
A New Programming Paradigm for GPGPU

Julio Toss1,� and Thierry Gautier2

1 Institute of Informatics, UFRGS, Porto Alegre - RS, Brasil
jtoss@inf.ufrgs.br

2 INRIA, MOAIS, LIG, Grenoble, France
thierry.gautier@inrialpes.fr

Abstract. Graphics Processing units (GPU) have become a valuable
support for High Performance Computing (HPC) applications. However,
despite the many improvements of General Purpose GPUs, the current
programming paradigms available, such as NVIDIA’s CUDA, are still
low-level and require strong programming effort, especially for irregular
applications where dynamic load balancing is a key point to reach high
performances.

This paper introduces a new hybrid programming scheme for general
purpose graphics processors using two levels of parallelism. In the upper
level, a program creates, in a lazy fashion, tasks to be scheduled on the
different Streaming Multiprocessors (MP), as defined in the NVIDIA’s
architecture. We have embedded inside GPU a well-known work stealing
algorithm to dynamically balance the workload. At lower level, tasks ex-
ploit each Streaming Processor (SP) following a data-parallel approach.
Preliminary comparisons on data-parallel iteration over vectors show
that this approach is competitive on regular workload over the standard
CUDA library Thrust, based on a static scheduling. Nevertheless, our
approach outperforms Thrust-based scheduling on irregular workloads.

Keywords: Work Stealing, GPU, Task Parallelism.

1 Introduction

Nowadays, Graphical Processing Units have acquired great importance on the
scenario of the High Performance Computing (HPC). Several HPC applications
use this kind of hardware support to achieve better performances on parallel
algorithms. The hardware is widely available and continues to evolve very fast,
adding new capabilities and increasing its programmability. Programming mod-
els like OpenCL and Nvidia’s CUDA allow developers to program and exploit
parallelism on GPUs at the expense of a strong programming effort. Neverthe-
less, due to their important performances, GPUs have motivated the industry
and the scientific community to port increasingly more applications to the GPU
platform. At the same time, the generalization of the hardware reveals new chal-
lenges to be solved. Classical problems from the multicore-CPU architectures like

� Partially supported by FAPERGS and CNPq grants, through the project “Green-
Grid”.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 895–907, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

896 J. Toss and T. Gautier

load balancing, synchronization and the need of abstract programming models,
are now also present on GPUs.

Despite the enhancement of the programming capability provided by existing
GPU programming solutions, for instance CUDA, the programming model they
propose can only be directly exploited by sufficiently regular applications. Typ-
ically for those working over vectors or matrices. Nevertheless, there are several
other kinds of applications where the parallelism is expressed recursively by cre-
ating tasks. For such applications it is necessary to provide a suitable runtime
system to exploit the different cores present inside the GPUs.

The contribution of this paper is to propose and validate by experimentation
a new paradigm for GPU programming based on data parallel tasks and work
stealing. We show how task parallelism can be supported on graphics processors
and how to deal with problems like load balancing and synchronization. Our
preliminary results show that our approach is highly competitive with state of
the art programming software for either data parallel programming or for pure
task parallel programming.

The outline of this paper is the following: in Section 2 we briefly discuss the
related works about work stealing algorithms and scheduling on GPUs. Section 3
presents the design and implementation of our approach to support work stealing
with CUDA on GPUs. Then, on Section 4, we evaluate our model with several
load balance patterns analyzing performance and overheads. On Section 5 we
conclude and point future directions to improve the model.

2 Related Works

Task parallel applications are well suited to deal with irregular parallel algo-
rithms. Scheduling of tasks among the computing resources must be effective to
balance the workload. If scheduling is not performed well some processing units
may be overloaded with work while others stay idle. Additionally, the scheduler
implementation must be efficient to minimize overheads that come from the lock
contention to access the work queue and to avoid stopping the computation for
workload re-balancing.

2.1 Work Stealing

A well-known scheduling technique with several implementations on multi-core
processors is work stealing. Here, each processing unit has its own queue of tasks
to process. Whenever one gets idle it will, itself, look for tasks from other queues
to steal. This technique is particularly interesting for applications that create
tasks at execution time in an unpredictable way. Work stealing is, therefore,
known as a dynamic load balancing method.

