
Lightweight Cryptography for the Cloud:

Exploit the Power of Bitslice Implementation

Seiichi Matsuda1 and Shiho Moriai2

1 Sony Corporation
1-7-1 Konan, Minato-ku, Tokyo 108-0075, Japan

SeiichiA.Matsuda@jp.sony.com
2 National Institute of Information and Communications Technology (NICT)

4-2-1 Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan
shiho.moriai@nict.go.jp

Abstract. This paper shows the great potential of lightweight cryptog-
raphy in fast and timing-attack resistant software implementations in
cloud computing by exploiting bitslice implementation. This is demon-
strated by bitslice implementations of the PRESENT and Piccolo light-
weight block ciphers. In particular, bitsliced PRESENT-80/128 achieves
4.73 cycles/byte and Piccolo-80 achieves 4.57 cycles/byte including data
conversion on an Intel Xeon E3-1280 processor (Sandy Bridge microar-
chitecture). It is also expected that bitslice implementation offers resis-
tance to side channel attacks such as cache timing attacks and cross-VM
attacks in a multi-tenant cloud environment. Lightweight cryptography
is not limited to constrained devices, and this work opens the way to its
application in cloud computing.

Keywords: lightweight cryptography, software implementation, bitslice
implementation, cloud, block cipher, PRESENT, Piccolo.

1 Introduction

The cyber physical system has emerged as a promising direction for enriching
interactions between physical and virtual worlds [14]. Many wireless sensor net-
works, for instance, monitor some aspect of the environment or human behaviors,
and relay the data to the cloud for processes such as data mining, business in-
telligence and predictive analytics. Preservation of security and privacy in the
sensed information in this system is essential.

Lightweight cryptography, which can be implemented on resource-constrained
devices, is attracting attention for protecting private and sensitive information
gathered on sensors . Recently many lightweight cryptographic primitives have
been proposed, such as block ciphers, stream ciphers, hash functions, message-
authentication codes [3,19,5,1,7,8,20]. Moreover, an international standard of
lightweight cryptography (ISO/IEC 29192) has been developed in ISO/IEC JTC
1/SC 27.

E. Prouff and P. Schaumont (Eds.): CHES 2012, LNCS 7428, pp. 408–425, 2012.
c© International Association for Cryptologic Research 2012

Lightweight Cryptography for the Cloud 409

Most lightweight cryptographic algorithms are designed to minimize the re-
source consumption of a hardware implementation such as area, power, and en-
ergy consumption, while some are software-oriented with design criteria such as
low memory requirements, small code size, and limited instruction sets for low-
end (e.g., 8-bit) platforms. As a result of design trade-off, some of lightweight
cryptographic algorithms do not show good throughput in software implemen-
tation on mid-range to high-end microprocessors (e.g., Intel Core i7 processors)
typically used for cloud computing.

This paper shows the great potential of lightweight cryptography in fast soft-
ware implementations in cloud environments by exploiting bitslice implementa-
tion demonstrated through bitslice implementations of PRESENT and Piccolo.
PRESENT and Piccolo are lightweight 64-bit block ciphers: the former was pre-
sented by Bogdanov et al. at CHES 2007 [3] and is specified in ISO/IEC 29192-
2 [11], and the latter was presented by Shibutani et al. at CHES 2011 [20]. In
particular, PRESENT-80/128 achieves 4.73 cycles/byte and Piccolo-80 achieves
4.57 cycles/byte on an Intel Xeon E3-1280 processor (Sandy Bridge). PRESENT-
80/128 achieves 5.79 cycles/byte. Piccolo-80 achieves 5.69 cycles/byte on an Intel
Core i7 870 (Nehalem), which are faster than the bitsliced AES’s fastest record
on the same microarchitecture (6.92 cycles/byte on an Intel Core i7 920) [12].

Only a few software performance data of lightweight cryptography for compar-
ison exist in public literature. As for PRESENT, in [17] there are some software
implementation results on 4-bit, 8-bit and 16-bit microcontrollers, but on a 32-
bit processor, the encryption speed available is 16.2 cycles/byte on a Pentium
III. In [9], it is written that optimized table-based implementations run 57 and
86 cycles/byte on a Core i7 Q720 for LED-64 and LED-128, respectively, and
that they are faster than PRESENT. There is also previous work on bitsliced
PRESENT by Grabher et al. [6], but their implementation results are not com-
petitive.

It has been known that bitslice implementation is also resistant to cache tim-
ing attacks because it has no table lookups. In a multi-tenant cloud environment,
cross-virtual machine (VM) attacks become new threats [18]. Bitslice implemen-
tation mitigates these risks.

The remainder of this paper is structured as follows. Section 2 shows a brief
history of bitslice implementation, a use case of lightweight block ciphers in the
cloud, and our target. Sections 3 and 4 respectively show bitslice implementa-
tions of lightweight block ciphers PRESENT and Piccolo, including optimizing
techniques. Section 5 shows performance data and comparison with previous
results, and Section 6 gives our conclusion.

