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Abstract. In this paper, we present several efficient fault attacks against
implementations of RSA–CRT signatures that use modular exponentia-
tion algorithms based on Montgomery multiplication. They apply to any
padding function, including randomized paddings, and as such are the
first fault attacks effective against RSA–PSS.

The new attacks work provided that a small register can be forced to
either zero, or a constant value, or a value with zero high-order bits. We
show that these models are quite realistic, as such faults can be achieved
against many proposed hardware designs for RSA signatures.
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1 Introduction

The RSA signature scheme is one of the most used schemes nowadays. An RSA
signature is computed by applying some encoding function to the message, and
raising the result to d-th power modulo N , where d and N are the private ex-
ponent and the public modulus respectively. This modular exponentiation is the
costlier part of signature generation, so it is important to implement it efficiently.
A very commonly used speed-up is the RSA–CRT signature generation, where
the exponentiation is carried out separately modulo the two factors of N , and
the results are then recombined using the Chinese Remainder Theorem. How-
ever, when unprotected, RSA–CRT signatures are vulnerable to the so-called
Bellcore attack first introduced by Boneh et al. in [3], and later refined in multi-
ple publications such as [31]: an attacker who knows the padded message and is
able to inject a fault in one of the two half-exponentiations can factor the public
modulus using a faulty signature with a simple GCD computation.

Many workarounds have been proposed to patch this vulnerability, including
extra computations and sanity checks of intermediate and final results. A recent
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taxonomy of these countermeasures is given in [24]. The simplest countermea-
sure may be to verify the signature before releasing it. This is reasonably cheap
if the public exponent e is small and available in the signing device. In some
cases, however, e is not small, or even not given—e.g. the JavaCard API does
not provide it [22]. Another approach is to use an extended modulus. Shamir’s
trick [25] was the first such technique to be proposed; later refinements were
suggested that also protect CRT recombination when it is computed using Gar-
ner’s formula [2, 7, 30, 9]. Finally, yet another way to protect RSA–CRT signa-
tures against faults is to use redundant exponentiation algorithms, such as the
Montgomery Ladder. Papers including [14, 24] propose such countermeasures.
Regardless of the approach, RSA–CRT fault countermeasures tend to be rather
costly: for example, Rivain’s countermeasure [24] has a stated overhead of 10%
compared to an unprotected implementation, and is purportedly more efficient
than previous works including [14, 30].

Relatedly, while Boneh et al.’s original fault attack does not apply to RSA
signatures with probabilistic encoding functions, some extensions of it were pro-
posed to attack randomized ad hoc padding schemes such as ISO 9796-2 and
EMV [10, 12]. However, Coron and Mandal [11] were able to prove that Bellare
and Rogaway’s padding scheme RSA–PSS [1] is secure against random faults
in the random oracle model. In other words, if injecting a fault on the half-
exponentiation modulo the second factor q of N produces a result that can be
modeled as uniformly distributed modulo q, then the result of such a fault can-
not be used to break RSA–PSS signatures. It is tempting to conclude that using
RSA–PSS should enable signers to dispense with costly RSA–CRT countermea-
sures. In this paper, we argue that this is not necessarily the case.

Our Contributions. The RSA–CRT implementations targeted in this pa-
per use the state-of-the-art modular multiplication algorithm due to Mont-
gomery [20], which avoids the need to compute actual divisions on large integers,
replacing them with only multiplications and bit shifts. A typical implementa-
tion of the Montgomery multiplication algorithm will use small registers to store
precomputed values or short integer variables throughout the computation. The
size of these registers varies with the architecture, from a single bit in certain
hardware implementations to 16 bits, 32 bits or more in software. This paper
presents several fault attacks on these small registers during Montgomery multi-
plication, that cause the result of one of the half-exponentiations to be unusually
small. The factorization of N can then be recovered using a GCD, or an approx-
imate common divisor algorithm such as [15, 5, 8].

