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Abstract. Petascale computing requires complex runtime systems that need to
consider load balancing along with low time and message complexity for schedul-
ing massive scale parallel computations. Simultaneous consideration of these ob-
jectives makes online distributed scheduling a very challenging problem. For state
space search applications such as UTS, NQueens, Balanced Tree Search, SAT
and others, the computations are highly irregular and data dependent. Here, prior
scheduling approaches such as [16], [14], [7], HotSLAW [10], which are dom-
inantly locality-aware work-stealing driven, could lead to low parallel efficiency
and scalability along with potentially high stack memory usage.

In this paper we present a novel distributed scheduling algorithm (LDSS) for
multi—plac parallel computations, that uses an unique combination of d-choice
randomized remote (inter-place) spawns and topology-aware randomized remote
work steals to reduce the overheads in the scheduler and dynamically maintain
load balance across the compute nodes of the system. Our design was imple-
mented using GASNet AP]E and POSIX threads. For the UTS (Unbalanced Tree
Search) benchmark (using upto 4096 nodes of Blue Gene/P), we deliver the best
parallel efficiency (92%) for 295B node binomial tree, better than [16] (87%)
and demonstrate super-linear speedup on 1 Trillion node (largest studied so far)
geometric tree along with higher tree node processing rate. We also deliver upto
40% better performance than Charm++. Further, our memory utilization is lower
compared to HotSLAW. Moreover, for NQueens (N = 18), we demonstrate su-
perior parallel efficiency (92%) as compared Charm++ (85%).

1 Introduction

State space search problems such as planning and scheduling problems in manufactur-
ing industries and world wide web, VLSI design automation problems (routing, floor-
planning, cell placement and others), N-Queens [8], Traveling Salesman problem and
other discrete optimization problems are very fundamental in nature and hence fre-
quently used in many industry application domains and systems research. Since all
these problems are NP-Hard, one needs to resort to systematic but intelligent state

! Multi-place refers to a group of places. For example, with each place as an SMP(Symmetric
MultiProcessor), multi-place refers to cluster of SMPs.
2 http://gasnet.cs.berkeley.edu
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space search to find optimum solutions. The states and the transition function(s) (in-
cluding constraints) between the states are defined according to the nature of the state
space search problem. The objective of the state space search problem is to find a path
from a start state to a desired goal state (or a path from the start to each among a set of
goal states). For a lot of state space search problems, in order to search the given state
space, one constructs a search tree where each node in the search tree represents the
state reached during the search.

Even though it seems that state space search problems require exponential number of
processors (as compared to graph algorithms such as depth-first search etc.) since their
worst case time is almost always exponential, the average time complexity of heuristic
search algorithms for some problems is polynomial [[17] [12]]. Furthermore, there are
heuristic search algorithms that find suboptimal solutions for specific problems in poly-
nomial time. In such cases, bigger problem instances can be solved using large scale
parallel computing infrastructure. Many discrete optimization problems (such as robot
motion planning, speech understanding, and task scheduling) require realtime solutions.
For these applications, parallel processing may be the only way to obtain acceptable
performance. Since the state space search involves higher irregular computation DAG,
it suffers from severe load balancing problems.

Further, with the advent of petascale machines such as K-Computer B, Jaguar H,
Blue Gene/Q and others, there is an imminent demand for strong performance and
scalability of large scale computations along with improved programmer productiv-
ity. Thus, there is a strong need to have efficient scheduling frameworks as part of
run-time systems that can meet these performance and productivity objectives simul-
taneously. For handling large parallel computations, the scheduling algorithm (in the
run-time system) should be designed to work in a distributed fashion. For the execution
of dynamically unfolding irregular and data-dependent parallel computations, the on-
line scheduling framework has to make decisions dynamically on where (which place
and core/processor) and when (order) to schedule the computations. Further, the criti-
cal path of the scheduled computation is dependent on load balancing across the cores
as well as on the computation and communication overheads. The scheduler needs to
maintain appropriate trade-offs between load balancing, communication overheads and
space utilization. Simultaneous consideration involving space, time, message complex-
ity and load balance makes distributed scheduling of large scale parallel state space
search applications a very challenging problem.