2 Bitslice Implementation

Biham in 1997 introduced bitslicing as a technique for implementing crypto-
graphic algorithms to improve the software performance of DES [2]. It was im-
plemented on several processors and used for brute force key search of DES in
the DES Challenges project in the late-1990s. The basic concept of bitslicing is

410 S. Matsuda and S. Moriai

Fig. 1. Use case of decryption in bitslice implementation in the cloud

to simulate a hardware implementation in software. The entire algorithm is rep-
resented as a sequence of logical operations. On a processor with n-bit registers,
a logical instruction corresponds to simultaneous execution of n hardware logi-
cal gates. In the bitslice implementation, S-boxes are computed using bit-logical
instructions rather than table lookups. Since the execution time of these instruc-
tions is independent of the input and key values, the bitslice implementation is
generally resistant to timing attacks.

Bitslice implementation techniques have progressed. The bitslice implementa-
tions of block ciphers presented by Biham were to encrypt/decrypt independent
n blocks on a processor with n-bit registers. Matsui and Nakajima [15] demon-
strated remarkable performance gain on Intel’s Core 2 processor by fully utilizing
its enhanced SIMD architecture. They showed a bitsliced AES running at the
speed of 9.2 cycles/byte on a Core 2, which was faster than any previous standard
table-based implementations. A hurdle in this implementation was that as many
as n independent blocks needed to be processed simultaneously. Könighofer [13]
presented an alternative implementation for 64-bit platforms that processes only
four input blocks in parallel. Käsper and Schwabe [12] extended this approach
and achieved a bitsliced AES in counter mode running at 7.59 cycles/byte on a
Core 2.

A Use Case of Lightweight Block Ciphers in the Cloud. In cyber
physical systems, analyzing large data sets – so-called big data – will become
a key basis of competition, underpinning new waves of productivity growth,
innovation, and consumer surplus. Cloud computing will play an important role
in analyzing big data, where scale-out software systems running on low-cost
“commodity” platforms are expected. When sensor data need to be encrypted
for privacy protection, encryption on a low-cost embedded hardware module
using a lightweight block cipher will be the most cost competitive solution on
the sensor side. Encrypted sensor data are collected from many sensors and
decrypted on servers in the cloud when needed.

Lightweight Cryptography for the Cloud 411

Bitslice implementation provides leverage in this use case. In most cases it
can be implemented so that the sensor data size per transmission fits the block
size. Encrypted sensor data from each sensor can be decrypted independently.
One of the drawbacks of bitslice implementation has been the low number of
applications where the encryption/decryption unit size is large, e.g., 2048-byte
chunks. However, in this use case, one can simply collect encrypted sensor data
from many sensors until the decryption unit size with no concern about the
order, and then decrypt them by using bitslice implementation. The decryption
key can be set block-by-block independently.

Our Target. We choose PRESENT and Piccolo as each representative of
lightweight block ciphers based on Substitution Permutation Networks and Feis-
tel networks, respectively. Our implementations of PRESENT and Piccolo are
run on three different Intel microarchitectures: Core (45-nm), Nehalem, and
Sandy Bridge. Core and Nehalem support up to Streaming SIMD Extensions
(SSE) 4.1 with 16 128-bit XMM registers, and Sandy Bridge newly supports
Advanced Vector Extensions (AVX) as an extension of SSE. Major enhance-
ments of AVX are supports for 256-bit YMM registers, 256-bit floating point
instruction set, and 3-operand syntax, which is also used for legacy 128-bit SSE
instructions (we call this 128-bit AVX). For example, 2-operand syntax instruc-
tion pxor xmm1, xmm2 (xmm1^=xmm2) can be expressed in 3-operand syntax as
vpxor xmm1, xmm2, xmm3 (xmm1=xmm2^xmm3). Since a source operand of an in-
struction is not overwritten by the result, 3-operand syntax can reduce the cost
of temporary data copy to another register and reduce code size. Unfortunately,
256-bit AVX does not support integer instructions operated on 256-bit YMM
registers, so we use 128-bit AVX with 3-operand using XMM registers on Sandy
Bridge. Legacy SSE instructions used in our implementation, such as logical
(pand, pandn, por, pxor), data transfer (movdqa), shuffle (pshufb, pshufd), and
unpack instructions (punpckhbw and its variants) are supported by the three ar-
chitectures. 128-bit AVX instructions used on Sandy Bridge are vpand, vpandn,
vpor, vpxor, vpshufb, vpunpckhbw and its variants. The latency of the register-
to-register operations above is one cycle. The register-to-memory operations re-
quire more cycles depending on the data dependency, memory/cache mechanism,
and characteristics of each microarchitecture.

Our Implementation Approach. Our implementation handles the number of
parallel blocks smaller than the original bitslice implementation. This approach
enables processing operations on only 16 XMM registers without frequent load-
ing and storing of data between XMM registers and memory, and improves
convenience as a cryptographic library tool. To explore the possibility of bit-
slice implementation of PRESENT and Piccolo, we study several cases for the
number of blocks processed in parallel: 8-, 16-, and 32-parallelism for PRESENT
and 16-parallelism for Piccolo. In Section 3 and 4, at the beginning we introduce
some specific optimizations for each algorithm with legacy SSE instructions, and
then optimize our implementations to reduce the number of instructions of the
codes by using 128-bit AVX instructions on Sandy Bridge.

