
Tulipse: A Visualization Framework

for User-Guided Parallelization

Yi Wen Wong1, Tomasz Dubrownik2, Wai Teng Tang3, Wen Jun Tan3,
Rubing Duan4, Rick Siow Mong Goh4, Shyh-hao Kuo4,

Stephen John Turner3, and Weng-Fai Wong1

1 National University of Singapore, Singapore
2 University of Warsaw, Poland

3 Nanyang Technological University, Singapore
4 Institute of High Performance Computing, A*Star, Singapore

Abstract. Parallelization of existing code for modern multicore proces-
sors is tedious as the person performing these tasks must understand the
algorithms, data structures and data dependencies in order to do a good
job. Current options available to the programmer include either auto-
matic parallelization or a complete rewrite in a parallel programming
language. However, there are limitations with these options. In this pa-
per, we propose a framework that enables the programmer to visualize
information critical for semi-automated parallelization. The framework,
called Tulipse, offers a program structure view that is augmented with
key performance information, and a loop-nest dependency view that can
be used to visualize data dependencies gathered from static or dynamic
analyses. Our paper will demonstrate how these two new perspectives
aid in the parallelization of code.

1 Introduction

As multicore and multi-node architectures become more prevalent and widely
available, programs have to be written using multiple threads to take full advan-
tage of all the cores available to them. Unfortunately, the task of multithreaded
programming remains a hard one. Programmers are required to take more factors
into account to write code that is both correct and that has good performance
at the same time. This places a great burden on application developers, not all
of whom may be as proficient in parallel programming as would be required.

Furthermore, it is increasingly difficult for existing legacy programs to take
advantage of the multicore capabilities of these chips without resorting to a
partial or complete rewrite of the source code. However, the cost of rewriting
software is prohibitive. This problem is exacerbated by the fact that many appli-
cation domain experts who maintain the legacy codes are not parallel program-
mers. Without the domain knowledge that is required in certain applications,
it may also be difficult for programmers outside the domain to convert them
from sequential programs into multithreaded ones. This is because apart from
understanding the algorithm, the programmer performing the code modification

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 4–15, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Tulipse: A Visualization Framework for User-Guided Parallelization 5

has to understand the data structures, control flow and dependencies within the
existing application to be able to do a good job in refactoring the code.

Visualization tools such as SUIF Explorer [8] and ParaGraph [1] have been
developed to help facilitate the task of converting sequential code to parallel
code. Such tools can reduce the effort needed by the programmer to understand
the program and to make the necessary changes to parallelize it. For example,
the ParaGraph tool displays a control flow graph of a code fragment to the user,
and augments it with data dependency edges in order to help the user under-
stand the data relations between different program statements. From this visual
information, the programmer is then able to decide if the code is parallelizable
or if synchronization is needed for certain data structures. Many of these tools,
such as the ParaScope Editor [6] or ParaGraph, are also front-ends for their
corresponding parallelizing compilers. They typically provide a limited form of
visualization, usually as text output organized using tables, or in some cases, a
two-dimensional graph representation of the data of interest [1]. Furthermore,
they do not support the typical workflow a programmer goes through during the
code parallelization process. For example, the ParaScope Editor and ParaGraph
attempt to parallelize all the loops found within a program regardless of their
suitability.

In this paper, we will describe an integrated visualization framework for par-
allelization that we have developed called Tulipse. The guiding principle behind
the design is to simplify the workflow for parallelizing a program through an
integrated visualization environment, and to provide visually useful information
for the parallelizing process. This can be accomplished by the following capabil-
ities. First, it consists of a graphical view that allows the user to visualize the
global structure of an application by displaying procedures and loops hierarchi-
cally. Profiler measurements which indicate code sections that take up a large
amount of the execution time can be overlaid in the graphical view. Second, a
three dimensional view is provided to help the programmer visualize the data
dependencies within a code section. It also allows the user to navigate through
the view interactively. Through these capabilities, the programmer would then
make an informed decision to effect the necessary code changes that will enable
the parallelization of the application.

The framework is designed to involve the programmer in the parallelization
workflow. This is because the programmer’s knowledge about the code will be
useful during the parallelization process. In addition, he is ultimately responsible
for maintaining the application, and therefore may want to have finer control over
code changes. Tulipse provides the following features to support semi-automatic
code parallelization: (1) it is a visualization framework written in Java for the
Eclipse IDE. In doing so, not only are all the facilities of the Eclipse IDE available
to the programmers, the framework can also be extended with new visualiza-
tion plug-ins; (2) it integrates a profiling and measurement tool that can be
used to instrument the application under study. It can, for example, be used
to find out which loops dominate execution time or have many cache misses.