Blumofe et al. [4] give the first provably efficient work stealing scheduler. It
proves that a parallel execution, on uniform P processors machine, using their
work-stealing scheduler, has an expected run time of T1

P +O(T∞), where T1 is the
serial execution time of the multi-threaded computation and T∞ is the minimum
execution time with an infinite number of processors.

A New Programming Paradigm for GPGPU 897

A work-stealing algorithm relies on a work queue data structure owned by
each thread of the system. Threads can call three functions: Pop, Push and
Steal on a work queue. Push and Pop functions are called only by the owner
thread of a work queue to enqueue / dequeue tasks. Steal function is called
by an idle thread on a victim work queue to get tasks to execute. The Cilk-5
runtime system [9] implements a lock-based work-stealing scheduler. It employs
the Dijkstra’s THE protocol for mutual exclusion [8] which greatly reduces the
lock overhead [9] by only using systematic locks on steal operations to serialize
thieves on the same victim. Arora et al. [2] present a completely lock-free work-
stealing algorithm which uses array-based dequeues and minimizes the need of
costly Compare-And-Swap (CAS) operations. Hendler et al. [11] overcame the
potential overflow problem on ABP’s algorithm [2] with a dynamic memory
work-stealing algorithm. Chase and Lev [6] came with a simpler solution to this
same problem by implementing unbounded dequeues as dynamic-cyclic-arrays.
Hendler and Shavit [12] generalize the ABP algorithm to allow the processing
units to steal, instead of one, up to half of the items in a given queue at a time.
Their algorithm provides better load balancing than ABP while preserving the
lock-free and CAS minimization properties.

2.2 Scheduling on GPUs

Recently, with the advent of the use of graphical processors for general purpose
computing, those classical CPU load balancing methods started to be studied on
GPUs. Chen et al. [7] use molecular dynamics simulation to evaluate a centralized
method of dynamic load balancing on single and multi-GPUs systems. Their
results showed that, for unbalanced workloads, task-based models can utilize
the GPU hardware more efficiently than the standard CUDA scheduler.

Cederman and Tsigas [5] use the task of creating an octree partitioning to com-
pare four different methods for dynamic load balancing. A centralized blocking
task queue; a centralized non-blocking task queue; a static list and a distributed
task queue using the ABP [2] work stealing protocol. Their results clearly show
that centralized blocking methods are not suitable for GPUs as they perform
poorly and cannot scale with the increase of processing units. The non-blocking
task queue do perform better but, as a centralized approach, scales very poorly.
The best performances and scalability were achieved with the work stealing
method with distributed work queues.

In Angel et al. [1] the shortest-path problem is used as an irregular applica-
tion to evaluate a framework for dynamic work scheduling based on Blumofe
and Leiserson’s work stealing algorithm[4]. They exploit the performance and
synchronization characteristics of the GPU memory hierarchy by using a combi-
nation of shared and global memory queues. The overhead found was by a factor
of 3 for queues on shared memory and 15 for queues on global memory.

In [16], Tzeng et al. propose a dynamic load balancing method based on
task-donation, which shows similar performances to previous work-stealing ap-
proaches but uses less memory.

898 J. Toss and T. Gautier

Fig. 1. Scheme of the work stealing scheduler on the GPU: one work queue on global
memory for each Tread Block running on the Multiprocessors

Previous work shows that scheduling inside GPUs is necessary to improve per-
formance in task-parallel applications. On the CPUs, several parallel program-
ming tools like CILK+ (Frigo et al. [9]), Intel TBB (Pheatt [13]), KAAPI (Gau-
tier et al. [10]), use work stealing as standard scheduling technique in parallel
for loops. Additionally, recent architectures like the Intel Many Integrated Core
(Intel MIC) use CILK+ as standard programming model reinforcing the trend of
work stealing schedulers on massively parallel architectures. On the other hand,
GPU programming tools like the Thrust Template library for CUDA (Bell [3]),
provides generic templates (e.g. array Transform) to enhance programmer’s
productivity. However, CUDA does not have a dynamic scheduler, and for some
types of workloads it cannot extract the best performance of the GPU. In this
context, our model extends the use of work stealing in GPUs to a broader range
of parallel applications. We implemented an hybrid programming model combin-
ing tasks and data parallelism. Our benchmarks showed comparable performance
to State of Art on typical task-parallel problems (Octree Partitioning, Sec. 4.5)
and we outperform Thrust on the array transform problem (Sec. 4.4).