412 S. Matsuda and S. Moriai

3 PRESENT

PRESENT [3] is a 64-bit block cipher supporting 80- and 128-bit keys. The S/P-
network of PRESENT consists of addRoundKey, sBoxLayer and pLayer with 31
rounds as shown in Fig. 2. sBoxLayer consists of 16 parallel 4-bit S-boxes and
pLayer permutes bit positions of the 64-bit data state. After the final round, the
state is XORed with the round key for post-whitening and output as ciphertext.
We denote the 64-bit block of PRESENT by 16 4-bit data n0, · · · , n15. Let
ni = ni,0||ni,1||ni,2||ni,3 for 0 ≤ i ≤ 15, where ni,j is the j-th bit of ni.

3.1 Bitsliced Representation

Our bitsliced representations for 8-, 16-, and 32-block parallel implementations
are shown in Fig. 3, Fig. 4, and Figs. 5 and 6, respectively. In this paper, we
denote 16 128-bit XMM registers by r[i], 0 ≤ i ≤ 15. For l-block parallel imple-
mentation, l-bit data ni,j in the figures means the bit collection of ni,j gathered
from the same position of each l-block. The 4-bit slicing enables us to compute
4-bit S-box using bit-logical instructions in the same way as the original 1-bit
slicing [2] and the 8-bit slicing for AES [12].

We use four XMM registers for 8-block parallel implementation, eight XMM
registers for 16-block parallel implementation to store the 4-bit slicing of input
data, and the remaining XMM registers as temporary registers for processing
sBoxLayer and pLayer.

For 32-block parallel implementation, we handle two bitsliced representations
with 16 XMM registers and switch the representations of intermediate data al-
ternately in rounds to reduce the cost of pLayer processing, i.e., the processing
can be skipped every other round. Figure 5 gives the initial bitsliced representa-
tion after performing a conversion algorithm. Since there are no XMM register
for temporary use, we need to move data in a XMM register to memory in the
process of sBoxLayer and pLayer.

S S S S S S S S S S S S S S S S

S S S S S S S S S S S S S S S S

k

k

i

i+1

Fig. 2. The S/P network for PRESENT

Lightweight Cryptography for the Cloud 413

Fig. 3. Bitsliced representation of PRESENT in 8-block parallel implementation

Fig. 4. Bitsliced representation of PRESENT in 16-block parallel implementation

414 S. Matsuda and S. Moriai

Fig. 5. First bitsliced representation of PRESENT in 32-block parallel implementation

Fig. 6. Second bitsliced representation of PRESENT in 32-block parallel implementa-
tion

Lightweight Cryptography for the Cloud 415

3.2 sBoxLayer

A smaller logical representation of S-box maximizes the advantage of bitslice
implementation. One previous work reported that the logical representation of
PRESENT S-box requires only 14 gates [4], in which four temporary registers
were used and 3-operand logical instructions were assumed. We therefore use
their logical representation for 8- and 16-block parallel implementations with
128-bit AVX on Sandy Bridge, and search for another logical representation
using 2-operand instructions for the other implementations.

We took the same approach as Osvik [16] to search a software-oriented logical
representation that consists of five operations and, or, xor, not, mov with only
five registers (four registers for input and one register for temporary use). The
instruction sequence found by our algorithm requires 20 instructions as below.

// Input: r3, r2, r1, r0, tmp

// Output: r3, r2, r1, r0

1. r2 ^= r1; r3 ^= r1;

2. tmp = r2; r2 &= r3;

3. r1 ^= r2; tmp ^= r0;

4. r2 = r1; r1 &= tmp;

5. r1 ^= r3; tmp ^= r0;

6. tmp |= r2; r2 ^= r0;

7. r2 ^= r1; tmp ^= r3;

8. r2 = ~r2; r0 ^= tmp;

9. r3 = r2; r2 &= r1;

10. r2 |= tmp;

11. r2 = ~r2;

Note that four registers r3, r2, r1, r0 of input registers contain four input
bits (r3 contains the most significant bit).

3.3 pLayer

The original 1-bit slicing can compute bit-by-bit permutation like pLayer of
PRESENT by only changing the order of registers with no cost. However our
4-bit slicing causes additional operations for processing pLayer in compensation
for the decrease in the parallelism of bitslice implementations from 128 (size of
XMM register) to 8, 16, and 32.

A combination of the shuffle byte instruction pshufb firstly introduced in
Intel Supplemental SSE3 (SSSE3) and the unpack instructions for double-word
punpck(h/l)dq and quad-word punpck(h/l)qdq realizes the pLayer processing.
The notation h and l of h/l means high-order and low-order of 64-bit data in a
128-bit XMM register, respectively.

As the bitsliced representations for 8- and 16-block parallel implementation
are almost same format, the implementation of pLayer for the 16-block requires
the operations for the 8-block twice. We explain the case for the 8-block and
then progress to the case for 32-block parallel implementation.