6 Y.W. Wong et al.

The programmer can then focus his attention on these hotspots, where even
small improvements can have a significant impact on the overall execution time;
(3) it provides a way to visualize data dependencies in the application through
the use of a three-dimensional visualizer. The programmer can also animate,
and walk-through the index space to obtain a better understanding of the data
dependences. This allows the programmer to experiment with different ways of
parallelizing the code; (4) it inserts OpenMP directives [9] into code which is
found to be parallelizable using static and dynamic analyses, allowing the user to
focus his attention on code sections which cannot be automatically parallelized.

The rest of the paper is organized as follows: Sect. 2 gives an overview of
Tulipse and its capabilities. Section 3 presents examples on the usage of the
visualization capabilities of Tulipse. Section 4 discusses prior work that is related
and Sect. 5 concludes the paper.

2 Overview of Tulipse

The guiding principle behind the design of Tulipse is to offer to the programmer
as much help as possible in the parallelization process. It does not attempt
to anticipate the programmer’s intent, but rather, allows the programmer to
make the important decisions with respect to the code changes. It does this
by providing sufficient visual feedback for the programmer to identify the best
way to proceed with the parallelization. In this way, it gives the programmer
control over the way the code is modified. In order to achieve these goals, two
visualization capabilities are supported in Tulipse: the Loop-Procedure View and
the Data Dependency View. Figure 1 shows these two views embedded in an
instance of the Eclipse editor. The top panel displays the Loop-Procedure View,
while the bottom-left panel shows a code editor and the bottom-right panel
shows the Data Dependency View.

The workflow supported by Tulipse is shown in Fig. 2. An application is im-
ported and loaded into the Eclipse IDE. Through the Loop-Procedure View,
the user gets a hierarchical view of the whole application represented by pro-
cedures and loops that are defined in all of the project’s source files. Next, the
project is compiled and built with instrumentation automatically inserted into
the application binary so that run-time statistics can be collected using hardware
performance counters. The run-time statistics gathered from the profiling run
is then overlaid onto this view. The user can choose to see, for example, which
procedures or loops took up a large proportion of the overall execution time, or
experienced a significant number of cache misses. The user can then focus his
attention on these parts of the code using the Data Dependency View. This is
a three-dimensional perspective of the data dependences within a code section.
Through interactive visualization, it allows the user to decide whether the code
can be effectively parallelized or tuned. The process can be repeated until the
user is satisfied with the changes.

Tulipse: A Visualization Framework for User-Guided Parallelization 7

Fig. 1. A screenshot of the Tulipse plug-in in the Eclipse development platform

Import project View LPHG in Loop-
Procedure View Compile and profile

Identify hotspots on
LPHG

Identify dependencies
in Data Dependency

View
Modify code

Fig. 2. Workflow of parallelization process

2.1 Loop-Procedure View

This view presents the user with visual information on the application’s
overall structure. In this view, a Loop-Procedure Hierarchy Graph (LPHG) is
constructed for the entire application project. This is essentially a call-graph em-
bedded with loop nest relations obtained from the application source files. For
example, Fig. 3 shows the LPHG for the SPEC2006 470.lbm benchmark appli-
cation [12]. The inset in the figure shows a zoomed-in image of the hotspots.
The square-shaped nodes denote procedure definitions, and the ellipse-shaped
nodes denote loops. Edges into a procedure node represent calling instances to
that procedure. An edge from a procedure to a loop indicates that the loop is
defined within the procedure. An edge from a loop to another loop indicates that
the latter is nested in the former. There may be multiple incoming edges for a
procedure, indicating multiple calling instances of the same procedure. However,

8 Y.W. Wong et al.

there will only be exactly one incoming edge for a loop since there can only be
one definition of the loop residing either within a procedure or within another
loop. Recursive procedures create cycles in the graph. Nodes which are grouped
within a box belong to the same source file.