3 Mixing Task Parallelism and Data Parallelism on
CUDA

As showed before, parallel tasks with work stealing is being used on multi-core
architectures and on GPU as standard paradigm for irregular divide and conquer
parallel applications, which are the target applications for work stealing.

Here we present an unified programming paradigm for general parallel applica-
tions on GPU. This paradigm deals well with irregular and regular workloads on
data parallel application as well as task parallel application. The paper focuses
on scheduling data parallel GPU application using a novel approach.

CUDA is limited by the absence of a runtime scheduler to support dynamic
load balancing. We show next how we can implement an efficient and generic sup-
port to load balancing with CUDA based on work stealing. Section 3.3 presents

A New Programming Paradigm for GPGPU 899

how to do an efficient scheduling of data parallel application. Section 4 provides
experimental evaluation with different types of workloads.

3.1 Design of Our Approach

The abstraction provided by the CUDA model allows us to exploit two levels of
parallelism. At first level, a program can be divided in coarse sub-problems that
can be solved independently in parallel (Thread Blocks in CUDA), and then into
finer threads that cooperate for the same task.

Independent Thread Blocks (TB) are mapped to multiprocessors1 on the
GPU. In practice, CUDA kernels use much more thread blocks than the number
of multiprocessors available. The CUDA runtime has a very basic scheduler that
assigns thread blocks to MPs. In our approach (Fig. 1), we consider a fixed
number of thread blocks, which is independent from the size of the input data.
Each thread block stays persistently on a multiprocessor and manages a task
queue on the GPU global memory using the work stealing algorithm. When a
TB does not have any more tasks to execute, it steals some from another’s queue.

3.2 Work Queue Implementation

The work queue implemented consists of a work queue data structure named
workqueue t. This structure consists of two integers, beg to the beginning and
end to the end of the interval [beg,end). Additionally, each work queue is
associated to a mutex variable used to control its access in conflicting cases.

Each Thread Block owns a work queue. This structure is accessed by the
following three functions.

Push : int push(workqueue_t* kwq, int* beg)

The push function is called by the thread to add a new task to its own work
queue. The value beg must be less than kwq->beg. This operation is always
non-blocking and extends the work queue.

Pop : int pop(workqueue_t* kwq, int* i, int* j, int size)

The pop function is called by the thread to pop range [*i, *j) from its own
work queue. The size of the returned range is at most size. The function
returns a non zero value in case of success, i.e. iff the returned range is non
empty. The pop increments the field beg of the work queue.

Steal : int steal(workqueue_t* kwq, int* i, int* j, int size)

The steal function is called by the thread to steal range [*i, *j) from
another work queue than its own. It decrements the field end of the work
queue. The size of the returned range is at most size. The function returns
a non zero value in case of success, i.e. iff the returned range is non empty.

The work queue implementation relies on a Dijkstra’s protocol and is similar
to the T.H.E protocol as described in Frigo et al. [9]. The main difference is

1 CUDA definition.

900 J. Toss and T. Gautier

1 int ∗my wq = workqueue getown (b lockIdx) ;
2 while (1) {
3 i f (IamTheMasterThread (threadIdx)) {
4 i f (! workqueue pop (my wq , locbeg , locend , popSize)) {
5 workqueue t ∗vict im wq = workqueue getrandom () ;
6 int s t e a l S i z e = workqueue s i z e (vict im wq) / 2 ;
7 i f (s t e a l S i z e >= popSize) {
8 workqueue lock (vict ime wq . mutex) ;
9 i f (workqueue stea l (victim wq , stea lBeg , stealEnd , s t e a l S i z e))