Distributed Scheduling for parallel computations is a well studied problem in the
shared memory context starting from the pioneering research by Blumofe and Leiser-
son [3] on Cilk scheduling, followed by later work including [2] [1]] [4] [6] amongst
many others. These efforts are primarily focused on work-stealing efficiency improve-
ment in shared-memory architectures without considering explicit affinity annotations
by the programmer. With the advent of distributed memory architectures, lot of recent
research on distributed scheduling looks at multi-core and many-core clusters [[16] [15].
All these recent efforts primarily achieve load balancing using (locality-aware) work

3 http://www.fujitsu.com/global/about/tech/k/
4 http://www.nccs.gov/computing-resources/jaguar/
5 http://www-03.ibm.com/systems/deepcomputing/solutions/bluegene/
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stealing across the nodes in the system. Although, this strategy works well for slightly
irregular computation such as UTS for geometric tree, it could result in large parallel
inefficiencies when the computation is highly irregular (binomial tree for UTS). Cer-
tain other approaches such as [[14] consider limited control and no data-dependencies
in the parallel computation, which limits the scope of applicability of the scheduling
framework.

In this paper, we address the following distributed scheduling problem.

Given:
(a) A parallel computation DAG (Fig.[Il(a)) that represents a parallel multi-threaded
computation. Each node in the DAG is a basic operation (instruction) such as and/or/add
etc. Each edge in the DAG represents one of the following: (a) Spawn of a new thread;
(b) Sequential flow of execution;or, (¢) Synchronization dependency between two nodes.
The DAG is a strict parallel computation DAG (synchronization dependency edge rep-
resents a thread waiting for the completion of a descendant thread, details in section 2)).
(b) A cluster of n SMPs (refer Fig.[Tl(b)) as the target architecture on which to schedule
the computation DAG. Each SMP also referred as place has fixed number(m) of pro-
cessors and memory. The cluster of SMPs is referred as the multi-place setup.
Determine: An online schedule for the nodes of the computation DAG in a distributed
fashion that ensures:
(a) good trade-off between load-balance across the nodes and communication over-
heads;
(b) Low space, time and message complexity for execution.

In this paper, we present the design of a novel distributed scheduling algorithm (referred
as LDSS) that combines topology-aware inter-place prioritized random work stealing
with d-choice based randomized distributed remote spawns to provide automatic dy-
namic load balancing across places. Our LDSS algorithm partitions the compute nodes
of the target system into disjoint groups. By using higher priority for limited radius
(within a group) work stealing as well as remote spawns across the places (as compared
to farther off, outside the group) our algorithm achieves low overheads. The remote
spawns happen within the group to maintain affinity, while they are enabled across
the groups to improve load-balance in the system. By controlling the rate of remote
spawns[é), rate of remote work steals, granularity of work steals and group size one
can obtain a balanced trade-off point between load balancing, scheduling overheads
and space utilization. Our main contributions are as follows:

— We present a novel online distributed scheduling algorithm (referred to as LDSS)
that uses an elegant combination of topology-aware remote (inter-place) spawns
based on randomized d-choice load balancing and remote prioritized random work
steals to reduce the overheads in the scheduler and to dynamically maintain load
balance across the compute nodes of the system.

— By tuning the parameters such as granularity of remote steals, remote work-steal
rate, value of d in d-choice based remote spawns, compute group-size and oth-
ers we obtain optimal trade-offs between load-balance and scheduling overheads

8 Ratio of remote spawned threads to total spawned threads at a processor.
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that results in scalable performance. The LDSS algorithm was implemented using
GASNet API and POSIX threads to enable asynchronous communication across the
nodes and improve computation-communication and communication-communication
overlap.