416 S. Matsuda and S. Moriai

8-block Parallel Implementation. First of all, we perform pshufb on XMM
register r[0] containing ni,0 for 0 ≤ i ≤ 15 in Fig. 3 as the following pattern.

r[0] : n0,0||n4,0||n8,0||n12,0||n1,0||n5,0|| · · · ||n10,0||n14,0||n3,0||n7,0||n11,0||n15,0

Applying for the other registers r[1], r[2], and r[3] similarly, we perform the
punpckhdq instruction on r[0] and r[1], which unpacks and interleaves the high-
order double-word from r[0] and r[1] into r[0]. The subsequent punpckhqdq for
r[0] and r[2], where r[2] contains the result of punpckhdq for r[2] and r[3], can
produce desired 128-bit data in register r[0] as follows.

r[0] : n0,0||n4,0||n8,0||n12,0||n0,1||n4,1|| · · · ||n8,2||n12,2||n0,3||n4,3||n8,3||n12,3

In the pLayer processing with legacy SSE instructions, we require 16 instructions,
i.e., four pshufb, four punpck(h/l)dq, four punpck(h/l)qdq, and four movdqa
for storing intermediate results. With an optimization using 128-bit AVX instruc-
tions vpunpck(h/l)dq and vpunpck(h/l)qdq, four movdqa become redundant,
i.e., requiring 12 instructions in total.

32-block Parallel Implementation. As mentioned before, we manage two
bitsliced representations for 32-block parallel implementation. These represen-
tations are constructed in such a way that the bit permutation of pLayer for
the initial bitsliced representation as shown in Fig. 5 produces the other repre-
sentation with only register renaming. Using the notation of the intial bitsliced
representation, we can represent the updated bitsliced representation as the re-
sult of the pLayer process for the initial bitsliced representation as follows.

r[0] : n0,0||n4,0||n8,0||n12,0

r[4] : n1,0||n5,0||n9,0||n13,0

r[8] : n2,0||n6,0||n10,0||n14,0

r[12] : n3,0||n7,0||n11,0||n15,0

...

r[3] : n0,3||n4,3||n8,3||n12,3

r[7] : n1,3||n5,3||n9,3||n13,3

r[11] : n2,3||n6,3||n10,3||n14,3

r[15] : n3,3||n7,3||n11,3||n15,3

The above corresponds to the second bitsliced representation as shown in Fig. 6.
The pLayer processing in the next round for this representation requires an
instruction sequence consisting of 16 punpck(h/l)dq, 16 punpck(h/l)qdq and
20 movdqa including four memory accesses for temporarily storing data twice
and produces the initial bitsliced representation. Therefore the pLayer process
can be computed every other round and requires 26 instructions on average. The
128-bit AVX can reduce the number of instructions from 52 to 36.

An additional operation for this trick to adjust the alignment of round keys
is needed, unpacking round keys every other round in the key schedule.

Lightweight Cryptography for the Cloud 417

4 Piccolo

Piccolo [20] is a lightweight 64-bit block cipher supporting 80-bit and 128-bit
keys. Piccolo has a structure of a variant of 4-line generalized Feistel network
(GFN) as shown in Fig. 7, and iterates 25 and 31 rounds for 80- and 128-bit
keys, respectively. We denote a 64-bit block for Piccolo by four 16-bit words:
W0,W1,W2,W3. Let Wi = n4∗i||n4∗i+1||n4∗i+2||n4∗i+3 for 0 ≤ i ≤ 3, and let
nj = nj,0||nj,1||nj,2||nj,3 for 0 ≤ j ≤ 15, where nj is 4-bit data and nj,k is the
k-th bit of nj .

64

RP

16 16 16 16

F F

F F

wk0

RP

F F

64

F F
RP

wk1

wk2 wk3

rk0 rk1

rk2 rk3

rk2r-4 rk2r-3

rk2r-2 rk2r-1

Fig. 7. The structure of Piccolo

8 8 8 8 8 8 8 8

64

64

x x x x x x x x0 1 2 3 4 5 6 7

x x x x x x x x2 7 4 1 6 3 0 5

Fig. 8. Round permutation RP

4.1 Bitsliced Representation

Figure 9 shows our bitsliced representation for 16-block parallel implementation
of Piccolo. 16-bit data ni,j in the figure means the bit collection of ni,j gathered
from a same position of each 16-block for 0 ≤ i ≤ 15 and 0 ≤ j ≤ 3.

Since the 2-line out of the 4-line GFN is processed and the other lines pass
through in one round, the data for the former and latter should be stored sep-
arately, assigning each for different registers. Then, two F-functions used in the
GFN are the same, so we can pack eight 16-bit data ni,j corresponding to the
2-line data (e.g., W0&W2 or W1&W3) on same XMM registers with the 4-bit
slicing as our implementation of PRESENT.

The number of XMM registers for storing 4-bit slicing of input data is eight.
Four XMM registers of the renaming eight XMM registers can be used for storing
the data passed through during processing F-functions and the other four XMM
registers can be used as temporary registers for processing F-functions.

If we assign the data for a line of the 4-line GFN on a XMM register for 32-
block parallel implementation of Piccolo, we would need full 16 XMM registers to
store 4-bit slicing of input data. It leads to more memory access than the case of
PRESENT for storing the data temporarily. Therefore we think 16-block parallel
implementation of Piccolo using 128-bit XMM registers is optimal parallelism.

418 S. Matsuda and S. Moriai

Fig. 9. Bitsliced representation of Piccolo in 16-block parallel implementation

4.2 F-Function

The F-function consists of two S-box layers and a diffusion matrix (see Fig. 10).