10 workqueue push (my wq , stea lBeg , stealEnd) ;
11 workqueue unlock (vict im wq . mutex) ;
12 continue ;
13 }
14 }
15 }
16 sync th r e ad s () ;
17 TASKCall(locbeg , locend) ;
18 sync th r e ad s () ;
19 i f (te rminate) break ;
20 }

Fig. 2. Cuda kernel of the work stealing scheduler loop

that pop or steal functions increment or decrement beg and end not only by 1
but by size. Steal function calls are serialized on the mutex lock: the runtime
guarantees that the concurrency on a work queue structure is at most 2.

Our work queue data structure allows to steal range of indexes. For task
parallelism, the runtime stores tasks into an array container: a task is identified
by its index and the work queue can trivially be used to implement work stealing
scheduler.

3.3 Data Parallel Application Scheduling

Moreover, our work queue can also be used to lazily create task. Let us consider
the foreach parallel algorithm where the same functor is applied on each en-
tries of an array. In that case, a task is then only identified by the sub range
where it acts on. Stealing a task is equivalent to steal a sub range of the initial
interval given by the initial foreach call. Our work queue implementation lets,
at runtime, the scheduler to steal tasks by simply calling the steal function. To
apply our method on more complex problems, one should define a linearization
of the computations in an interval homomorphic to [0, N), which is the case for
almost all STL’s algorithms on random access iterators Traore et al. [14].

To mix both task and data parallelisms our runtime implements the concept
of the malleable task Turek et al. [15]. In our implementation, a malleable task
exports a function that is called to extract work on work stealing scheduler deci-
sion. Data parallel task, such as the foreach, is a malleable task that represents
its work using our work queue. The exported function calls the Split operation on
the work queue. Therefore, after a successful steal operation, an idle TB receives
a sub range of the initial range to perform.

A New Programming Paradigm for GPGPU 901

3.4 CUDA Work Stealing Algorithm

In work stealing, each multiprocessor has its own work queue structure in global
memory. Multiprocessors pop from their own queues, if there are no more tasks
they randomly choose another work queue to steal from. Our work stealing sched-
uler is embedded within a CUDA kernel. The main scheduler loop is sketched in
Fig. 2. The loop is executed by all TB on the GPU. While the work queue of a TB
has enough local work (line 4), the master thread of the block pops a sub range and
all threads ,synchronized at line 16, perform the data parallel task (at line 17). If
there is no local work, the master thread selects at random a victim work queue
(line 5), tries to steal half of its contents (line 9) and, if the steal successes, popu-
lates its own work queue with the theft range [stealBeg, stealEnd) (line 10).

4 Evaluation

The experiments were realized on a NVIDIA GTX 280 GPU running at 1.3 GHz
with 1GB of global memory. This model of GPU contains 30 Multiprocessors
(MP), each one with eight scalar processors (SP) giving a total of 240 cores. All
the applications were tested using version 4.0 of the CUDA driver and runtime .
Additionally, some experiments were also tested on a Tesla C2050 GPU (Fermi
architecture) running at 1.15 GHz with 3GB of global memory.

Every measure presented in the following benchmarks is an average of 10
executions of the kernel. This number showed to be sufficient to get reliable
results, with negligible standard deviation (which were omitted on our plots).
The time is measured using GPU timers without counting overheads of the kernel
launch nor PCI data transfers between host (CPU) and device (GPU).

4.1 Elementary Overhead

Work stealing adds an intrinsic overhead to the program due to the pop operation
that is always done before starting the actual computation of the task (line 6 of

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 500 1000 1500 2000 2500

to
ta

l n
um

be
r

of
 c

yc
le

s
(x

 1
03)

Number of Pops

GTX280
Fermi

Fig. 3. Pop cost estimation on a GTX280 and
a C2050(Fermi) GPU

Fig. 2). This benchmark used a
kernel configuration of 1 block
of 512 threads and varied the
pop size from 29 to 220. Fig-
ure 3 reports the total execu-
tion time with several numbers of
pop operations. Please note that
the pop operation handles only
work queue indexes, therefore the
cost of a pop is independent of
its size. By fitting the obtained
curves to an affine function, the
pop overhead found was 5186.72
cycles (3.52 µs) on the GTX280
and 2187.32 cycles (1.92 µs) on
the Fermi GPU.