We consider three models of faults on the small registers. In the first model,
one register can be forced to zero. In that case, we show that causing such a fault
in the inverse Montgomery transformation of the result of a half-exponentiation,
or a few earlier consecutive Montgomery multiplications, yields a faulty signa-
ture which is a multiple of the corresponding factor q of N . Hence, we can factor
N by taking a simple GCD. In the second model, another register can be forced
to some (possibly unknown) constant value throughout the inverse Montgomery
transformation of the result of a half-exponentiation, or a few earlier consecutive
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Montgomery multiplications. A faulty signature in this model is a close multiple
of the corresponding factor q of N , and we can thus factor N using an approx-
imate common divisor algorithm. Finally, the third model makes it possible to
force some of the higher-order bits of one register to zero. We show that, while
injecting one such fault at the end of the inverse Montgomery transformation
results in a faulty signature that isn’t usually close enough to a multiple of q to
reveal the factorization of N on its own, a moderate number of faulty signatures
(a dozen or so) obtained using that process are enough to factor N .

The RSA padding scheme used for signing, whether deterministic or prob-
abilistic, is irrelevant in our attacks. In particular, RSA–PSS implementations
are also vulnerable. Of course, this does not contradict the security result due
to Coron and Mandal [11], as the faults we consider are strongly non-random.
Our results do suggest, however, that exponentiation algorithms based on Mont-
gomery multiplication are quite sensitive to a very realistic type of fault attacks
and that using RSA–CRT countermeasures is advisable even for RSA–PSS.

Organization of the Paper. In §2, we recall some background material on the
Montgomery multiplication algorithm, on modular exponentiation techniques,
and on RSA–CRT signatures. Our new attacks are then described in §§3–5,
corresponding to three different fault models: null faults, constant faults, and
zero high-order bits faults. Finally, in §6, we discuss the applicability of our
fault models to concrete hardware implementations of RSA–CRT signatures,
and find that many proposed designs are vulnerable.

2 Preliminaries

2.1 Montgomery Multiplication

Proposed by Montgomery in [20], the Montgomery multiplication algorithm pro-
vides a fast way method for computing modular multiplications and squarings.
Indeed, the Montgomery multiplication algorithm only uses multiplications, ad-
ditions and shifts, and its cost is about twice that of a simple multiplication
(compared to 2.5 times for a multiplication and a Barett reduction), without
imposing any constraint on the modulus.

Usually, one of two different techniques is used to compute Montgomery mul-
tiplication: either Separate Operand Scanning (SOS), or Coarsely Integrated
Operand Scanning (CIOS). Consider a device whose processor or coprocessor
architecture has r-bit registers (typically r = 1, 8, 16, 32 or 64 bits). Let b = 2r,
q be the (odd) modulus with respect to which multiplications are carried out,
k the number of r-bit registers used to store q, and R = bk, so that q < R
and gcd(q, R) = 1. The SOS variant consists in using the Montgomery reduc-
tion after the multiplication: for an input A such that A < Rq, it computes
Mgt(A) ≡ AR−1 (mod q), with 0 ≤ Mgt(A) < q. The CIOS mixes the reduc-
tion algorithm with the previous multiplication step: considering x and y with
xy < Rq, it computes CIOS(x, y) = xyR−1 mod q with CIOS(x, y) < q.
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1: function SignRSA–CRT(m)
2: M ← μ(m) ∈ ZN � message

encoding
3: Mp ←M mod p
4: Mq ←M mod q

5: Sp ←M
dp
p mod p

6: Sq ←M
dq
q mod q

7: t← Sp − Sq

8: if t < 0 then t← t+ p

9: S ← Sq +
(
(t · π) mod p

) · q
10: return S

Fig. 1. RSA–CRT signature genera-
tion with Garner’s recombination. The
reductions dp, dq modulo p− 1, q− 1 of
the private exponent are precomputed,
as is π = q−1 mod p.

1: function CIOS(x, y)
2: a← 0
3: y0 ← y mod b
4: for j = 0 to k − 1 do
5: a0 ← a mod b
6: uj ← (a0+xj · y0) · q′ mod b

7: a←
⌊a+ xj · y + uj · q

b

⌋

8: if a ≥ q then a← a− q

9: return a

Fig. 2. The Montgomery multiplica-
tion algorithm. The xi’s and yi’s are
the digits of x and y in base b; q′ =
−q−1 mod b is precomputed. The re-
turned value is (xy · b−k mod q). Since
b = 2r, the division is a bit shift.

