashevsky, V.: Lattice Signatures without Trapdoors. In: Pointcheval,
D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–
755. Springer, Heidelberg (2012)

[Mic10] Micciancio, D.: Duality in lattice cryptography (2010) (Invited talk)

[MKD11] Majzoobi, M., Koushanfar, F., Devadas, S.: FPGA-Based True Random
Number Generation Using Circuit Metastability with Adaptive Feedback
Control. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917,
pp. 17–32. Springer, Heidelberg (2011)

[MM09] Markettos, A.T., Moore, S.W.: The Frequency Injection Attack on Ring-
Oscillator-Based True Random Number Generators. In: Clavier, C., Gaj,
K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 317–331. Springer, Heidelberg
(2009)

[Mon85] Montgomery, P.L.: Modular multiplication without trial division. Mathe-
matics of Computation 44 (1985)

[Paa94] Paar, C.: Efficient VLSI Architectures for Bit-Parallel Computation in Ga-
lois Fields. PhD thesis, Universität Essen (1994)

[Pei09] Peikert, C.: Public-key cryptosystems from the worst-case shortest vector
problem: extended abstract. In: STOC. ACM (2009)

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. In: STOC. ACM (2005)

[Sho] Shoup, V.: Number theory library (NTL), http://www.shoup.net/ntl/

[SS11] Stehlé, D., Steinfeld, R.: Making NTRU as Secure as Worst-Case Problems
over Ideal Lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 27–47. Springer, Heidelberg (2011)

[VD10] Varchola, M., Drutarovsky, M.: New High Entropy Element for FPGA
Based True Random Number Generators. In: Mangard, S., Standaert, F.-
X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 351–365. Springer, Heidelberg
(2010)

[Vit67] Viterbi, A.J.: Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm. IEEE Transactions on Information The-
ory 13(2) (1967)

A Mathematical Background

The polynomial reduction can be written as r(x) = g(x) mod f(x) and repre-
sented in matrix notation [Paa94] as a multiplication of g(x) with the reduction
matrix M as follows:

⎛

⎜
⎜⎜
⎝

r0
r1
...

rn−1

⎞

⎟
⎟⎟
⎠

=

⎛

⎜
⎜⎜
⎝

1 0 · · · 0 μ0,0 · · · μ0,n−2

0 1 · · · 0 μ1,0 · · · μ1,n−2

...
...
. . .

...
...

. . .
...

0 0 · · · 1 μn−1,0 · · · μn−1,n−2

⎞

⎟
⎟⎟
⎠
·

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

g0
g1
...

gn−1

gn
...

g2n−2

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

. (7)

http://www.shoup.net/ntl/

On the Design of Hardware Building Blocks 529

The elements μj,i of matrix M are calculated from

μj,i =

{
−fj , for j = 0, . . . , n− 1; i = 0

μj−1,i−1 + μn−1,i−1 · μj,0 , for j = 0, . . . , n− 1; i = 1, .., n− 2;
(8)

where μj−1,i−1 = 0, if j = 0. This procedure gets very simple if f(x) is a
cyclotomic polynomial of the form xn + 1, with n is a power of 2

M =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎝

1 0 · · · 0 −1 0 · · · 0
0 1 · · · 0 0 −1 · · · 0
...
...
. . .

...
...

. . .
...

...
...

... 0 · · · 0 −1
0 0 · · · 1 0 · · · 0 0

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎠

. (9)

By means of this simplified matrix, the calculation of the matrix-vector multi-
plication can be reduced to:

⎛

⎜
⎜
⎜
⎝

r0
r1
...

rn−1

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜⎜
⎝

g0 − gn
g1 − gn+1

...
gn−2 − g2n−2

gn−1

⎞

⎟
⎟
⎟
⎟⎟
⎠

. (10)

This simplification (10) leads to the fact that the polynomial reduction takes
only linear time.

	On the Design of Hardware Building Blocks for Modern Lattice-Based Encryption Schemes

	Introduction
	Related Work
	Our Contribution

	Preliminaries
	The LWE Problem
	LWE-Based Encryption
	Fast Fourier Transform

	Software Implementation
	Hardware Implementation
	Random Numbers for Keys and Errors
	Resource Utilization
	Design Improvements

	Evaluation and Practical Implications
	Message Expansion Factors
	Error Rates

	Future Work
	References