We integrated HPCToolkit [4] into our visualization framework to simplify
run-time performance measurement for the user. HPCToolkit uses hardware
counters provided by the underlying microprocessor to measure performance
metrics for identifying performance bottlenecks during program execution. Al-
though only HPCToolkit is currently supported by Tulipse, it is relatively easy
to add support for other measurement tools such as Tau [13]. Profile measure-
ments of the application taken by the performance measurement component can
be overlaid on the LPHG in the Loop-Procedure View. Different measurement
metrics can be selected for the overlay. Customized metrics can also be con-
structed using the base measurement metrics. The metric values are normalized
and mapped to a default color gradient from red to white, where red indicates
‘hot’ while white indicates ‘cold’. The respective nodes on the LPHG, including
both procedure definition and loop information, are colored according to this
mapping.

Profile measurements are loaded into the view by accessing the view menu
in the Loop-Procedure View. Different metrics can be overlaid on the LPHG
through the Load Overlay menu, including base metrics from the profile mea-
surements as well as user-specified derived metrics. A derived metric is essentially
a formula constructed by applying operators on metrics and numerical constants.
It is also possible to specify a custom color gradient to identify different ranges.
For example, the user may want to highlight metric values ranging from 50%
to 100% as hotspots, instead of just the top 10%. This can be adjusted using
a different color gradient with a larger range for the hotspots. By inspecting
the overlaid LPHG, the programmer will be able to identify problematic code
regions quickly, and focus his attention on them. By accessing a context menu,
we provide the user with the ability to target a code fragment of a problem node
through the code editor, or to visualize it through the Data Dependency View.

Fig. 3. Loop-Procedure View overlaid with performance measurements

Tulipse: A Visualization Framework for User-Guided Parallelization 9

2.2 Three-Dimensional Data Dependency View

The 3D Data Dependency View provides a way for programmers to interactively
explore the code’s data layout as well as the parallelization options for the loop
nests. This view can be launched directly from the Loop-Procedure View by se-
lecting a hotspot. In this view, the iteration spaces of loops within a procedure are
visualized. Statements in the loops are mapped to a higher dimensional space
based on the polyhedral model [3]. Each statement has a domain determined
from its enclosing control statement. Its upper and lower bounds are extracted
from the enclosing loops, and intersected with the domains of conditional state-
ments to obtain a system of linear constraints that defines a polyhedron. The
polyhedron in this space is projected into the 3D world space for visualization.

Loop nests do not necessarily have to be tightly nested and dependencies can
cross loop boundaries. There is no limit on the level of nesting. By selecting a
loop in the code panel, the visualizer will highlight the associated domains of the
all enclosed statements within the loop. This reduces clutter in the visualization.
The data dependencies are currently obtained by static analysis and dynamic
analysis built into the framework. The analyses yield flow dependence (read after
write), output dependence (write after write), and anti-dependences (write after
read). Each dependency is represented by an arrow drawn between the projected
coordinates of the source and target statement instance in the 3D world space.
Static analysis of dependencies is conservative in order to guarantee correctness,
thus dependencies may be over-reported. On the other hand, dependencies ob-
tained by dynamic analysis are dependent on the execution instance and may

Program Structure
View

Selected statement
instance

Statement
domain

Dependencies

Fig. 4. Selection of a statement instance (line 8, iteration (i = 4, r = 5, k = 8)) in the
Data Dependency View. Blue arrows indicate the dependences of this instance. Pink
arrows show which statements are dependent on the selected instance.

10 Y.W. Wong et al.

be input-dependent. However, it can obtain dependencies in cases where static
analysis is difficult or impossible, such as code involving pointer arithmetic.

Initially, the convex hulls corresponding to each statement domain are shown
to the user, with each statement using a different color. As the user zooms in,
statement instances and data dependencies (represented by cubes and arrows)
become visible to the user. This constrains the amount of information that is
shown to the user at any one time. Furthermore, users can use the mouse to
obtain more information about each point of interest, e.g. the dependencies of a
particular statement instance in the iteration space, or which specific statement
instances are responsible for a particular dependency (see Fig. 4), by clicking on
a node or an arrow in the view. This view also provides additional features that
allow users to further understand the code, and reason about the parallelization
options. For example, users can step through the iteration space either manually
or via animation to visualize the execution order of the statement instances. This
allows users to see the dependencies as they are generated during execution, and
to visually inspect if parallelization of certain loops are safe.