902 J. Toss and T. Gautier

4.2 Benchmark Application

Our target application consists in a simple transformation over an array of
Floats. The program applies a function x −→ f(x) to each element i of the
input array and stores the result in the output array. In this benchmark we
consider a task an instance of the transform function on a range of the initial
interval.

The reference parallel implementation was taken from NVIDIA’s Thrust li-
brary (Bell [3]). Next sections report experiments with regular then irregular
workloads.

4.3 Load Balancing on Regular Workloads

This section compares three load balancing methods when used to manage reg-
ular workloads. Our benchmark transform application generates a regular work-
load when it applies a constant function to every position of the input array.

Load balancing is about managing tasks on processors. More precisely, in the
experiments presented here, the data parallel task updates at most 512
positions of the array. This task size was chosen in conjunction with the block
size, which also contains 512 threads. This way each task, except for a few ones
at the end of the sub-ranges, is fully parallel and makes all the threads of the
block to work. This number of threads per block showed the best performance
for a transform on a sufficiently large array. Additionally, the same block size
of 512 threads and 60 thread blocks is used by the static transform kernel in
Thrust library, whose strategy is to optimize occupancy.

Our work stealing method is compared to two classical scheduling method:

– The Static Scheduling is the default load balancing method that CUDA uses
when it schedules blocks on multiprocessors. Blocks are evenly distributed
among the multiprocessor of the device until they reach the limit of active
blocks. When an active block completes its job, the next blocks are scheduled.

– The List Scheduling uses a centralized work queue that every processing
unit have to access to get new tasks to process. Tasks are assigned in a
FIFO manner where idle processors get the task at the beginning of the list.
Note that there is a lock on the work queue that serializes every access to it.

Single Task Pop. Figure 4a presents the total execution time of Transform
on an array of 5120000 elements (i.e. 10000 tasks of 512 array positions). Each
curve represents one different load balancing method. In this experiment LS and
WS always pop one task (or 512 array elements) at a time which totals 10000
pops operations over the whole execution (one pop by task). WS steal operation
steals half of the victim interval.

This graph makes evident the drawback of centralized load balancing methods.
Even with very regular workload, the List Scheduling method quickly reaches a
limit where it stops scaling. Actually, with more than 10 MPs the performance
always gets worse. We attribute this behavior to a lock contention problem. As

A New Programming Paradigm for GPGPU 903

 1

 2

 4

 8

 16

 32

 64

 128

 256

 0 10 20 30 40 50 60

T
im

e
(m

s)

Blocks

Static
LS

WS
Thrust

(a) Pop size of a single task

 1

 2

 4

 8

 16

 32

 64

 128

 256

 0 10 20 30 40 50 60

T
im

e
(m

s)

Blocks

Static
LS

WS
Thrust

(b) Best pop size for each method

Fig. 4. Comparison of the Static, the List Scheduling (LS) and the Work Stealing (WS)
methods

the time of execution of a single task is very short, blocks are often trying to
acquire the lock which increases lock contention.

The static method shows the best absolute performance at 60 blocks, the
maximum number of blocks that the GPU scheduler runs concurrently on the
hardware (tests with more blocks didn’t enhance the execution time). However,
note that the static method does not scale in a regular way as does work stealing.
This can be seen on the performance drop at 31 blocks. This drop is due to the
fact that with 31 blocks, one multiprocessor has two active blocks and twice
more tasks which causes the load imbalance. The work stealing (WS) does not
suffer of this problem because an idle TB on a multiprocessor can steal task from
overloaded multiprocessors.