Figure 2 presents the main steps of the CIOS variant, which will be used there-
after. However, replacing the CIOS by the SOS or any other variant proposed
in [17] does not protect against any of our attacks.

2.2 Exponentiation Algorithms Using Montgomery Multiplication

Montgomery reduction is especially interesting when used as part of a modular
exponentiation algorithm. A large number of such exponentiation algorithms
are known, including the Square-and-Multiply algorithm from either the least
or the most significant bit of the exponent, the Montgomery Ladder (used as
a side-channel countermeasure against cache analysis, branch analysis, timing
analysis and power analysis), the Square-and-Multiply k-ary algorithm (which
boasts greater efficiency thanks to fewer multiplications), etc. The first three
exponentiation algorithms will be considered in this paper, and two of those are
detailed in Figure 3.

Note that using the Montgomery multiplications inside any exponentiation al-
gorithm requires all variables to be in Montgomery representation (x̄ = xR mod
q is the Montgomery representation of x) before applying the exponentiation pro-
cess. In line 2 of each algorithm from Figure 3, the message is transformed into
Montgomery representation by computing CIOS(x,R2) = xR2R−1 mod q = x̄.
At the end, the very last CIOS call allows to revert to the classical representa-
tion by performing a Montgomery reduction: CIOS(Ā, 1) = (Ā ·1)R−1 mod q =
ARR−1 mod q = A. Finally the other CIOS steps compute the product in Mont-
gomery representation: CIOS(Ā, B̄) = (AR)(BR)R−1 mod q = AB.

2.3 RSA–CRT Signature Generation

Let N = pq be a n-bit RSA modulus. The public key is denoted by (N, e) and
the associated private key by (p, q, d). For a message M to be signed, we note
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Square-and-Multiply LSB Montgomery Ladder

1: function ExpLSB(x, e, q)
2: x̄← CIOS(x,R2 mod q)
3: A← R mod q
4: for i = 0 to t do
5: if ei = 1 then
6: A← CIOS(A, x̄)

7: x̄← CIOS(x̄, x̄)

8: A← CIOS(A, 1)
9: return A

1: function ExpLadder(x, e, q)
2: x̄← CIOS(x,R2 mod q)
3: A← R mod q
4: for i = t down to 0 do
5: if ei = 0 then
6: x̄← CIOS(A, x̄)
7: A← CIOS(A,A)
8: else if ei = 1 then
9: A← CIOS(A, x̄)
10: x̄← CIOS(x̄, x̄)

11: A← CIOS(A, 1)
12: return A

Fig. 3. Two of the exponentiation algorithms considered in this paper. In each case,
e0, . . . , et are the bits of the exponent e (from the least to the most significant), b is
the base in which computations are carried out (gcd(b, q) = 1) and R = bk.

S = md mod N the corresponding signature, where m is deduced from M by
an encoding function, possibly randomized. A well-known optimization of this
operation is the RSA–CRT which takes advantage of the decomposition of N
into prime factors. By replacing a full exponentiation of size n by two n/2, it
divides the computational cost by a factor of around 4. Therefore RSA–CRT is
almost always employed: for example, OpenSSL as well as the JavaCard API
[22] use it.

Recovering S from its reductions Sp and Sq modulo p and q can be done either
by the usual CRT reconstruction formula (1) below, or using the recombination
technique (2) due to Garner:

S = (Sq · p−1 mod q) · p+ (Sp · q−1 mod p) · q mod N. (1)

S = Sq + q · (q−1 · (Sp − Sq) mod p). (2)

Garner’s formula (2) does not require a reduction modulo N , which is interest-
ing for efficiency reasons and also because it prevents certain fault attacks [4].
On the other hand, it does require an inverse Montgomery transformation Sq =
CIOS(S̄q, 1), whereas that step is not necessary for formula (1), as it can be
mixed with the multiplication with q−1 mod p. This is an important point, as
some of our attacks specifically target the inverse Montgomery transformation.
The main steps of the RSA–CRT signature generation with Garner’s recombi-
nation are recalled in Figure 1.