As a convenience to users, hints that depict parallel loops are provided by
the visualization engine by drawing a set of hyperplanes on top of the view. In
general, the equations for each hyperplane are specified as a set of constraints
such that statement instances that fall within the same plane can be executed
by the same thread. These planes are projected down to 3D space, and drawn as
an overlay on top of the polyhedral visualization. The framework also includes
an OpenMP parallelization component that assists the user in parallelizing code.
This component helps to insert OpenMP directives into the original source code
by presenting a list of parallelizable loops for the user to choose from. After
selecting the loop to parallelize, it then allows the user to modify a list of shared
and private variables that have been automatically detected. Reduction patterns
can also be detected and highlighted to the user. The modified code can be
previewed by the user before committing the changes.

3 Examples

In this section, we shall demonstrate the use of our visualization framework
on two examples. The first example is an image processing example found in
many applications. The second example is from 482.sphinx3, a speech recognition
application taken from the SPEC CPU2006 benchmark suite [12].

3.1 Anisotropic Diffusion

Anisotropic diffusion is an image noise reduction technique that is commonly
used in applications such as in ultrasound imaging or magnetic resonance imag-
ing [10]. It simulates an iterative diffusion process which is non-linear and space-
variant, and is aimed at removing image noise while at the same time preserving
important image details, especially the edges in an image. The algorithm takes a
noisy image and calculates for each pixel a set of eight values based on predefined
kernels, and then accumulates the sum of their weighted differences.

Tulipse: A Visualization Framework for User-Guided Parallelization 11

Fig. 5. Visualization of the code section in the diffuse procedure. The user can select
statements using the Program Structure View on the right to highlight the enclosing
domains. No arrows cross the planes normal to j and k axes, indicating that the j and
k loops are parallelizable.

From the Loop-Procedure View, we determined that the code section in the
diffuse procedure took up about 98% of the total execution time while the
rest is mainly due to I/O operations. Figure 5 shows the corresponding polyhe-
dral model of the code. Since there are three for-loops present, the 3D iteration
space resembles a rectangular cuboid. Each colored cube represents a state-
ment instance within the iteration space, and each arrow represents a producer-
consumer relationship between statement instances. The i, j and k axes denote
the direction of their respective loop iterations. As the implementation contains
pointer arithmetic, the dependencies were obtained using dynamic analysis. The
user can highlight a statement instance in the Data Dependency View by select-
ing the corresponding statement in the code panel on the right. By inspecting
the polyhedral model in Fig. 5, the user is able to determine that only planes
normal to the j and k axes do not have any arrows crossing them. Therefore, the
corresponding j and k loops do not have any loop-carried dependencies and are
fully parallelizable. The programmer may then select the outer loop and invoke
the OpenMP parallelization component to insert OpenMP directives to the loop.

On a Intel Core 2 Extreme Q6850 processor running at 3.00GHz and with a
512 by 512-pixel image, the OpenMP version of the code yielded close to a 4 times
speedup compared to the original single-threaded version. This is a significant
improvement because the sequential version of the code is not suitable for many
practical applications that demand real-time processing of images acquired from
sensors. The sequential form of the code could only manage about 4.2 frames

12 Y.W. Wong et al.

per second (fps), whereas the OpenMP version obtained a respectable 16.6 fps.
This improvement is significant as it will allow the algorithm to be used in many
real-time applications.

3.2 Speech Recognition System (482.sphinx3)

Sphinx-3 is a speech recognition system based on the Viterbi search algorithm
using beam search heuristics. The inputs are read initially, and the application
then processes the speech to calculate the probabilities at each recognition step
in order to prune the set of active hypothesis. We overlaid the runtime statistics
on the Loop-Procedure View and identified two hotspots. Essentially, the ap-
plication is dominated by two procedures that together account for over half of
the total runtime. The two hotspot procedures identified are mgau eval, which
accounted for 30.1% of the total cycles, and vector gautbl eval logs3, which
accounted for 24.5% of the total cycles. These two procedures also accounted for
92.9% of the total floating point instructions issued. Analysis of the source code
revealed that the two procedures are executing similar loops. As such, we shall
only present one of the procedures, mgau eval, in this paper. The procedure
consists of a two-dimensional loop with the inner loop accumulating a score for
the search probabilities.

The polyhedral model generated by the Data Dependency View is shown
in the Fig. 6. The polyhedra are two-dimensional planes, which correspond to
the two-dimensional loop. The statement represented by the gray nodes has a
flow dependence to the statement represented by the blue nodes. Within the
j iteration, the red and blues nodes have a flow dependence, as well as a loop-
carried data dependence. By inspecting Fig. 6, the user can see that it is possible

Fig. 6. Visualization of the mgau eval procedure. Loop iterations along the i axis can
be partitioned since there are no dependencies in the horizontal direction.

