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Abstract. Side-channel attacks (SCAs) exploit weakness in the physi-
cal implementation of cryptographic algorithms, and have emerged as a
realistic threat to many critical embedded systems. However, no theo-
retical model for the widely used differential power analysis (DPA) has
revealed exactly what the success rate of DPA depends on and how. This
paper proposes a statistical model for DPA that takes characteristics of
both the physical implementation and cryptographic algorithm into con-
sideration. Our model establishes a quantitative relation between the
success rate of DPA and a cryptographic system. The side-channel char-
acteristic of the physical implementation is modeled as the ratio between
the difference-of-means power and the standard deviation of power dis-
tribution. The side-channel property of the cryptographic algorithm is
extracted by a novel algorithmic confusion analysis. Experimental results
on DES and AES verify this model and demonstrate the effectiveness of
algorithmic confusion analysis. We expect the model to be extendable
to other SCAs, and provide valuable guidelines for truly SCA-resilient
system design and implementation.
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1 Introduction

Cryptographic algorithms are widely used in various computer systems to en-
sure security. Despite the security strength of the algorithm, the leaked side-
channel information of the cryptosystem implementation, like power consump-
tion of smart cards and timing information of embedded processors, can be ex-
ploited to recover the secret key. Differential power analysis (DPA) is one of the
early effective SCAs which analyzes the correlation between intermediate data
and power consumption to reveal the secret [1]. Over the past decade, there has
been many other successful power analysis attacks, including Correlation Power
Attack (CPA) [2], Mutual Information Attack (MIA) [3], Partitioning Power
Analysis (PPA) [4], etc. Other side-channel information, like electromagnetic
emanations [5,6] and timing information [7], can also be exploited. A real secure
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system must be designed with countermeasures to be SCA-resilient. Common
countermeasures include masking [8], power-balanced logic [9], and random de-
lays [10]. To measure the SCA resilience of a system or the effectiveness of a
countermeasure, several generic metrics are used, such as number of measure-
ments, success rate [11,12], guessing entropy [13] and information theoretic met-
ric [13,14]. One commonly used metric for evaluating a system’s SCA resilience
is the success rate, i.e., the probability that a specific SCA is successful with
certain complexity constraint. For a cryptosystem, a low success rate for a SCA
on it indicates its high resilience against such SCA.

Intuitively, both the physical implementation and cryptographic algorithm
would affect the SCA resilience of a cryptosystem. An ideal implementation
with countermeasures could reduce the side-channel leakage to minimum. Dif-
ferent cryptographic algorithms may have different intrinsic SCA-related proper-
ties. Accurately evaluating different implementations of the same cryptographic
algorithm and comparing different cryptographic algorithms, in terms of their
SCA resilience, are challenging issues. However, such analysis and theoretical
modeling will reveal system-inherent parameters that affect its SCA resilience,
and in practice will greatly facilitate advances in the design and implementation
of real secure cryptosystems.

Related Work. There has been many related research efforts attempting to ad-
dress the above issues. However, the effects of the algorithm and implementation
were not clearly decoupled and better quantitative model is needed to understand
their interaction. In [15], an approach is presented to model the DPA signal-to-
noise ratio (SNR) of a cryptographic system, which does not further reveal how
the SNR determines the ultimate SCA resilience. In [16], the relation between
the difference-of-means power consumption and key hypotheses is analyzed and
utilized to improve the DPA efficiency, without examining characteristics of the
algorithm. [17] presented a statistical model for CPA, which illustrated well the
effect of SNR on the power of CPA. However, they did not consider the inter-
action between the incorrect keys and thus the formula does not numerically
conform to the empirical overall success rate for CPA (see Appendix A). Work
in [18] exhibits DPA-related properties of SBoxes in cryptographic algorithms
and introduces a new notion of transparency order of an SBox, without con-
sidering the implementation aspect. A framework presented in [13] unifies the
theory and practice of SCA with a combination of information theory and se-
curity metrics. A quantitative analysis between the metrics and cryptographic
system would be a nice complement to the general framework.

Our Contributions. In this paper, we proposes a statistical analysis model for
DPA. To the best of our knowledge, this is the first analytic model for the success
rate of DPA on cryptographic systems, and also the first model extracting SCA
related characteristics from both the physical implementation and cryptographic
algorithm. The physical implementation is represented by the power difference
related to the select function and standard deviation of power waveforms. The
ratio between them defines the SCA resilience of an implementation. The SCA-
related property of a cryptographic algorithm is characterized by algorithmic
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confusion analysis. A confusion matrix is generated to measure the statistical
correlation between different key candidates in DPA.

The rest of the paper is organized as follows. Section 2 introduces notions
and fundamentals in cryptographic algorithms, DPA procedures, and statistical
aspects in SCAs. Section 3 presents the algorithmic confusion analysis with def-
initions of confusion and collision coefficients. Our model for the success rate of
DPA is proposed in Section 4. The model is verified with experimental results on
DES and AES in Section 5. Section 6 discusses more implications of the model
and its possible applications. Finally conclusions are drawn in Section 7.