16 M

S

16

4

4

4

4

S

S

S

S

S

S

S

Fig. 10. F-function

LSB

MSB

4 4

Fig. 11. S-box S

S-box Layer. The S-box layer consists of four 4-bit bijective S-boxes S rep-
resented by the logic circuit shown in Fig. 11. A software instruction sequence
of the S-box can be manually obtained from the logic circuit, which requires 15
instructions with a temporary register. We searched for a smaller instruction
sequence in the similar way to the PRESENT S-box and found the following
one with 13 instructions in six cycles, assuming that up to three independent
instructions are issued per cycle.

Lightweight Cryptography for the Cloud 419

// Input: r3, r2, r1, r0, tmp

// Output: r0, r1, r2, r3

1. tmp = r1; r1 |= r2; r3 = ~r3;

2. r0 ^= r2; r1 ^= r3; r3 |= r2;

3. r0 ^= r3; r3 = r1;

4. r3 |= r0;

5. r3 ^= tmp; tmp |= r0;

6. r2 ^= tmp; r3 = ~r3;

The notation is the same as the instruction sequence of the PRESENT S-box.

Diffusion Matrix. The following multiplication between the constant 4 × 4
diffusion matrix M and four 4-bit data x0, x1, x2, x3 over GF(24) defined by an
irreducible polynomial x4 + x+ 1 outputs four 4-bit data y0, y1, y2, y3.

⎛
⎜⎜⎝
y0
y1
y2
y3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝
x0

x1

x2

x3

⎞
⎟⎟⎠

Let xi = xi,0||xi,1||xi,2||xi,3 for 0 ≤ i ≤ 3. Since diffusion matrix M is cyclic,
4-bit data yi can be expressed as yi = 2 · xi ⊕ 3 · xi+1 ⊕ xi+2 ⊕ xi+3 where index
is calculated by modulo 4. Representing each bit of the products 2 · xi and 3 · xi

given in Table 1, all bits of yi = yi,0||yi,1||yi,2||yi,3 are obtained as follows.

yi,0 = xi,1 ⊕ xi+1,0 ⊕ xi+1,1 ⊕ xi+2,0 ⊕ xi+3,0

yi,1 = xi,2 ⊕ xi+1,1 ⊕ xi+1,2 ⊕ xi+2,1 ⊕ xi+3,1

yi,2 = xi,0 ⊕ xi,3 ⊕ xi+1,0 ⊕ xi+1,2 ⊕ xi+1,3 ⊕ xi+2,2 ⊕ xi+3,2

yi,3 = xi,0 ⊕ xi+1,0 ⊕ xi+1,3 ⊕ xi+2,3 ⊕ xi+3,3

As each 128-bit XMM register contains eight 16-bit data corresponding the 2-line
data, it is possible to perform two matrix calculations simultaneously, utilizing
rotation of the data on the upper and lower 64-bit data in a 128-bit XMM reg-
ister. The 16-bit left rotation rot16 on a XMM register with pshufb instruction
is defined as follows.

rot16 : [w0||w1||w2||w3||w4||w5||w6||w7] �→ [w1||w2||w3||w0||w5||w6||w7||w4]

Note that wi is a 16-bit data and 32-bit left rotation rot32 and 48-bit left rotation
rot48 can be defined in the same way.

Table 1. Multiplication 4-bit data xi by 2 and 3 over GF(24) defined by x4 + x+ 1

xi xi,0 xi,1 xi,2 xi,3

2 · xi xi,1 xi,2 xi,0 ⊕ xi,3 xi,0

3 · xi xi,0 ⊕ xi,1 xi,1 ⊕ xi,2 xi,0 ⊕ xi,2 ⊕ xi,3 xi,0 ⊕ xi,3

420 S. Matsuda and S. Moriai

We can compute the following updated four XMM registers r[i] for 0 ≤ i ≤ 3
with 25 instructions including eight pshufb, 13 pxor and four movdqa instruc-
tions, using four temporary registers.

r[0]← r[1]⊕ rot16(r[1])⊕ rot16(r[0]) ⊕ rot32(r[0]⊕ rot16(r[0]))

r[1]← r[2]⊕ rot16(r[2])⊕ rot16(r[1]) ⊕ rot32(r[1]⊕ rot16(r[1]))

r[2]← r[0]⊕ rot16(r[0])⊕r[3]⊕rot16(r[3])⊕rot16(r[2])⊕rot32(r[2]⊕rot16(r[2]))
r[3]← r[0]⊕ rot16(r[0])⊕ rot16(r[3]) ⊕ rot32(r[3]⊕ rot16(r[3]))

Note that translating rot48 = rot32 ◦ rot16 saves the number of pshufb.

4.3 Round Permutation

The round permutation (RP) permutes eight 8-bit data over 64-bit data as
shown in Fig. 8. A simple implementation of RP for a XMM register holding
j-th bit of 4-bit data ni permutes four 32-bit data (e.g., ni,j ,ni+1,j) in a 128-bit
register by using double-word shuffle instruction pshufd as follows.

rp0 : [w0||w1||w2||w3||w4||w5||w6||w7] �→ [w4||w5||w2||w3||w0||w1||w6||w7]

rp1 : [w0||w1||w2||w3||w4||w5||w6||w7] �→ [w0||w1||w6||w7||w4||w5||w2||w3]

Note that we perform rp0 and rp1 on four XMM regsiters holding the data for
W0&W2 and W1&W3, respectively. It requires only two pshufd instructions per
bit, or eight in total per one round. Before proceeding to the next round, we
need renaming four XMM regsiters holding the data for W0&W2 and W1&W3.