3 Null Faults

We first consider a fault model in which the attacker can force the register
containing the precomputed value q′ = (−q mod b) to zero in certain calls to the
CIOS algorithm during the computation of Sq.
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Under suitable conditions, we will see that such faults can cause the q-part of
the signature to be erroneously evaluated as ˜Sq = 0, which makes it possible to

retrieve the factor q of N from one such faulty signature ˜S, as q = gcd(˜S,N).

3.1 Attacking CIOS(A, 1)

Suppose first that the fault attacker can force q′ to zero in the very last CIOS
computation during the evaluation of Sq, namely the computation of CIOS(A, 1).
In that case, the situation is quite simple.

Theorem 1. A faulty signature ˜S generated in this fault model is a multiple of
q (for any of the exponentiation algorithms considered herein and regardless of
the encoding function involved, probabilistic or not).

Proof. The faulty value ˜q′ = 0 causes all of the variables u in the CIOS loop to
vanish; indeed, for j = 0, . . . , k − 1, they evaluate to:

ũj = (a0 +Aj · 1) · ˜q′ mod 2r = 0.

As a result, the value ˜Sq computed by this CIOS loop can be written as:

˜Sq =

⌊(

⌊

· · ·
⌊(

⌊

A0 · 2−r
⌋

+A1

)

· 2−r
⌋

+ · · ·
⌋

+Ak−1

)

· 2−r

⌋

.

Now, the values Aj are r-words, i.e. 0 ≤ Aj ≤ 2r − 1. It follows that each of

the integer divisions by 2r evaluate to zero, and hence ˜Sq = 0. As a result, the

faulty signature ˜S is a multiple of q as stated. ��
It is thus easy to factor N with a single faulty signature ˜S, by computing
gcd(˜S,N). Note also that if this last CIOS step is computed as CIOS(1, A)
instead of CIOS(A, 1), the formulas are slightly different but the result still
holds.

3.2 Attacking Consecutive CIOS Steps

If Garner recombination is not used or the computation of CIOS(A, 1) is some-
how protected against faults, a similar result can be achieved by forcing q′ to
zero in earlier calls to CIOS, provided that a certain number of successive CIOS
executions are faulty.

Assuming that the values x̄ and A in Montgomery representation are uni-
formly distributed modulo q before the first faulty CIOS, we show in the full
version of this paper [13]that faults across � = �log2�log2 q�� iterations in the

loop of the exponentiation algorithm are enough to ensure that ˜Sq will evaluate
to zero with probability at least 1/2. For example, if q is a 512-bit prime, we
have � = 9. This means that forcing q′ to zero in 9 iterations (from 9 to 18 calls
to CIOS depending on the exponentiation algorithm under consideration and on
the input bits) is enough to factor the modulus at least 50% of the time—and
more faulty iterations translate to higher success rates.
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Table 1. Success rate of the null fault attack on consecutive CIOS steps, for a 512-
bit prime q and r = 16. 100 faulty signatures were computed for each parameter set.
For the Square-and-Multiply MSB and Montgomery Ladder algorithms, we compare
success rates when faults start at the beginning of the loop vs. at a random iteration.

S&M LSB S&M MSB Montgomery Ladder

Faulty iterations (%) Start (%) Anywhere (%) Start (%) Anywhere (%)

8 31 93 62 45 30

9 65 100 93 87 76

10 89 100 100 99 93

Simulation results. We have carried out a simulation of null faults on consecutive
CIOS steps for each of the three exponentiation process algorithms, with varying
numbers of faulty iterations; for the Square-and-Multiply MSB and the Mont-
gomery Ladder algorithms, two sets of experiments have been conducted for each
parameter set: one with faults starting from the first iteration, and another one
with faults starting from a random iteration somewhere in the exponentiation
loop. Results are collected in Table 1.

4 Constant Faults

In this section, we consider a different fault model, in which the fault attacker
can force the variables uj in the CIOS algorithm to some (possibly unknown)
constant value ũ.