2 Preliminaries

2.1 Randomness of Cryptographic Algorithm

Cryptographic algorithms are designed to be robust against cryptanalysis with
two well-known statistical properties [19]. Confusion makes the statistical rela-
tion between the the ciphertext and key as complex as possible; diffusion makes
the statistical relation between the ciphertext and plaintext as complex as pos-
sible. With deliberate design, an encryption algorithm is perfectly secret if each
bit in the ciphertext C is purely random [20]:

Theorem 1. Suppose bC is one bit of the ciphertext C for a perfectly secret
encryption algorithm, bC has the same probability to be 0 or 1:

Pr [bC = 1] = Pr [bC = 0] =
1

2
.

2.2 Differential Power Analysis Procedure

All SCAs have a common hypothesis test procedure. We next give an introduc-
tion on the earliest discovered and important DPA procedure.

– Side-channelmeasurements obtain physical side-channel informationW , i.e.,
waveforms of power consumption collected from devices. Denote the wave-
form population as W = {W1, . . . ,WNm}, where Wi is a (time series) mea-
surement with a certain input, and Nm is the total number of measurements
for the cryptographic system. EachW is a time series asW = {w1, . . . , wNp},
where Np is the number of points in W .

– Key hypotheses enumerate all possible values of the subkey k under attack,
denoted as 〈k〉 = {k0, . . . , kNk−1}, where Nk is the total number of key
guesses, and Nk = 2lk with lk as the subkey bit-length.

– Select function ψ for DPA is one single bit bd of intermediate data d com-
puted from the plaintext M or ciphertext C and a key, written as ψ = bd.
The value of ψ is either 1 or 0.

– Correlation between ψ for each key hypothesis and W is computed for a
specific attack. The correlation for DPA is the difference of means (DoM) δ,
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i.e., the difference between the average power consumption of two waveform
groups partitioned with ψ = 1 and 0, written as:

δ =

∑Wψ=1

Nψ=1
−

∑Wψ=0

Nψ=0
(1)

where Nψ=1 and Nψ=0 are the numbers of measurements with ψ = 1 and
ψ = 0 respectively, under a particular key hypothesis. Given enough number
of measurements, the DoM δc for the correct key kc converges to the power
difference ε related to the bit bd under attack, written as lim

Nm→∞
δc = ε, where

Nm = Nψ=1 +Nψ=0.
– Testing with the maximum likelihood method chooses the key hypothesis

which has the maximum correlation (DoM in DPA) as the correct key.

2.3 Central Limit Theorem

The basic statistical aspect of our model is the Central Limit Theorem [21], con-
sidering the various noises in leakage measurements and the sampling process
for side-channel cryptanalysis, i.e., the leakage measurement is for a set of ran-
dom inputs rather than enumerating the entire input space. Consider a random
distribution X = {x1, x2, x3, . . .}. The mean value and standard deviation of the
population are μ and σ, respectively. Randomly select a sample of size Nx from
the population we get the mean value:

X̄ =
1

Nx

Nx∑

i=1

xi.

When Nx is sufficiently large, X̄ is approximately normally distributed,
N (μX̄ , σX̄), with μX̄ = μ and σX̄ = σ√

Nx
.

DPA is a sampling process on the entire waveform population, which is
usually regarded as normally distributed [22]. Denote the standard deviation
of the waveform population as σW . Thus the two mean terms for the DoM
computation in Equation (1) are normal random variables with distribution
N (

ε+ b, σW/
√
Nψ=1

)
and N (

b, σW/
√
Nψ=0

)
, respectively. Here b denotes the

mean power consumption for the waveform group ψ = 0. Since both Nψ=0 and
Nψ=1 are approximately Nm

2 according to Theorem 1, δc is a random variable
with normal distribution N (μδc , σδc) as μδc = ε and σδc = 2 σW√

Nm
. This state-

ment still holds for large Nm by the Central Limit Theorem when we drop the
normal distribution assumption on the waveform population.

3 Algorithmic Confusion Analysis

A chosen select function involves a certain SBox of the cryptographic algorithm
(a preset computation given as a lookup table) and a subkey. In this section, we
attempt to reveal properties of the algorithm that would indicate its resilience to
DPA. The analysis is only algorithm and select function related, and independent
on the leakage measurements.
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3.1 Confusion Coefficient

Assume the select function for DPA is chosen as a bit in the last-round encryp-
tion, which is dependent on several bits of the ciphertext, the subkey, and the
corresponding SBox. Two key hypotheses ki and kj would have two correspond-
ing ψ|ki and ψ|kj . The values of ψ|ki and ψ|kj can be different or the same. We
find out that the probability that ψ|ki is different or the same with ψ|kj reveals
DPA-related property of the cryptographic algorithm.

We name a confusion coefficient after the confusion property of cryptographic
algorithms defined in [19]. The confusion coefficient κ over two keys (ki, kj) is
defined as:

κ = κ(ki, kj) = Pr [(ψ|ki) �= (ψ|kj)] =
N(ψ|ki) �=(ψ|kj)

Nt

where Nt is the total number of values for the relevant ciphertext bits, and
N(ψ|ki) �=(ψ|kj) is the number of occurrences for which different key hypotheses
ki and kj result in different ψ values. For example, in our DPA attack on DES
(Data Encryption Standard) algorithm, Nt is 2

7 = 128.
Similarly, the complementary confusion coefficient or collision coefficient ξ

over (ki, kj) is defined as:

ξ = ξ(ki, kj) = Pr [(ψ|ki) = (ψ|kj)] =
N(ψ|ki)=(ψ|kj)

Nt

We have κ + ξ = 1 and 0 ≤ κ < 1 and 0 < ξ ≤ 1. For a perfectly secret
cryptographic, we have:

Lemma 1. Confusion Lemma (see Appendix B for the proof).