Remove Round Permutation. We describe the implementation to remove
RP changing the calculation of diffusion matrix M and the position of round
keys with no cost in the data processing. This modification can reduce 8*(the
number of rounds) instructions compared to the above implementation of RP .

Since register renaming can only switch the positions of the 2-line data, the
removing RP causes the misalignment in byte position on XMM registers to
effect input-output of diffusion matrix and subsequent xor with round keys and
data in the previous round. The byte positions from Round 1 to 5 in normal
64-bit block with/without RP before the round process are as follows.

byte position with RP byte position without RP

Round 1: [b0, b1, b2, b3, b4, b5, b6, b7] [b0, b1, b2, b3, b4, b5, b6, b7]

Round 2: [b2, b7, b4, b1, b6, b3, b0, b5] [b2, b3, b0, b1, b6, b7, b4, b5]

Round 3: [b4, b5, b6, b7, b0, b1, b2, b3] [b0, b1, b2, b3, b4, b5, b6, b7]

Round 4: [b6, b3, b0, b5, b2, b7, b4, b1] [b2, b3, b0, b1, b6, b7, b4, b5]

Round 5: [b0, b1, b2, b3, b4, b5, b6, b7] [b0, b1, b2, b3, b4, b5, b6, b7]

Note that bi is 8-bit data corresponding to a pair of 4-bit data n2∗i and n2∗i+1

for 0 ≤ i ≤ 7, and the misalignment of byte position is emphasized by bold
phase. The above shows that the misalignment disappears in four rounds.

Lightweight Cryptography for the Cloud 421

In Round 2, two 8-bit data b3, b0 switch positions with two 8-bit data b7, b4 for
the input data (b2, b3, b6, b7) and output data (b0, b1, b4, b5) of two F-functions.
Utilizing the shuffle operations rp1, rp0 to cancel the effect of each misalignment,
we introduce shf 0 = rp0 ◦ rp1 and replace rot16, rot32 in the original diffusion
matrix with shf 16 = rp0 ◦ rot16 ◦ rp1, shf 32 = rp0 ◦ rot32 ◦ rp0 as below.

shf 0 : [x0||x1||x2||x3||x4||x5||x6||x7] �→ [x4||x5||x6||x7||x0||x1||x2||x3]

shf 16 : [x0||x1||x2||x3||x4||x5||x6||x7] �→ [x5||x2||x7||x0||x1||x6||x3||x4]

shf 32 : [x0||x1||x2||x3||x4||x5||x6||x7] �→ [x6||x7||x4||x5||x2||x3||x0||x1]

The new representation for calculating diffusion matrix can be expressed with
25 instructions including eight pshufb, four pshufd, and 13 pxor as follows.

r[0]← shf 0(r[1]) ⊕ shf 16(r[1])⊕ shf 16(r[0])⊕ shf 32(shf 0(r[0])⊕ shf 16(r[0]))

r[1]← shf 0(r[2]) ⊕ shf 16(r[2])⊕ shf 16(r[1])⊕ shf 32(shf 0(r[1])⊕ shf 16(r[1]))

r[2]← shf 0(r[0]) ⊕ shf 16(r[0])⊕ shf 16(r[2])⊕ shf 0(r[3])⊕ shf 16(r[3])

⊕ shf 32(shf 0(r[2])⊕ shf 16(r[2]))

r[3]← shf 0(r[0]) ⊕ shf 16(r[0])⊕ shf 16(r[3])⊕ shf 32(shf 0(r[3])⊕ shf 16(r[3]))

We omit movdqa in the original diffusion matrix, utilizing pshufd natively sup-
porting 3-operand. In Round 3 for the input data (b0, b1, b4, b5) of two F-
functions, b0, b1 switches positions with b4, b5, but we can use the original repre-
sentation owing to the calculation of two diffusion matrices independently. Since
the misalignment of output data (b2, b3, b6, b7) is the same for the input data,
no operations are needed. Round 4 can use the same representation in Round 2.

Therefore, we alternately call the original diffusion matrix and modified one,
and adjust the data alignment for the round keys in the key schedule. With 128-
bit AVX, the modified representation of diffusion matrix in Round 2 requires four
more instructions compared to the original one, so the performance improvement
remains about three fourths of the case with legacy SSE instructions.

5 Performance

This section summarizes the instruction counts for PRESENT and Piccolo, and
shows the evaluation results of our implementations on three different computers
given in Table 2.