Just as with null faults, we consider two scenarios: one in which the last CIOS
computation is attacked, and another in which several inner consecutive CIOS
computations in the exponentiation algorithm are targeted.

4.1 Attacking CIOS(A, 1)

Faults on all iterations. Consider first the case when faults are injected in all
iterations of the very last CIOS computation. In other words, the device com-
putes CIOS(A, 1), except that the variables uj , j = 0, . . . , k − 1, are replaced
by a fixed, possibly unknown value ũ. In that case, we show that a single faulty
signature is enough to factor N and recover the secret key. The key result is as
follows (the proof can be found in the full version [13]).

Theorem 2. Let ˜S be a faulty signature obtained in the fault model described
above. Then, (2r − 1) · ˜S is a close multiple of q with error size at most 2r+1,
i.e. there exists an integer T such that:

∣

∣(2r − 1) · (˜S + 1)− qT
∣

∣ ≤ 2r+1.
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Thus, a single faulty signature yields a value V = (2r− 1) · (˜S+1) mod N which
is very close to a multiple of q. It is easy to use this value to recover q itself.
Several methods are available:

– If r is small (say 8 or 16), it may be easiest to just use exhaustive search: q
is found among the values gcd(V +X,N) for |X | ≤ 2r+1, and hence can be
retrieved using around 2r+2 GCD computations.

– A more sophisticated option, which may be interesting for r = 32, is the
baby step, giant step-like algorithm by Chen and Nguyen [5], which runs in

time ˜O(2r/2).
– Alternatively, for any r up to half of the size of q, one can use Howgrave-

Graham’s algorithm [15] based on Coppersmith techniques. It is the fastest
option unless r is very small (a simple implementation in Sageruns in about
1.5 ms on our standard desktop PC with a 512-bit prime q for a any r up
to ≈ 160 bits, whereas exhaustive search already takes over one second for
r = 16).

Faults on most iterations. Howgrave-Graham’s algorithm is especially relevant
if the constant faults do not start at the very first iteration in the CIOS loop.
More precisely, suppose that the fault attacker can force the variables uj to a
constant value ũ not for all j but for j = j0, j0 + 1, . . . , k − 1 for some j0.

Then, the same computation as in the proof of Theorem 2 yields the following
bound on ˜Sq:

ũ · q
2r − 1

− 2rj0 − 2 < ˜Sq ≤ ũ · q
2r − 1

+ 2rj0 + 1.

It follows that (2r − 1) · ˜S is a close multiple of q with error size � 2r(j0+1).
Now note that Howgrave-Graham’s algorithm [15] will recover q given N and

a close multiple with error size at most q1/2−ε. This means that one faulty
signature ˜S is enough to factor N as long as j0+1 < k/2, i.e. the constant faults
start in the first half of the CIOS loop.

4.2 Attacking Other CIOS Steps

As in §3.2, if Garner recombination is not used or CIOS(A, 1) is protected against
faults, we can adapt the previous attack to target earlier calls to CIOS and still
reveal the factorization of N . However, the attack requires two faulty signatures
with the same constant fault ũ. Details are given in the full version [13].

In short, depending on the ratios q/2�log2 q� and ũ/(2r − 1), two faulty sig-

natures ˜S, ˜S′ with the same faulty value ũ have a certain probability of being
equal modulo q. Thus, we recover q as gcd(N, ˜S − ˜S′). This attack works with
the Square-and-Multiply LSB and Montgomery Ladder algorithms, but not with
Square-and-Multiply MSB exponentiation.

Simulation results are presented in Table 2. For various 512-bit primes q, the
attack has been carried out for 1000 pairs of random messages, with a random
constant fault ũ for each pair. It is successful if the two resulting faulty signatures
˜S, ˜S′ satisfy gcd(N, ˜S − ˜S′) = q.
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Table 2. Success rate of the constant fault attack on successive CIOS steps, when using
Square-and-Multiply LSB exponentiation with random 512-bit primes q and r = 16

q/2�log2 q� 0.666 0.696 0.846 0.957

Success rate (%) 36 34.4 26.7 20.4

5 Zero High-Order Bits Faults

In this section, we consider yet another fault model, in which the fault attacker
targets the very last iteration in the evaluation of CIOS(A, 1) during the com-
putation of Sq. We assume that the attacker is able to force a certain number h
of the highest-order bits of uk−1 to zero, possibly but not necessarily all of them
(i.e. 1 ≤ h ≤ r). Then, while a single faulty signature is typically not sufficient
to factor the modulus, multiple such signatures will be enough if h is not too
small. More precisely, we prove the following theorem in the full version of this
paper [13]:

Theorem 3. Let ˜S be a faulty signature obtained in this fault model. Then, ˜S
is a close multiple of q with error size at most 2−h · q + 1, i.e. there exists an
integer T such that |˜S − qT | ≤ 2−h · q + 1.

Now, recovering q from faulty signatures of the form ˜S is a partial approximate
common divisor (PACD) problem, as we know one exact multiple of q, namely
N , and several close multiples, namely the faulty signatures. Since the error size
≈ q/2h is rather large relative to q, the state-of-the-art algorithm to recover q
in that case is the one proposed by Cohn and Heninger [8] using multivariate
Coppersmith techniques.

The algorithm by Cohn and Heninger is likely to recover the common divisor
q ≈ N1/2 given � close multiples ˜S(1), . . . , ˜S(�) provided that the error size is

significantly less than N (1/2)1+1/�

. Hence, if the faults cancel the top h bits of
uk−1, we need � of them to factor the modulus, where:

� � − 1

log2

(

1− h
log2 q

) . (3)

In practice, if a few more faults can be collected, it is probably preferable to
simply use the linear case of the Cohn-Heninger attack (the case t = k = 1 in
their paper [8]), since it is much easier to implement (as it requires only linear
algebra rather than Gröbner bases) and involves lattice reduction in a lattice of
small dimension that is straightforward to construct. We examine this method
in more details in the full version of this paper [13], and find that it makes it
possible to factor N provided that:

� � log2 q

h
(4)
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Table 3. Theoretical minimum number � of zero higher-order h-bit faulty signatures re-
quired to factor a balanced 1024-bit RSA modulus N using the general Cohn-Heninger
attack or the simplified linear one

Number h of zero top bits 48 40 32 24 16

Minimum � with the general attack 8 9 11 15 22

Minimum � with the linear attack 11 13 16 22 32

Table 4. Experimental success rate of the simplified (linear) Cohn-Heninger attack
with � faulty signatures when N is a balanced 1024-bit RSA modulus. Timings are
given for our Sage implementation on a single core of a Core 2 CPU at 3 GHz.

Number � of faulty signatures 11 12 13 14 15 16 17 18

Success rate with h = 48 (%) 23 100 100 100 100 100 100 100

Success rate with h = 40 (%) 0 0 2 100 100 100 100 100

Success rate with h = 32 (%) 0 0 0 0 0 0 99 100

Average CPU time (ms) 33 35 38 41 45 49 54 59

which is always a worse bound than (3) but usually not by a very large margin.
Table 3 gives the theoretical number of faulty signatures required to factor N
for various values of h, both in the general attack by Cohn and Heninger and in
the simplified linear case.

We carried out a simulation of the linear version of the attack on a 1024-
bit modulus N with various values of h, and found that it works very well
in practice with a number of faulty signatures consistent with the theoretical
minimum. The results are collected in Table 4. The attack is also quite fast: a
naive implementation in Sage runs in a fraction of a second on a standard PC.

6 Fault Models

In this section we discuss how realistic the setup of the attacks described above
can be. In principle, all the RSA–CRT implementations using Montgomery mul-
tiplication may be vulnerable, but we have to note that the fault setup (and how
realistic it is) depends heavily on implementation choices, since many variations
around the algorithm from Figure 2 have been proposed in recent literature.

After a discussion about the tools needed to get the desired effects, we focus
on several implementation proposals [29, 18, 16, 21, 28, 19, 6], chosen for their
relevance.