Pr [(ψ|ki) = 0, (ψ|kj) = 1] = Pr [(ψ|ki) = 1, (ψ|kj) = 0] =
1

2
κ

Pr [(ψ|ki) = 1, (ψ|kj) = 1] = Pr [(ψ|ki) = 0, (ψ|kj) = 0] =
1

2
ξ.

For three different keys kh, ki and kj , we further define a three-way confusion
coefficient:

κ̃ = κ̃(kh, ki, kj) = Pr [(ψ|ki) = (ψ|kj), ψ|ki) �= (ψ|kh)] .
Lemma 2. κ̃(kh, ki, kj) =

1
2 [κ(kh, ki) + κ(kh, kj)− κ(ki, kj)]. (See Appendix C)

3.2 Confusion Coefficient and DPA

The power measurements are for one key embedded in the cryptographic system,
i.e., the correct key, denote as kc. Denote kg as one of the incorrect key guesses.
Suppose the DoM for kc and kg are δc and δg, respectively. The difference between
the two DoMs is Δ(kc, kg) = (δc− δg). We have obtained the mean and variance
of Δ(kc, kg) (see Appendix D):

E[Δ(kc, kg)] = 2κ(kc, kg)ε

V ar[Δ(kc, kg)] = 16κ(kc, kg)
σ2
W
Nm

+ 4κ(kc, kg)ξ(kc, kg)
ε2

Nm

(2)

Hence, limNm→∞Δ(kc, kg) = 2κ(kc, kg)ε.
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4 Statistical Model for DPA

In DPA, to successfully distinguish the correct key kc from other key hypotheses,
it requires the DoM of kc to be larger than that of all other keys, written as:
δkc > {δ〈kc〉}, where 〈kc〉 denotes all the incorrect keys, i.e., {k0, . . . , kNk−1}
excluding kc, and {δ〈kc〉} denotes {δk0 , . . . , δkNk−1} excluding δkc . The success
rate to recover the correct key, SR, is defined as the probability for δkc > δ〈kc〉:

SR = SR
[
kc, 〈kc〉

]
= Pr

[
δkc > {δ〈kc〉}

]

The overall success rate is against (Nk − 1) wrong keys. We next show the
derivation of the success rates starting from the simple one-key success rate.

1-key Success Rate. We first consider the 1-key success rate, i.e., the success
rate of kc over an incorrect key kg chosen out of 〈kc〉, written as:

SR1 = SR [kc, kg] = Pr
[
δkc > δkg

]
= Pr [Δ(kc, kg) > 0] .

From Section 2.3, Δ(kc, kg) is the difference of two normal random variables,
therefore follows distribution N (

μΔ(kc,kg), σΔ(kc,kg)

)
. From Equation (2),

μΔ(kc,kg) = 2κ(kc, kg)ε, σΔ(kc,kg) = 2

√
κ(kc, kg)

Nm

√
4σ2

W + ξ(kc, kg)ε2.

Let Φ(x) = 1
2 [1 + erf( x√

2
)] denote the cumulative distribution function (cdf) of

the standard normal distribution, where erf(x) is the error function erf(x) =
2√
π

∫ x
−∞ e−t

2/2dt. Since
Δ(kc,kg)−μΔ(kc,kg)

σΔ(kc,kg)
is a standard normal random variable,

SR1 = Pr [Δ(kc, kg) > 0] = 1− Φ(−μΔ(kc,kg)

σΔ(kc ,kg)
) = Φ(

μΔ(kc,kg)

σΔ(kc ,kg)
)

=
1

2

[

1 + erf

(
μΔ(kc,kg)√
2σΔ(kc,kg)

)]

=
1

2

[

1 + erf

(√
κ(kc, kg)

(2σW
ε )2 + ξ(kc, kg)

√
Nm
2

)]

(3)

This is a function of confusion coefficients κ(kc, kg), the ratio of ε to σW , and
the number of measurements, Nm. Overall, the higher ε/σW , κ(kc, kg), and Nm
are, the higher the success rate is, i.e., more susceptible to DPA.

2-keys Success Rate. Next we consider the 2-keys success rate, i.e., the success
rate of kc over two chosen incorrect keys kg1 and kg2 , written as:

SR2 = SR [kc, {kg1 , kg2}] = Pr
[
δkc > δkg1 , δkc > δkg2

]
= Pr [y1 > 0, y2 > 0]

where

y1 = Δ(kc, kg1) = δkc − δkg1 , y2 = Δ(kc, kg2) = δkc − δkg2 .
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Since y1 and y2 are random variables with normal distribution, Y2 = [y1, y2]
T is

a random vector with two-dimension normal distribution as N (μ2,Σ2), where

μ2 =

[
μy1
μy2

]

=

[
2κ(kc, kg1)ε
2κ(kc, kg2)ε

]

, Σ2 =

[
Cov(y1, y1) Cov(y1, y2)
Cov(y1, y2) Cov(y2, y2)

]

.