The overhead of accessing the work queue can be reduced by popping more
tasks at a time. Figure 4b shows the best performances found for each method
when tuning the number of tasks retrieved by pop (the Pop Size). For work
stealing, the optimal pop has a size of 3 tasks (i.e 1536 elements of the array) and
the best time, 6.90ms, is achieved with 60 blocks of 512 threads. List scheduling
achieves 6.92ms of peak performance when the pop size is equal to 7 tasks (i.e
7168 array elements) with 30 blocks of 512 threads. The best static time is
6.49ms at 60 block of 512 threads.

Pop Size Variation. Figure 5 shows howWS and LS behave with the variation
of two parameters: pop size and number of blocks. The y axis represents the size
of each pop in number of array elements (number of tasks x 512). The values
plotted correspond to the difference of execution time between LS (List Schedul-
ing) and WS (Work Stealing). Lighter tonalities means smaller differences.

We can identify two regions A and B. In region A, LS performs better than
WS but the biggest difference is only 5.63 ms (37,75% speedup over WS). In
region B, WS outperforms LS achieving a gain of 98.53 ms (93,03% of speedup
over LS). Therefore, even if LS is simpler to design than WS, it suffers from its

904 J. Toss and T. Gautier

Time Diference (LS - WS)

 0 10 20 30 40 50 60

Blocks

 512

 1024

 2048

 4096

 8192

 16384

 32768

 65536

 131072

P
op

 S
iz

e
(#

ar
ra

y
po

si
tio

ns
)

-100

-50

 0

 50

 100

A: LS < WS

B: WS < LS

Fig. 5. Time difference between LS and WS

grain size selection where small value may degrade strongly the performance due
to contention and where big values limit the parallelism (with LS, once popped
a sub-range cannot be stolen anymore).

4.4 Load Balancing on Irregular Workloads

This section evaluates the load balancing methods with two different patterns
of workloads. Like on Chen et al. [7], patterns of irregularity were created by
nullifying the work of some tasks of the input array. These patterns are:

1. Pattern 1 = 0 1 0 1 0 1 0 1 : one task each other is nullified (50% of workload
reduction).

2. Pattern 2 = 0 0 0 1 0 0 0 1 : one on each three task is nullified (75% of
workload reduction).

Figure 6 shows the best results of each method of load balancing for the two
patterns of irregularity. These tests represent the best configuration of pop size
found for each method. LS uses a pop size of 10240 (20 tasks) with pattern
1 and 25600 (50 tasks) for pattern 2. WS uses pop sizes of 4096 (8 tasks) for
both patterns. These results clearly show the instability of the static method for
irregular workloads and how good dynamic scheduling approaches deal with it.

4.5 Octree Partitioning

The transform benchmark shows how to use our work stealing model to schedule
array-based applications. However, this same model can be used for classical
task-based problems. For instance, the octree partitioning problem create tasks
to recursively separate particles in a 3D space into octants. We used the octree
implementation provided by Cederman and Tsigas [5] and adapted it to use our
scheduler. We then compared their load balancing method to ours.

A New Programming Paradigm for GPGPU 905

 1

 2

 4

 8

 16

 32

 64

 128

 256

 0 10 20 30 40 50 60

T
im

e
(m

s)

Blocks

Static
LS

WS
Thrust

(a) Pattern 1

 1

 2

 4

 8

 16

 32

 64

 128

 256

 0 10 20 30 40 50 60

T
im

e
(m

s)

Blocks

Static
LS

WS
Thrust

(b) Pattern 2

Fig. 6. Transform problem on irregular workloads

 32

 64

 128

 256

 512

 1024

 0 10 20 30 40 50 60

T
im

e
(m

s)

Blocks

WS
ABP

(a) Cube Distribution

 32

 64

 128

 256

 512

 1024

 0 10 20 30 40 50 60

T
im

e
(m

s)

Blocks

WS
ABP

(b) Sphere Distribution

Fig. 7. Load Balancing methods on Octree partitioning problem

The following benchmarks consists in creating an octree partitioning of a
3D space containing 500000 particles. The algorithm recursively subdivides the
space until the threshold of 20 particles per subspace is reached. Every time a
sub-space needs to be split, a new task is created.