6.1 Characteristics of the Perturbation Tool

First all the perturbations needed to carry out our attacks need to be controlled
and local to some gates of the chip. Therefore, the attacker needs to identify the
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localization of the vulnerable gates and registers. The null fault attacks described
in §3 need either a q′ value set to 0, or multiple consecutive faults in line 6 of
the main loop of CIOS(A, 1) or during multiple consecutive CIOS. The attacks
described in §4 also need these multiple consecutive faults. Considering that
state-of-art secure micro-controllers embed desynchronization countermeasures
such as clock jitters and idle cycles, if the target of the perturbation is some
shared logic with other treatments (like in the ALU of a CPU), the fault must
be accurately space and time controlled, and the effects must be repeatable as
well. Identification of the good cycles to inject the perturbation may be a very
difficult task, and our attacks seem to be irrelevant. The only exception may be
the null fault of §3, if the fault is injected when the q′ register is loaded.

Nevertheless, many secure microcontrollers embed an isolated modular arith-
metic acceleration coprocessor. A large proportion of them specifically use the
Montgomerymultiplication CIOS algorithm (or one of its described variants [17]).
Therefore, if the q′ or the uj value is isolated in a specific small size register, a
unique long duration perturbation can be sufficient for our attack to succeed. The
duration of the perturbation varies with the implementation choices and can vary
from one cycle to log2 q, which does not exceed a hundred microseconds on actual
chips. To get this kind of effect, laser diodes are the best-suited tool, since the
duration of the spot is completely controlled by the attacker [26].

6.2 Analysis of Classical Implementations of the Montgomery
Multiplication

The public Montgomery architectures can be divided in 3 different categories :

– the first one [29, 18, 16] contains variations on the Tenca and Koç Multi-
ple Word Radix-2 Montgomery Multiplication algorithm (MWR2MM) [29],
which can be seen as a CIOS algorithm with r = 1. The characteristic of
these implementations is that they use no multiplier. They are then suited
for constrained area.

– the second category [28, 19] is an intermediate where r is a classical size
for embedded architecture, such as 8,16 or 32 bits. They can be used for
intermediate area/latency trade-offs.

– the last category [21, 6] propose a version of CIOS/SOS with only one loop,
implying that r ≥ �log2 q�. The main difficulty of these implementation
techniques is to deal with the very large multiplications they require . For
that purpose they use interpolation techniques, like Karatsuba in [6] or RNS
in [21]. These implementations are designed to achieve the shortest latency.

Architectures Based on MWR2MM (r = 1). In this kind of architecture,
q′ cannot be manipulated, since it is always equal to 1, so no wire or register
carries its value. On the other hand, the value of uj is computed at every loop
of the CIOS, and since it is only one bit, a simple shot on the logic driving
the register during the final multiplication CIOS(A, 1) is sufficient to get an
exploitable result (uj = 0 corresponds to the null fault of §3, and uj = 1 to the
constant fault of §4).
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Fig. 4. Systolic Montgomery Multiplier of [29] and potential target of the fault

The first proposal [29] is a fully systolic 1 array of processing elements (PE)
executing consecutively line 6 of the CIOS algorithm in one cycle, and line 7 in k
cycles from LSB to MSB. Figure 4 proposes an overview of the architecture. Each
PE consists of a w-word carry save adder, able to compute a w word addition
and to keep the carry for the next cycle. In the figure, T (j) stands for the j-th
least significant w word of T .

At each clock cycle, the PE presents the computed result ai(j) to the next
one, and the value ui is kept in the PE for the computation of the next word
ai(j + 1). The value of ui is computed before the word ai(0) is presented, and
then is kept in each PE during the whole computation of ai in a register. This
architecture has the great advantage of being completely scalable (whatever the
number of PEs and the size of M , this architecture can compute the expected
result as long as the RAM are correctly dimensioned).

To achieve our attack, the register keeping ui can be the targeted, but every
PE must be targeted simultaneously in order to get the correct result. Therefore
it is more interesting to target the control logic responsible for the sequencing
of the register loading, since all the PEs are connected.

In [18], the authors manage to get rid of the CS to binary converter by re-
designing the CS adder of every PE. The vulnerability to our attack is therefore
the same, since the redesign does not affect the targeted area.