The covariances in Σ2 are (see Appendix E for the proof):

Cov(y1, y1) =16κ(kc, kg1 )
σ2
W
Nm

+ 4κ(kc, kg1)ξ(kc, kg1 )
ε2

Nm

Cov(y2, y2) =16κ(kc, kg2 )
σ2
W
Nm

+ 4κ(kc, kg2)ξ(kc, kg2 )
ε2

Nm

Cov(y1, y2) =16κ̃(kc, kg1 , kg2)
σ2
W
Nm

+ 4[κ̃(kc, kg1 , kg2)− κ(kc, kg1)κ(kc, kg2)]
ε2

Nm
.

Let Φ2(x) denote the cdf of the 2-dimension standard normal distribution.

SR2 = Φ2(
√
NmΣ2

−1/2μ2) (4)

which is a function of the ratio ε/σW , sample size Nm, and confusion coefficients
κ(kc, kg1), κ(kc, kg2) and κ(kg1 , kg2).

(Nk − 1)-keys success rate. The overall success rate is the success rate of
kc over all other (Nk − 1) keys 〈kc〉,

SR = SRNk−1 = SR
[
kc, 〈kc〉

]
= Pr

[
δkc > {δ〈kc〉}

]
= Pr [Y > 0]

where Y is the (Nk − 1)-dimension vector of differences between δkc and δ〈kc〉:

Y = δkc − δ〈kc〉 =
[
Δ(kc, kg1), . . . , Δ(kc, kgNk−1)

]T
= [y1, . . . , yNk−1]

T
.

Y is randomly distributed with N (μY ,ΣY ). The mean is:

μY = 2εκ (5)

where κ denotes a (Nk − 1)-dimension confusion vector for the correct key kc
with entries κ(kc, kgi), i = 1, ..., Nk− 1. The elements in the (Nk− 1)× (Nk− 1)
matrix ΣY are covariances between y1, . . . , yNk−1. Thus

ΣY = 16
σ2
W
Nm

K + 4
ε2

Nm
(K − κκT ) (6)

where κT denotes the transpose of κ, andK is the (Nk−1)×(Nk−1) confusion
matrix of the cryptographic algorithm for kc, with elements {κij} as:

κij =

{
κ(kc, kgi) if i = j

κ̃(kc, kgi , kgj ) if i �= j.
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The confusion matrixK fully depicts the relation between all the key candidates
in the algorithm, and Equation (6) shows how it affects the success rate.

Let ΦNk−1(x) denote the cdf of the (Nk − 1)-dimension standard normal
distribution.

SR = SRNk−1 = ΦNk−1(
√
NmΣY

−1/2μY ). (7)

Our statistical model for the overall success rate (SR) results in a multivariate
Gaussian distribution formula. We can see that SR is determined by parameters
related to both the physical implementation, ε and σW , and the cryptographic
algorithm, K. ε and σW can be computed from the side-channel measurements
of the cryptographic system.K is only determined by the specific selection func-
tion and cryptographic algorithm, independent of real physical implementations.
Given these parameters, SR can be calculated with numerical simulations of the
(Nk − 1)-dimension normal distribution. Our model extracts the effect of both
the implementation and algorithm on SCA resilience quantitatively.

5 Experimental Results

5.1 DPA on DES

We perform DPA on DES, with the selection function on a randomly chosen
bit. In our experiments, we choose the first bit of the input for the last round
to evaluate the success rate model. We take the data set from DPAcontest [23]
secmatv1 and focus on a single point (the 15750th point) which has the maximum
DoM for kc. Discussions on multi-point leakage will be given in Section 6.3. We
generate the empirical success rate with 1000 trials as in [11,12].

To compute the theoretical success rate, we need the physical implementation
parameters SNR = ε/σW and the confusion coefficients κ for any two keys. Since
kc has been recovered for this data set, using all the power measurements at the
selected leakage time point (the 15750th point), we can estimate ε as the DoM
under kc and estimate σ2

W as the variance of power measurements. For a DES
subkey of 6-bit, the number of key guesses, Nk, is 64, and there are (64 × 63)
confusion coefficients. We found that they fall into nine values.

{0.25, 0.3125, 0.375, 0.4375, 0.5, 0.5625, 0.625, 0.6875, 0.75}.
We define these values as characteristic confusion values of a DES SBox. Why
they end up in these nine values and what are the implications are unknown
yet. However, we believe they manifest some important DPA-related properties
of the SBoxes.

Fig. 1 plots the empirical success rates (the solid curves) and theoretical
success rates (the dashed curves) of our model. We show the success rates
against different number of key candidates for kc = k60. From top down, they
are: SR1 = SR(kc, k0), SR2 = SR(kc, {k0, k1}), SR8 = SR(kc, {k0, . . . , k7}),
SR32 = SR(kc, {k0, . . . , k31}), and the overall success rate SR63 = SR(kc, 〈kc〉).
We can see that the two curves for SR63 track each other very well, showing the
accuracy of our theoretical model.
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Fig. 2. Empirical and theoretical success
rates of DPA on AES

5.2 DPA on AES

We next perform DPA on AES. The select function is defined as the XORed
value of input and output of the third bit of the sixteenth SBox in the last
round of AES. We measured the power consumption data using the SASEBO
GII board with AES implementation designated by DPAcontest [24]. The total
number of measurements in the data set is 100, 000. The size of the AES subkey
is 8, and there are (256 × 255) confusion coefficients, which also fall into nine
characteristic confusion values of AES SBox:

{0.4375, 0.453125, 0.46875, 0.484375, 0.5, 0.515625, 0.53125, 0.546875, 0.5625}.