Figure 7 shows a comparison between our algorithm (labeled WS) and Ce-
derman et Tsigas (labeled ABP) with two different particles distribution. One
where the particles are all randomly picked from a cubic space and other where
they are randomly picked from the surface of a sphere. As shown in Fig. 7, WS
and ABP presented similar performance. The best times found were 63.26ms
with 31 blocks for WS and 62.94 ms for ABP with 35 blocks.

4.6 Discussion

The static scheduling showed to perform quite well for the regular array trans-
form. This is mainly due to the cyclic algorithm used to assign array elements
(tasks) to threads. The cyclic distribution makes a good division of the work

906 J. Toss and T. Gautier

because it gives to all the blocks the same amount of tasks and at the same time
it spreads contiguous parts of the array that may contain more expensive tasks.
However, this model is vulnerable to specific workload models (see section 4.4).
Additionally, it should be noted that multiprocessors on a single GPU execute at
same clock. On a multi-GPU system for example, the speed of multiprocessors
may variate creating another source of load imbalance difficult to handle with
static scheduling.

List scheduling can achieve good performances, even with irregular work loads.
However we found that it is very dependent on the computation time spent
between pop operations. Thus an accurate tuning of pop size is mandatory to
get good performance.

Work stealing was the method that showed the best adaptability over all of
the presented benchmarks. Even if it didn’t have the best absolute performance,
the difference from the other methods was very small. This method is also less
sensible to lock contention than List Scheduling in which pop size has to be
carefully tuned to overcome contention.

5 Conclusion and Future Work

In this work we considered a new programming model for general purpose GPUs
based on work stealing. This model allows the programmer to express the paral-
lelism of a GPGPU application in a hybrid manner taking benefit, at the same
time, from an efficient task scheduling algorithm and from the highly SIMD
computation power of graphics processors.

We presented empirical results that attest the effectiveness of our model and, to
the extent of our knowledge this is the first work to evaluate a regular problemwith
dynamic loadbalancing onGPU.Our results confirmthatwork stealing is a generic
scheduling method and performs well in both regular and irregular problems. We
compared our scheduler on regular array transformmicro-benchmarkwith respect
to the static implementation of the Thrust well-known GPU library and found
little degradationwith uniform load, and better performances on unbalanced load.

Ongoing work is to explore in more details how this model behaves on the new
Fermi GPU architecture and what optimizations can take favor of it. Preliminary
tests (section 3), suggest that new hardware capabilities notably, the presence
of a full cache memory hierarchy, could be better exploited by our work queue
implementation. At long-term, we envision the integration of this model in the
KAAPI library (Gautier et al. [10]) which lacks the ability of scheduling inside
GPUs.

References

[1] Angel, M., Michael, M.M., Bivens, J.A.: Dynamic Work Scheduling for GPU Sys-
tems. Memory, 57–64 (2010)

[2] Arora, N.S., Blumofe, R.D., Plaxton, C.G.: Thread Scheduling for Multipro-
grammed Multiprocessors. Theory of Computing Systems 34(2), 115–144 (2001),
http://www.springerlink.com/openurl.asp?genre=rticle

&id=doi:10.1007/s002240011004

http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s002240011004
http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s002240011004

A New Programming Paradigm for GPGPU 907

[3] Bell, N.: Thrust: A Productivity-Oriented Library for CUDA. sbel.wisc.edu.
359–373 (2012),
http://sbel.wisc.edu/Courses/ME964/Literature/thrustGPUgems2011.pdf

[4] Blumofe, D.R., Leiserson, E.C.: Scheduling multithreaded computations by work
stealing. Journal of the ACM 46(5), 720–748 (1999),
http://portal.acm.org/citation.cfm?doid=324133.324234

[5] Cederman, D., Tsigas, P.: On dynamic load balancing on graphics processors.
In: Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS Symposium on
Graphics Hardware, pp. 57–64. Eurographics Association (2008)

[6] Chase, D., Lev, Y.: Dynamic circular work-stealing deque. In: Proceedings of the
17th Annual ACM Symposium on Parallelism in Algorithms and Architectures -
SPAA 2005 (c), vol. 21 (2005),
http://portal.acm.org/citation.cfm?doid=1073970.1073974