Tulipse: A Visualization Framework for User-Guided Parallelization 13

to partition the polyhedra in the i domain by cutting across the i axis. In other
words, one can parallelize the i loop without violating the correctness of the
code, since there are no arrows in the horizontal direction, and therefore, no
dependencies in the i direction.

4 Related Work

A number of visualization tools that target the Fortran language have been
developed over the past two decades. The ParaScope Editor [6], developed at Rice
University, allows the user to step through each loop in the program and displays
the relevant information in a two-panel window. The bottom panel displays a
list of the detected data-dependences along with the dependence vectors, as well
as other relevant details in a tabular format. The top panel displays the source
code of the current loop under consideration. It then allows the user to select
a transformation that is deemed safe to be applied to the program. NaraView
introduced an interactive 3D visualization system for aiding the parallelization
of sequential programs [11]. Of notable interest is the 3D Data Dependence
View, which displays data accesses as colored cubes and dependences as poles
connecting the cubes. However, NaraView does not perform program profiling
to determine the important loops, and does not include the ability to animate a
walk-through of the iteration space. Instead, it uses the z -axis to represent the
iteration access time and the x-y plane to denote the data location. Therefore,
visualization is limited to loops with a depth of at most two.

SUIF Explorer [8] is another interactive parallelization tool which targets both
the Fortran and C languages. It includes a Loop Profile Analyzer that identifies
the important loops that dominate the execution time. A useful feature of the
tool is that it applies inter-procedural slicing to the program to display only
the relevant lines of code to the programmer so that he can make the appro-
priate decisions. Annotations are added to the code, which are then checked
for their validity by the built-in checkers. The annotations help to enable the
parallelizing compiler to parallelize the loop. However, it does not make use of
OpenMP directives. Other tools such as Merlin [7] provide a textual representa-
tion of the program analysis to the user. It compiles the code using the Polaris
parallelizer, gathers static and dynamic execution data, then performs analysis
using “performance maps”, and finally presents diagnostics about the program
as well as suggestions on how to improve the code to the user in a textual format.
Currently, the only tool that supports 3D visualization for Fortran code is the
Iteration Space Visualizer [15].

In comparison, there are fewer visualization tools that target the C language.
The SUIF Explorer is able to perform inter-procedural analysis on C programs
by building upon the SUIF parallelizing compiler, and presents the results to the
user using program slicing. Another tool that supports C code parallelization is
ParaGraph [1]. It makes use of the Cetus compiler [2] to automatically paral-
lelize loops using OpenMP directives [9]. Alternatively, it also allows the user
to specify the directives, which it validates before attempting parallelization.

14 Y.W. Wong et al.

To our knowledge, ParaGraph is currently the only visualization tool for C that
runs as a Eclipse plug-in. However, apart from the source code outline and a
properties tab, the visualization support provided to the user consists of only
a control flow graph augmented with the dependency information in the form
of directed and dashed arrows between control blocks. Another related work is
VisualPolylib [14], which draws the polyhedral model supplied by the user. How-
ever, the user has to manually extract the model from the code and supply it to
the tool. Apart from ParaGraph, most of the tools are stand-alone front-ends,
and are not integrated with any IDEs. On the other hand, Tulipse is wholly inte-
grated in the Eclipse software development environment, which makes it highly
extensible and allows it to leverage many existing software engineering tools and
plug-ins available in the Eclipse developer framework. In addition, in using our
framework, parallelization opportunities can be identified even if the code cannot
be analyzed using static approaches, such as code involving pointer arithmetic.

The Intel Parallel Advisor [5] is closest to what our framework offers in terms
of capabilities and workflow. However there are a few major differences. First,
Intel Parallel Advisor is mostly textual. Unlike our framework, it does not pro-
vide visualization capabilities. Secondly, the workflow is different. The Advisor
requires the programmers to take a trial and error approach by guessing and
annotating parts of the code which they believe can be parallelized. The Ad-
visor then performs a trial run to detect data races. If races are detected, the
user is notified and may again attempt to identify other parallelizable sections
of the code. On the other hand, in our workflow, the data dependencies are first
obtained and then projected to 3D space to allow the user to directly identify
the parallelization opportunities.