Fig. 2 shows the empirical success rates (solid curves) and theoretical success
rates (dashed curves) of DPA for kc = k143. The two 255-keys success rate curves
of empirical and theoretical track each other very well, demonstrating that the
model is also very accurate for AES.

6 Discussions

Our DPA analysis builds a quantitative model for the SCA resilience of a cryp-
tographic system over its inherent parameters, including ε, σW and K. Next we
present more SCA-related insights from the model about the implementation
and algorithms, and how to use it to evaluate countermeasures and algorithms.

6.1 Signal and Noise of the Side Channel

Theoretically, DPA targets a portion of circuits that are related to the select
function ψ, and other parts of the circuits are considered as random noise unre-
lated to ψ. DoM ε of the correct key is the power difference between ψ = 1 and
ψ = 0 of the part of circuits under attack. DPA is a statistical process retrieving
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the DoM ε out of all the power consumptions. As the number of power wave-
forms increases, the standard deviation of the difference between the DoMs for
the correct key and incorrect keys decreases. When the standard deviations of
DoMs are significantly less than ε, DPA has a significant success rate to recover
the key. Here, ε indicates the signal level, and σW indicates the noise level.

We define ε/σW as the signal-to-noise ratio (SNR) for the side channel. It is
shown in Equation (3) for the 1-key success rate how the SNR determines the
DPA results. The SNR can be used as a metric to measure the SCA resilience of
the implementation of a cryptographic system. It is similar to the SNR defined
in [15,22], however with more explicit quantitative implications in our model.

6.2 DPA-Confusion Property of Cryptographic Algorithms

Our algorithmic confusion analysis reveals the inherent property of a cryp-
tographic algorithm, i.e., how differently the key candidates behave in DPA.
Confusion coefficient is determined by both the cryptographic algorithm and
selection function ψ. The eight different SBoxes in DES may have different con-
fusion properties. Different bits in the same SBox may also have different con-
fusion properties. Compared to DES, the confusion coefficients of an AES SBox
are more concentrated near 0.5, which means the key candidates behave more
randomly. For SBoxes with the same key space size, the success rates have the
same dimensions, and hence the one with larger confusion coefficients leaks more
information, leading to higher success rates. For two algorithms with different
subkey space sizes, we need to compute the overall success rates. Comparing
DES and AES, the dimension factor dominates over confusion coefficients. AES
has 256 key candidates and the overall success rate is for 255-keys, making it
more resilient than the 63-keys success rate of DES.

The experiments in Section 5.2 define the selection function ψ for DPA on
AES as the XORed value of two intermediate data due to the characteristics of
ASIC implementation. In micro-controller implementation, the select function
is defined directly as one intermediate data. A good select function for attacks
gives larger confusion coefficient κ(kc, kg) and therefore larger success rate as
shown in Equation (3). The algorithmic confusion analysis can also serve as a
methodology to evaluate how good selection functions are at distinguishing the
correct key.

6.3 Evaluation of DPA Countermeasure: Random Delay

Our model will be very useful for evaluating different DPA countermeasures.
Here we take the method of random delay as example, which is an effective
countermeasure to hide leakage [10,25,26]. We analyze the resilience of random
delay under DPA to demonstrate the usage of our DPA model.

The random delay has no effect on the intermediate value. Thus it has no
effect on the algorithmic confusion properties. It changes the success rate of
DoM attack by affecting the signal-to-noise ratio. Random delay spreads out
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the original side-channel leakages along the time, and therefore lowers the signal
level. We consider the simplest case of single-point leakage at time s (general
cases are presented in Appendix F). Suppose the power leakage without random
delay is ε. The distribution of the random delay is Pr(t) = frd(t), for t =
1, 2, ..., Nrd time units. Denote the time with largest frd(t) as tmax. Then the
maximum leakage after random shifting is εrd = ε ·frd(tmax), and the maximum
leakage time point shifts from s to s + tmax. For uniform random delay, εrd =
ε/Nrd. Larger Nrd would decrease εrd, however, it also slows down the program
and degrades the performance. This also applies to more general multiple-point
leakage. Our quantitative model can therefore aid the designer to fine-tune the
balance between the SCA resilience and performance. Note that our success
rate model is based on the knowledge of the correct key, kc. It is meant to be
adopted by the cryptosystem designer to take SCA security as a metric in the
early design stage, by evaluating the SCA resilience of their implementations
and countermeasures vigorously. It does not help the attacks.