[7] Chen, L., Villa, O., Krishnamoorthy, S., Gao, G.R.: Dynamic load balancing on
single- and multi-GPU systems. In: 2010 IEEE International Symposium on Par-
allel & Distributed Processing (IPDPS), pp. 1–12 (2010),
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5470413

[8] Dijkstra, E.W.: Solution of a problem in concurrent programming control. Com-
mun. ACM 8, 569 (1965), http://doi.acm.org/10.1145/365559.365617

[9] Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5 mul-
tithreaded language. In: Proceedings of the ACM SIGPLAN 1998 Conference on
Programming Language Design and Implementation - PLDI 1998, pp. 212–223
(1998), http://portal.acm.org/citation.cfm?doid=277650.277725

[10] Gautier, T., Besseron, X., Pigeon, L.: Kaapi: A thread scheduling runtime system
for data flow computations on cluster of multi-processors. In: Proceedings of the
2007 International Workshop on Parallel Symbolic Computation, pp. 15–23. ACM
(2007), http://portal.acm.org/citation.cfm?id=1278182

[11] Hendler, D., Lev, Y., Moir, M., Shavit, N.: A dynamic-sized nonblocking work
stealing deque. Distributed Computing 18(3), 189–207 (2005),
http://www.springerlink.com/index/10.1007/s00446-005-0144-5

[12] Hendler, D., Shavit, N.: Non-blocking steal-half work queues. In: Proceedings of
the Twenty-First Annual Symposium on Principles of Distributed Computing -
PODC 2002, p. 280 (2002),
http://portal.acm.org/citation.cfm?doid=571825.571876

[13] Pheatt, C.: Intel threading building blocks. J. Comput. Sci. Coll. 23, 298–298
(2008),
http://portal.acm.org/citation.cfm?id=1352079.1352134

[14] Traoré, D., Roch, J.-L., Maillard, N., Gautier, T., Bernard, J.: Deque-Free Work-
Optimal Parallel STL Algorithms. In: Luque, E., Margalef, T., Beńıtez, D. (eds.)
Euro-Par 2008. LNCS, vol. 5168, pp. 887–897. Springer, Heidelberg (2008)

[15] Turek, J., Wolf, J.L., Yu, P.S.: Approximate algorithms scheduling parallelizable
tasks. In: Proceedings of the Fourth Annual ACM Symposium on Parallel Algo-
rithms and Architectures, SPAA 1992, pp. 323–332. ACM, New York (1992)

[16] Tzeng, S., Patney, A., Owens, J.D.: Task management for irregular-parallel work-
loads on the GPU. In: Proceedings of the Conference on High Performance Graph-
ics, pp. 29–37. Eurographics Association (2010),
http://portal.acm.org/citation.cfm?id=1921485

http://sbel.wisc.edu/Courses/ME964/Literature/thrustGPUgems2011.pdf
http://portal.acm.org/citation.cfm?doid=324133.324234
http://portal.acm.org/citation.cfm?doid=1073970.1073974
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5470413
http://doi.acm.org/10.1145/365559.365617
http://portal.acm.org/citation.cfm?doid=277650.277725
http://portal.acm.org/citation.cfm?id=1278182
http://www.springerlink.com/index/10.1007/s00446-005-0144-5
http://portal.acm.org/citation.cfm?doid=571825.571876
http://portal.acm.org/citation.cfm?id=1352079.1352134
http://portal.acm.org/citation.cfm?id=1921485

	A New Programming Paradigm for GPGPU
	Introduction
	Related Works
	Work Stealing
	Scheduling on GPUs

	Mixing Task Parallelism and Data Parallelism on CUDA
	Design of Our Approach
	Work Queue Implementation
	Data Parallel Application Scheduling
	CUDA Work Stealing Algorithm

	Evaluation
	Elementary Overhead
	Benchmark Application
	Load Balancing on Regular Workloads
	Load Balancing on Irregular Workloads
	Octree Partitioning
	Discussion

	Conclusion and Future Work
	References