5 Conclusions and Future Work

In this paper, we introduced Tulipse, a visualization framework for parallelization
built on top of Eclipse, with the goal of enhancing program understanding and
reducing the cognitive load of the developers in parallelizing applications.

In Tulipse, the programmer starts with a loop-procedural hierarchy graph
of the entire application using the Loop-Procedure View. This gives the user a
bird’s eye view of the application. Color coding allows for the display of selectable
performance data in this view, allowing the programmer to quickly zoom in to
the hotspots or the problem areas. Zooming in to the loop level exposes the
polyhedral view of the loop. In the Data Dependency View, the programmer
can easily correlate data dependencies found in the code by static or dynamic
analysis. This visualization also allows for the programmer to estimate the effort
involved in attempting to parallelize the loop along a particular dimension of the
iteration space. The user may invoke the OpenMP parallelization component to
aid in adding OpenMP directives to the selected loop.

Performance is but one aspect of software development. By being integrated in
a rich software development environment such as Eclipse, it gives developers ac-
cess to a wide range of tools that support their various workflows. As future work,

Tulipse: A Visualization Framework for User-Guided Parallelization 15

we shall be extending Tulipse with other parallelization and performance tuning
visualizers that will grow its functionality, for example cache usage visualization
that will help in identifying optimal data layout.We will also be investigating how
the user can carry out code transformations such as loop skewing and tiling with
the help of interactive visualization.

Acknowledgments. This work was supported by the Agency for Science, Tech-
nology and Research PSF Grant No. 102-101-0028. We are also grateful to the
anonymous reviewers for their suggestions.

References

1. Bluemke, I., Fugas, J.: A tool supporting C code parallelization. Innovations Com-
put. Sci. Soft. Eng., 259–264 (2010)

2. Dave, C., Bae, H., Min, S.J., Lee, S., Eigenmann, R., Midkiff, S.: Cetus: A source-
to-source compiler infrastructure for multicores. Computer 42, 36–42 (2009)

3. Girbal, S., Vasilache, N., Bastoul, C., Cohen, A., Parello, D., Sigler, M., Temam,
O.: Semi-automatic composition of loop transformations for deep parallelism and
memory hierarchies. Int. J. Parallel Program. 34, 261–317 (2006)

4. HPCToolkit, http://www.hpctoolkit.org
5. Intel Parallel Advisor, http://software.intel.com/en-us/
6. Kennedy, K., McKinley, K.S., Tseng, C.W.: Interactive parallel programming using

the ParaScope editor. IEEE Trans. Parallel Distrib. Syst. 2, 329–341 (1991)
7. Kim, S.W., Park, I., Eigenmann, R.: A Performance Advisor Tool for Shared-

Memory Parallel Programming. In: Midkiff, S.P., Moreira, J.E., Gupta, M., Chat-
terjee, S., Ferrante, J., Prins, J.F., Pugh, B., Tseng, C.-W. (eds.) LCPC 2000.
LNCS, vol. 2017, pp. 274–288. Springer, Heidelberg (2001)

8. Liao, S.W., Diwan, A., Bosch Jr., R.P., Ghuloum, A., Lam, M.S.: SUIF Explorer:
an interactive and interprocedural parallelizer. In: PPoPP, pp. 37–48 (1999)

9. OpenMP, http://www.openmp.org
10. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion.

IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)
11. Sasakura, M., Joe, K., Kunieda, Y., Araki, K.: Naraview: An interactive 3D visual-

ization system for parallelization of programs. Int. J. Parallel Program. 27, 111–129
(1999)

12. SPEC CPU 2006 v1.1, http://www.spec.org
13. Tau: http://www.cs.uoregon.edu/research/tau/
14. VisualPolylib, http://icps.u-strasbg.fr/polylib/
15. Yu, Y., D’Hollander, E.H.: Loop parallelization using the 3D iteration space visu-

alizer. J. Visual Lang. Comput. 12, 163–181 (2001)

http://www.hpctoolkit.org
http://software.intel.com/en-us/
http://www.openmp.org
http://www.spec.org
http://www.cs.uoregon.edu/research/tau/
http://icps.u-strasbg.fr/polylib/

	Tulipse: A Visualization Framework for User-Guided Parallelization
	Introduction
	Overview of Tulipse
	Loop-Procedure View
	Three-Dimensional Data Dependency View

	Examples
	Anisotropic Diffusion
	Speech Recognition System (482.sphinx3)

	Related Work
	Conclusions and Future Work
	References