6.4 Application of the Model to Other Side-Channel Attacks

Although there have been many other effective power analysis attacks, we choose
the DPA to build the success rate model for its simplicity. As a matter of fact,
all the power analysis attacks can be unified and it has been shown that the
most popular approaches, such as DoM test, CPA, and Bayesian attacks, are
essentially equivalent on a common target device (with the same power leakage
model) [27]. DPA is the simplest one in modeling, because it targets a single bit.
In CPA, the select function is the Hamming weight of the SBox output rather
than a single bit. In addition, the correlation is the Pearson Correlation rather
than the difference-of-means. We can envision that the success rate for CPA is
still dependent on the implementation-determined parameters ε and σW , and
algorithm-dependent confusion coefficients κ and matrix. However, the confu-
sion coefficient is no longer the probability that two different keys end up with
different select function values, but would be generally the mean value of squared
select function difference. We can regard the DoM model as a special case of the
CPA model with the number of bits as 1. In our future work, we will investigate
the success rate formulas for other power analysis attacks and timing attacks
and their constituent parameters.

7 Conclusions

In this paper, a theoretical model for DPA on cryptographic systems is presented.
It reveals how physical implementations and cryptographic algorithms jointly af-
fect the SCA resilience. The relation between the success rate and cryptographic
systems is modeled over a multivariate Gaussian distribution. The signal-to-
noise ratio between the power difference and standard deviation of the power
distribution indicates how resilient an implementation is. The confusion matrix
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generated by algorithmic confusion analysis illustrates how the cryptographic
algorithm affects the resilience. Experimental results on DES and AES verify
the model. We believe that this model is innovative, provides valuable insights
on side-channel characteristics of cryptosystems, and could significantly facilitate
SCA-resilient design and implementations.
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Appendix

A The Related CPA Model

A model for CPA is proposed in [17] and improved in [28]. The overall success
rate of CPA is given as:

SR =

(∫ ∞

0

1
1√

Nm−3

√
2π

exp

{

− (x− r)2

2
Nm−3

}

dx

)Nk−1

where r is the Pearson correlation of CPA for the correct key, Nk is the number
of key guesses in CPA, and Nm is the number of measurements.

http://www.dpacontest.org/
http://www.rcis.aist.go.jp/special/SASEBO/index-en.html
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Fig. 3. Empirical and theoretical success
rates of CPA on DES
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Fig. 4. Empirical and theoretical success
rates of CPA on AES

The CPA model assumes that the different dimensions of the overall success
rate are independent, i.e., the covariances between different key guesses are 0.
This is a false assumption, and therefore makes the CPA model inaccurate. We
generate success rates using the CPA model for DES and AES with the same
data set used in Section 5, as shown in Figs.3 and 4. The success rate curves
from the CPA model do not match the empirical results.

B Proof for the Confusion Lemma (Lemma 1)

Apply Theorem 1 to each of the key hypotheses ki and kj , we have:

Pr [ψ|ki = 1] = Pr [ψ|ki = 0] =
1

2
, Pr [ψ|kj = 1] = Pr [ψ|kj = 0] =

1

2
.

Because Pr [ψ|ki = 1] = Pr [ψ|ki = 1, ψ|kj = 0]+Pr [ψ|ki = 1, ψ|kj = 1], and sim-
ilarly for the other three probabilities above, from the definitions of the coeffi-
cients κ and ξ, we have:

Pr [ψ|ki = 1, ψ|kj = 0] = Pr [ψ|ki = 0, ψ|kj = 1] =
1

2
κ,

Pr [ψ|ki = 0, ψ|kj = 0] = Pr [ψ|ki = 1, ψ|kj = 1] =
1

2
ξ.

C Proof for Lemma 2

κ(kh, ki) + κ(kh, kj) =Pr[(ψ|kh) �= (ψ|ki)] + Pr[(ψ|kh) �= (ψ|kj)]
=Pr[(ψ|kj) = (ψ|kh) �= (ψ|ki)] + Pr[(ψ|kj) = (ψ|ki) �= (ψ|kh)]+
Pr[(ψ|ki) = (ψ|kh) �= (ψ|kj)] + Pr[(ψ|ki) = (ψ|kj) �= (ψ|kh)]

=Pr[(ψ|kj) �= (ψ|ki)] + 2Pr[(ψ|kj) = (ψ|ki) �= (ψ|kh)]
=κ(ki, kj) + 2κ̃(kh, ki, kj).

Therefore: κ̃(kh, ki, kj) =
1
2 [κ(kh, ki) + κ(kh, kj)− κ(ki, kj)].
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D Confusion Coefficient and DPA DoM

In DPA, the set of waveformsW is divided into two groups according to the value
of ψ for one key hypothesis. Therefore, for the correct key kc and a guessed key
kg the Nm measurements are divided into four groups Wij , i, j = 0, 1, as shown
in Table 1. For example, W10 is the group of measurements that satisfy ψ|kc = 1
and ψ|kg = 0, and W1 is the group of measurements for ψ|kc = 1. We denote the
number of measurements in each group by Nij . We have N1 = N11+N10, N0 =
N01 +N00, N1 +N0 = N 1 +N 0 = Nm. Suppose the DoM for kc and kg are δc

Table 1. The four groups of waveforms Wij and their number of measurements

ψ|kc = 1 ψ|kc = 0 total

ψ|kg = 1 W11 (N11) W01 (N01) W 1 (N 1)

ψ|kg = 0 W10 (N10) W00 (N00) W 0 (N 0)

total W1 (N1 ) W0 (N0 ) W (Nm)

and δg, respectively. The difference between the two DoMs is:

Δ(kc, kg) = δc − δg =(
N11

N1
− N11

N 1
)W̄11 + (

N10

N1
+
N10

N 0
)W̄10

− (
N01

N0
+
N01

N 1
)W̄01 − (

N00

N0
− N00

N 0
)W̄00 (8)

where W̄ij =
∑Wij/Nij for i, j = 0, 1, which are normal random variables

according to the Central Limit Theorem as given in Section 2.3. Hence Δ(kc, kg)
is also normally distributed because it is a linear combination of normal random
variables. We now calculate its mean and variance.