Huang et al. [16] proposed a new version of the data dependency in the
MWR2MM algorithm and rearranged the architecture of [29], in a semi sys-
tolic form. Figure 5 gives an overview of the architecture. In this architecture,
the intermediate value ai is manipulated in carry save format A specific PE, PE0

is specialized in generating the ui values at each cycle. while the j-th PE is in
charge of computing the sequence ai(j).

This architecture is very vulnerable to our attacks, since a simple n-cycle long
shot on the right logic in the PE0 (see Figure 5) is sufficient to get the expected
result.

According to the authors, the design works at 100MHz on their target platform
(a Xilinx Virtex II FPGA), therefore the duration of the perturbation is at least
10 μs for a 1024 bits multiplication (2048 bits RSA) if the Garner recombination is

1 Meaning that all the PEs are the same.



Attacking RSA–CRT Signatures with Faults on Montgomery Multiplication 459

������
������
������
������
������
������

������
������
������
������
������
������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

���������
���������
���������
���������

��������
��������
��������
��������

��������
��������
��������
��������

ui−1 ui−2 ui−j

y(0) q(0) y(1) q(1) y(2) q(2) y(j) q(j)

Vulnerable areas

1 bit Right shift register containing x

1 bit Right shift register containing U

· · ·

x(i)

PE1 PEjPE2PE0

x(i− 1) x(i− 2) x(i− j)

re
gi
st
er

logic

Combinational

xi

Vulnerable areas

si(1)

ci(1)

ui y(0) q(0)

ui

si(1)

ci(1) ci−1(2)

si−1(2)

· · ·

Fig. 5. Overview of the [16] architecture and potential target of the fault
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used (using the attack from §3.1 or §4.1). If classical CRT reconstruction is used,
according to Table 1, 200 μs will be enough for a null fault.

As a conclusion we can see that this kind of implementation is very vulnerable,
since the setup of the attack is quite simple.

High Radix Architecture (1 < r < �log2 q�). In this type of implemen-
tation the value q′ = −q−1 mod 2r is computed in a r-bit register, unless the
quotient pipelining approach [23] is used.

For example, the implementation of [19] is described in Figure 6. It relies on
the coordinated usage of multiplier blocks of the Xilinx Virtex II together with
specifically designed carry save adders. The values uj can be the target of any
fault described in this paper, but it may be easier to put once for all the q′

register to 0, with a 100% success rate for the attack if properly carried out.
Another implementation is mentioned in [19] with a four-deep pipeline, but it
suffers from the same vulnerability.

The attack may be more difficult to achieve on the architecture of [28, Figure
4]. First, it uses quotient determination [23], and therefore does not need to
store q′ anywhere. Second, the multiplier in charge of computing uj is shared
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for all the Montgomery computation. In order to carry out the attack of §4 on
this architecture, the attacker has to determine the specific cycles where uj is
computed to generate a perturbation. For that particular design, the attacks
seem out of reach.

Full Radix Architecture (r ≥ �log2 q�). In this kind of implementation,
a single round is enough to compute the Montgomery algorithm. This imple-
mentation choice reports all the complexity on the design of a log2 q × log2 q
multiplier. To reduce the full complexity of the big multiplication, interpolation
techniques are used. In [6], a classical nested Karatsuba multiplication is used,
whereas [21] proposes RNS.

In these architectures, a specific laser shot must swap all the u0 or q′ at the
same time to produce a null fault. To have a chance, a better solution is to use
non invasive attacks (in the sense of [27]), such as power or clock glitches. Indeed
u0 or q′ are fully manipulated on the same clock cycle (or in very few), therefore
it may be more practical to make the sequencer miss an instruction instead of
aiming directly at the registers.

The zero high-order bits fault attack from §5 is also an option. In the archi-
tecture of [6], the most significant bits of u0 can be set to 0.

7 Conclusion

In this paper, we have shown that specific realistic faults can defeat unprotected
RSA–CRT signatures with any padding scheme, probabilistic or not. While it
is not difficult to devise suitable countermeasures (for example, checking that
Sq is not too small before outputting a signature is enough to thwart all of our
attacks), this underscores the fact that relying on probabilistic signature schemes
does not, in itself, protect against faults.
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