Table 2. Computers used for benchmarking

Processor Intel Xeon E5410 Intel Core i7 870 Intel Xeon E3-1280

Microarchitecture Core Nehalem Sandy Bridge

Clock Speed 2.33 GHz 2.93 GHz 3.5 GHz

RAM 8 GB 16 GB 16 GB

OS Linux 2.6.16.60 x86 64 Linux 3.1.10 x86 64 Linux 2.6.37.6 x86 64

422 S. Matsuda and S. Moriai

Table 3. Instruction count for PRESENT and Piccolo with Legacy SSE instructions

logical
mov shuffle unpack

mov xor per TOTAL
instr. (mem) (mem) round 80-bit 128-bit

PRESENT (8-block parallel) 40 1444

addRoundKey - - - - - 4 4 128

sBoxLayer 17 3 - - - - 20 620

pLayer - 4 4 8 - - 16 496

conversion 154 28 12 8 8 - - 200

PRESENT (16-block parallel) 80 2720

addRoundKey - - - - - 8 8 256

sBoxLayer 34 6 - - - - 40 1240

pLayer - 8 8 16 - - 32 992

conversion 154 32 24 16 16 - - 232

PRESENT (32-block parallel) 126* 4446

addRoundKey - - - - - 16 16 512

sBoxLayer 68 12 - - 4 - 84 2604

pLayer - 0/16 - 0/32 0/4 - 0/52 780

conversion 288 78 82 64 38 - - 550

Piccolo (16-block parallel) 63 1815 2193

diffusion matrix 13 4/0 8/12 - - - 25 625 775

S-box 22 4 - - - - 26 650 806

addRoundKey 4 4 - - - 4 12 300 372

addWhiteningKey - - - - - 8 - 8

conversion 154 32 24 16 16 - - 232

Table 3 presents the total number of instructions for PRESENT and Pic-
colo with the legacy SSE instruction set. The notations “logical instr.” and
“(mem)” in the table mean logical instructions including shift operation and
instructions with memory, respectively. For the 32-block parallel implementa-
tion of PRESENT, “*” means the number of instructions per round on average.
The “diffusion matrix” in Piccolo shows both the number of instructions for
calculating the original diffusion matrix (left) and that for modified one (right).
The “conversion” includes not just conversion process that converts input data
to the bitsliced representation and reverses it to output data, but also loading
input data and storing output data. Our conversion algorithm utilizes a part
of the assembly code published by Käsper and Schwabe [12], which includes 84
instructions to convert eight 128-bit blocks on eight XMM registers to the bit-
sliced representation of 8-bit slicing on eight XMM registers with one temporary
XMM register. We added a few shuffle and unpack instructions in this code to
obtain desired bitsliced format.

We optimized our implementation with 128-bit AVX instructions. Owing to
3-operand syntax, the number of mov instructions in the table is zero except
for register-to-memory operations. Furthermore we can use smaller instruction
sequence of PRESENT S-box with 14 instructions in 8- and 16-block parallelism.
The numbers of instructions for 8-, 16-, and 32-block parallel implementation

Lightweight Cryptography for the Cloud 423

Table 4. Performance of PRESENT and Piccolo with 80-bit and 128-bit keys

Algorithm PRESENT-80/128 Piccolo-80 Piccolo-128

Number of parallel blocks 8 16 32 16

Xeon E3-1280 (Sandy Bridge)

Cycles/byte 8.46 6.52 4.73 4.57 5.52

Instructions/cycle 2.04 2.48 3.10 2.61 2.61

Core i7 870 (Nehalem)

Cycles/byte 10.88 7.26 5.79 5.69 6.80

Instructions/cycle 2.07 2.93 3.00 2.49 2.52

Xeon E5410 (Core)

Cycles/byte 13.55 10.98 7.55 6.85 8.23

Instructions/cycle 1.67 1.93 2.30 2.07 2.08

of PRESENT with 128-bit AVX are 1106, 2068, and 3752, respectively. The
numbers of instructions for 16-block parallel implementation of Piccolo with
128-bit AVX are 1531 and 1849 for 80- and 128-bit keys, respectively.

Table 4 gives evaluation results. We measured the average cycles of encryp-
tions for 1024KB random data and did not include the cost of the key sched-
ule, which was regarded as negligible cost in our evaluation. Since the num-
ber of rounds of PRESENT is 31 for both 80- and 128-bit keys, the results of
PRESENT-80 and -128 are exactly the same. The result on Xeon E5410 shows
the performance of optimized code with 128-bit AVX.

For comparison, only a few software implementation results of ultra-
lightweight block ciphers on general-purpose processors have been reported. A
table-based implementation of LED [8] with 64- and 128-bit keys needs 57 and
86 cycles on Core i7 Q720 (1.60 GHz). Suzaki et al. [21] showed that TWINE
encryption achieved 11.0 cycles/byte on Core i7 2600S (2.8 GHz, Sandy Bridge),
so our implementations of PRESENT and Piccolo deliver superior performance
compared with previous results and indicate an attractive option for software
implementation for lightweight block ciphers on general-purpose processors.

As far as we know, besides hardware efficiency, Piccolo-80 achieves the fastest
software implementation among existing 64-bit block ciphers in our implementa-
tion. Moreover, since Piccolo adopts a permutation based key schedule, which is
lighter than the S-box based key schedule of PRESENT, Piccolo may have some
advantage even for short message encryption. On the other hand, there are some
stream ciphers with small hardware and fast software performance. For example,
the public eBASC benchmarks report that TRIVIUM achieves 3.69 cycles/byte
and SNOW 2.0 achieves 4.03 cycles/byte on a Nehalem CPU (dragon).