Note that there are two sources of randomness in Δ(kc, kg). The first source is
from the randomly selected plaintexts. Denote ψc = (ψ1, ..., ψNm)|kc and ψg =
(ψ1, ..., ψNm)|kg as the values of the select function for the set of measurement
plaintext under the correct key kc and incorrect key kg, respectively. ψc, ψg, and
Nijs are all random variables. Conditional on given ψc and ψg, the partition
of the measured waveforms W into four groups are fixed, and thus Nijs are
constants. There is still the second source of randomness, measurement errors in
W . Therefore W̄ijs are still random variables conditional on given ψc and ψg.

Given ψc and ψg, the waveforms in groupsW11 and W10 have the same mean,
which is larger by the amount ε than the mean of waveforms in W01 and W00.
Without loss of generality, we assume that the theoretical means of W̄11, W̄10,
W̄01 and W̄00 are ε, ε, 0 and 0, respectively. Therefore from equation (8), the
conditional mean of Δ(kc, kg) is:

E[Δ(kc, kg)|ψc,ψg] = (
N11

N1
− N11

N 1
+
N10

N1
+
N10

N 0
)ε

= (1− N11

N 1
+
N10

N 0
)ε = (

N01

N 1
+
N10

N 0
)ε.
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Now we consider the randomness in Nijs, related to the algorithmic confu-
sion analysis. According to Lemma 1, each of the waveform with ψ|kg = 1
has κ(kc, kg) probability to have ψ|kc = 0. N01 and N10 independently follow
Binomial(N 1,κ(kc, kg)) and Binomial(N 0,κ(kc, kg)) distributions, respectively.

E(
N01

N 1
+
N10

N 0
) =

κ(kc, kg)N 1

N 1
+
κ(kc, kg)N 0

N 0
= 2κ(kc, kg),

V ar(
N01

N 1
+
N10

N 0
) =

κ(kc, kg)ξ(kc, kg)

N 1
+
κ(kc, kg)ξ(kc, kg)

N 0

As Nm → ∞, according to Theorem 1 and Lemma 1, N1 	 N0 	 N 1 	 N 0 	
Nm/2, N10 	 N01 	 κ(kc, kg)Nm/2, N11 	 N00 	 [1− κ(kc, kg)]Nm/2. Thus:

E[Δ(kc, kg)] = E{E[Δ(kc, kg)|ψc,ψg]} = 2κ(kc, kg)ε (9)

V ar{E[Δ(kc, kg)|ψc,ψg]} =4κ(kc, kg)ξ(kc, kg)
ε2

Nm
(10)

The W̄ijs are independent and each has the conditional variance σW/
√
Nij .

From (8), we get:

E{V ar[Δ(kc, kg)|ψc,ψg]} =E{σ2
W [(

1

N1
− 1

N 1
)2N11 + (

1

N1
+

1

N 0
)2N10

+ (
1

N0
+

1

N 1
)2N01 + (

1

N0
− 1

N 0
)2N00]}

=σ2
W

16κ(kc, kg)

Nm
.

Combined with (10),

V ar[Δ(kc, kg)] =E{V ar[Δ(kc, kg)|ψc,ψg]}+ V ar{E[Δ(kc, kg)|ψc,ψg]}

=16κ(kc, kg)
σ2
W
Nm

+ 4κ(kc, kg)ξ(kc, kg)
ε2

Nm
. (11)

E 2-keys Success Rate

For the 2-keys success rate, we have got Y2 = [y1, y2]
T , a random vector with

two-dimension normal distribution, N (μ2,Σ2). Now we calculate the formula
for Σ2. From equation (8), we have (for i = 1, 2):

yi = Δ(kc, kgi) =(
N11,yi

N1 ,yi

− N11,yi

N 1,yi

)W̄11,yi + (
N10,yi

N1 ,yi

+
N10,yi

N 0,yi

)W̄10,yi

− (
N00,yi

N0 ,yi

− N00,yi

N 0,yi

)W̄00,yi − (
N01,yi

N 1,yi

+
N01,yi

N0 ,yi

)W̄01,yi (12)
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From Appendix D Equation (11), the variance of y1 and y2 are:

Cov(yi, yi) = 16κ(kc, kgi)
σ2
W
Nm

+ 4κ(kc, kgi)ξ(kc, kgi)
ε2

Nm
, i = 1, 2

Next we compute Cov(y1, y2), the covariance between y1 and y2. We first calcu-
late E[Cov(y1, y2|ψc,ψg1 ,ψg2)]. The conditional covariance between y1 and y2
given (ψc,ψg1 ,ψg2) is:

Cov(y1, y2|ψc,ψg1 ,ψg2)
=4κ(kc, kg1)κ(kc, kg2)[Cov(W̄10,y1 , W̄10,y2) + Cov(W̄01,y1 , W̄01,y2)

− Cov(W̄10,y1 , W̄01,y2)− Cov(W̄01,y1 , W̄10,y2)]

The waveforms in W10y1 and W10y2 are those with ψ|kc = 1, different from those
in W01y1 and W01y2 , therefore: Cov(W̄10,y1 , W̄01,y2) = Cov(W̄01,y1 , W̄10,y2) = 0.