For further optimization, 256-bit AVX accelerates the performance of our bit-
slice implementation with low parallelism using AVX2 instruction set introduced
in Haswell microarchitecture which will be released in 2013. An optimization for
instruction sequences of S-box assuming both 3-operand instructions and issuing
three independent instructions remains the matter of research.

424 S. Matsuda and S. Moriai

6 Conclusion

This paper showed the great potential of lightweight cryptography in fast and
timing-attack resistant software implementations in cloud computing by ex-
ploiting bitslice implementation. This was demonstrated by bitslice implemen-
tations of the PRESENT and Piccolo lightweight block ciphers. In particular,
PRESENT-80/128 achieved 5.79 cycles/byte and Piccolo-80 achieved 5.69 cy-
cles/byte on an Intel Core i7 processor, which is faster than the AES speed record
in bitslice implementation on the same microarchitecture. We demonstrated bit-
slice implementation of only two lightweight block ciphers, but other lightweight
block ciphers as well as other lightweight cryptographic primitives such as hash
functions are worth implementing. We hope that lightweight cryptography will
be used not only for constrained devices, but also for cloud computing.

Acknowledgments. The authors appreciate Kazuya Kamio and Kyoji Shibu-
tani for useful comments and suggestions.

References

1. Aumasson, J.-P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: A
Lightweight Hash. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 1–15. Springer, Heidelberg (2010)

2. Biham, E.: A Fast New DES Implementation in Software. In: Biham, E. (ed.) FSE
1997. LNCS, vol. 1267, pp. 260–272. Springer, Heidelberg (1997)

3. Bogdanov, A., Knudsen, L., Leander, G., Paar, C., Poschmann, A., Robshaw, M.,
Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher. In: Pail-
lier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007)

4. Courtois, N.T., Hulme, D., Mourouzis, T.: Solving Circuit Optimization Problems
in Cryptography and Cryptanalysis. Cryptology ePrint Archive, Report 2011/475
(2011), http://eprint.iacr.org/2011/475

5. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A
Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C.,
Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg
(2009)

6. Grabher, P., Großschädl, J., Page, D.: Light-Weight Instruction Set Extensions for
Bit-Sliced Cryptography. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS,
vol. 5154, pp. 331–345. Springer, Heidelberg (2008)

7. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON Family of Lightweight Hash
Functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239.
Springer, Heidelberg (2011)

8. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED Block Cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011)

9. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED Block Cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011), http://www.iacr.org/workshops/ches/ches2011/
presentations/Session%207/CHES2011 Session7 2.pdf

http://eprint.iacr.org/2011/475
http://www.iacr.org/workshops/ches/ches2011/presentations/Session%207/CHES2011_Session7_2.pdf
http://www.iacr.org/workshops/ches/ches2011/presentations/Session%207/CHES2011_Session7_2.pdf

Lightweight Cryptography for the Cloud 425

10. Intel 64 and IA-32 Architectures Optimization Reference Manual,
http://www.intel.com/

11. ISO/IEC 29192-2:2012, Information technology – Security techniques – Lightweight
cryptography – Part 2: Block ciphers (2012)

12. Käsper, E., Schwabe, P.: Faster and Timing-Attack Resistant AES-GCM. In:
Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 1–17. Springer, Hei-
delberg (2009)

13. Könighofer, R.: A Fast and Cache-Timing Resistant Implementation of the AES.
In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 187–202. Springer, Hei-
delberg (2008)

14. Lee, E.: Cyber Physical Systems: Design Challenges. EECS Department, University
of California, Berkeley (2008)

15. Matsui, M., Nakajima, J.: On the Power of Bitslice Implementation on Intel Core2
Processor. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727,
pp. 121–134. Springer, Heidelberg (2007)

16. Osvik, D.A.: Speeding up Serpent. In: AES Candidate Conference, pp. 317–329
(2000)

17. Poschmann, A.: Lightweight Cryptography – Cryptographic Engineering for
a Pervasive World. Cryptology ePrint Archive, Report 2009/516 (2009),
http://eprint.iacr.org/2009/516

18. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In: Al-Shaer, E., Jha,
S., Keromytis, A. (eds.) ACM Conference on Computer and Communications Se-
curity, pp. 199–212. ACM (2009)

19. Shamir, A.: SQUASH – A New MAC with Provable Security Properties for Highly
Constrained Devices Such as RFID Tags. In: Nyberg, K. (ed.) FSE 2008. LNCS,
vol. 5086, pp. 144–157. Springer, Heidelberg (2008)

20. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
An Ultra-Lightweight Blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011)

21. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: A Lightweight,
Versatile Block Cipher. In: Leander, G., Standaert, F. (eds.) ECRYPT Workshop
on Lightweight Cryptography 2011, pp. 146–169 (2011)

http://www.intel.com/
http://eprint.iacr.org/2009/516

	Lightweight Cryptography for the Cloud: Exploit the Power of Bitslice Implementation

	Introduction
	Bitslice Implementation
	PRESENT
	Bitsliced Representation
	sBoxLayer
	pLayer
	8-block Parallel Implementation.
	32-block Parallel Implementation.

	Piccolo
	Bitsliced Representation
	F-Function
	S-box Layer.
	Diffusion Matrix.

	Round Permutation
	Remove Round Permutation.

	Performance
	Conclusion
	References