To compute Cov(W̄10,y1 , W̄10,y2), we consider how similar they are, i.e., how
many waveforms are the same between the partitions W10y1 and W10y2 . Let
N10,s denote the number of same waveforms between W10,y1 and W10,y2 . Then
Cov(

∑W10,y1 ,
∑W10,y1) = N10,sσ

2
W . N10,s 	 κ̃(kc, kg1 , kg2)Nm/2 as Nm → ∞

by the definition of κ̃(kc, kg1 , kg2). Hence,

Cov(W̄10,y1 , W̄10,y2) =
Cov(

∑W10,y1 ,
∑W10,y2)

N10,y1N10,y2

=
2κ̃(kc, kg1 , kg2)

κ(kc, kg1)κ(kc, kg2 )Nm
σ2
W

Similarly, we get the same expression for Cov(W̄01,y1 , W̄01,y2). Thus we get

E[Cov(y1, y2|ψc,ψg1 ,ψg2)] = 16κ̃(kc, kg1 , kg2)
σ2
W
Nm

. (13)

Next we calculate Cov[E(y1|ψc,ψg1 ,ψg2), E(y2|ψc,ψg1 ,ψg2)]. Let Nd,y1 denote
the number of measurements where ψ|kc is different from ψ|kg1 . From (12),

Cov[E(y1|ψc,ψg1 ,ψg2), E(y2|ψc,ψg1 ,ψg2)]
=(

2ε

Nm
)2Cov(Nd,y1 , Nd,y2) = (

2ε

Nm
)2[E(Nd,y1Nd,y2)− E(Nd,y1)E(Nd,y2)]

We re-express Nd,y1 =
∑
I[(ψ|kc) �= (ψ|kg1)] and Nd,y2 =

∑
I[(ψ|kc) �= (ψ|kg2)].

Obviously E(Nd,y1) = Nmκ(kc, kg1) and E(Nd,y2) = Nmκ(kc, kg2 ).

Nd,y1Nd,y2 =
∑

I[(ψ|kc) �= (ψ|kg1)]
∑

I[(ψ|kc) �= (ψ|kg2)]

Note that Nd,y1Nd,y2 is the sum of N2
m terms. Most of the terms in the sum have

expectation κ(kc, kg1)κ(kc, kg2) except for those Nm terms corresponding to the
same waveforms, which have expectation:

E{I[(ψ|kc) �= (ψ|kg1 )]I[(ψ|kc) �= (ψ|kg2 )]} = E{I[(ψ|kg1) = (ψ|kg2) �= (ψ|kc)]}
= κ̃(kc, kg1 , kg2)
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Hence,

E(Nd,y1Nd,y2)=N
2
mκ(kc, kg1)κ(kc, kg2)+Nm[κ̃(kc, kg1 , kg2)−κ(kc, kg1)κ(kc, kg2)]

This implies that

Cov[E(y1|ψc,ψg1 ,ψg2), E(y2|ψc,ψg1 ,ψg2)]

= 4[κ̃(kc, kg1 , kg2)− κ(kc, kg1)κ(kc, kg2)]
ε2

Nm
. (14)

Combining (13) and (14), we get:

Cov(y1, y2)

=E[Cov(y1, y2|ψc,ψg1 ,ψg2)] + Cov[E(y1|ψc,ψg1 ,ψg2), E(y2|ψc,ψg1 ,ψg2)]

=16κ̃(kc, kg1 , kg2)
σ2
W
Nm

+ 4[κ̃(kc, kg1 , kg2)− κ(kc, kg1)κ(kc, kg2)]
ε2

Nm
.

F Leakage Evaluation of Random Delay

The resilience of random delay is determined by the maximum leakage εrd, which
is the overall leakage accumulated with random shifting. We consider two sce-
narios of the original leakage:

1. Single-point leakage. Only one time point s in the power consumption wave-
form leaks information with signal level ε. This is the simplified ideal case.
The maximum leakage after random shifting is the original leakage dis-
tributed with the maximum probability, which is:

εrd = ε · frd(tmax) = ε · max
0≤t≤Nrd−1

{frd(t)} .

For uniform random delay, Pr(t) = frd(t) = 1/Nrd, for t = 0, 1, ..., Nrd − 1.
Hence the signal εrd = ε/Nrd decreases from the original signal ε by a factor
Nrd.

2. Multiple-point leakage. At time t, the leakage signal strength is ε(t). Then
the leakage signal at time i with random delay is:

εrd(i) =

Nrd−1∑

t=0

frd(t)ε(i+ t).

The maximum leakage accumulation with random delay as:

εrd = max
i

{
Nrd−1∑

t=0

frd(t)ε(i + t)

}

.

Then the success rate of the strongest single-point DoM attack on the device
with random delay can be calculated by Formula (7) using the εrd value.
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