— Using upto 4096 nodes of Blue Gene/P we obtained superior performance as com-
pared to prior approaches. For the binomial tree UTS (Unbalanced Tree Search)
benchmark [1, LDSS delivers: (a) Upto around 40% better performance than
Charm++ [15] and [L16]; (b) Best parallel efficiency (92%) for 295B node tree
as compared to best prior work [14] [16] (87%). LDSS demonstrates super-
linear speedup for 1 Trillion node geometric tree and best processing rate of around
4GNodes/s for 16Trillion node geometric tree (largest studied so far by any prior
work). Further on benchmarks such as NQueens [8], LDSS demonstrates superior
parallel efficiency as compared to Charm++ on Blue Gene/P, MPP architecture.

Single Place with
multiple processors Multiple Places with multiple
processors per place

SMP Node SMP Node

Syvtem Bus

SMP Cluster

(b)

Fig. 1. (a) Computation DAG. (b) Multiple Places: Cluster of SMPs

2 System and Computation Model

The system on which the computation DAG is scheduled is assumed to be cluster of
SMPs connected by an Active Message Network (Fig. [Ib)). Each SMP is a group of
processors with shared memory. Each SMP is also referred to as place in the paper.
Active Messages ((AM )H is a low-level lightweight RPC(remote procedure call) mech-
anism that supports unordered, reliable delivery of matched request/reply messages. We
assume that there are n places and each place has m processors.

The parallel computation to be dynamically scheduled on the system, is assumed
to be specified by the programmer in languages such as X10 and Chapel. To describe
our distributed scheduling algorithm, we assume that the parallel computation has a
DAG(directed acyclic graph) structure and consists of nodes that represent basic op-
erations (as in a processor instruction set architecture) like and, or, not, add and so
forth. There are edges between the nodes (basic instructions such as and/or/add etc) in
the computation DAG (Fig. [[a)) that either represent: (a) creation of new activities

"http://barista.cse.ohio-state.edu/wiki/index.php/UTS
8 Active Messages defined by the AM-2:
http://now.cs.berkeley.edu/AM/active messages.html
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(spawn edge), (b) sequential execution flow between the nodes within a thread/activity
(continue edge) and (c) synchronization dependencies (dependence edge) between the
nodes. In the paper, we refer to the parallel computation over nodes (basic instructions
such as and/add/or) to be scheduled as the computation DAG. At a higher level, the
parallel computation can also be viewed as a computation tree of threads. Each thread
(as in multi-threaded programs) is a sequential flow of execution of instructions and
consists of a set of nodes (basic operations/instructions); and it may or may not have an
affinity annotation defined by the programmer. Fig. [I] shows a strict computation dag
where: v1..020 denote nodes, T'1...T°6 are threads and P1..P3 denote places).

Based on the structure of dependencies between the nodes in the computation DAG,
there can be multiple types of parallel computations such as: (a) Fully-strict compu-
tation: Dependencies are only between the nodes of a thread and the nodes of its im-
mediate parent thread; and, (b) Strict computation: Dependencies are only between the
nodes of a thread and the nodes of any of its ancestor threads.

3 LDSS: Scheduling Algorithm

Our distributed scheduling algorithm, LDSS, attempts to achieve communication ef-
ficient load balancing across the places with low scheduling overheads. In order to
achieve this goal, we make the following design choices: (a) Topology Awareness: The
places in the system are clustered into small groups based on their distances amongst
each other in the topology of the underlying target architecture; (b) Two-level Work
Stealing: Our algorithm uses work-stealing at two-levels. One is intra-place random-
ized work stealing to achieve load balance across the processors within a place. The
other is inter-place prioritized (topology-aware) randomized work stealing that provides
load balance across the places in the system; (¢) Load Balance driven Randomized
Work Pushing: LDSS incorporates (topology-aware) work-pushing across the places
(nodes) in the system. This uses the d-choice randomized load balancing algorithm
to achieve low load imbalance across the groups. The rate of such remote spawns is
automatically adjusted during the algorithm;and, (d) Dedicated Communication Pro-
cessor: In order to handle inter-place spawns we assign a dedicated communication
processor in each node (place). This communication processor uses GASNet API to
enable asynchronous communication and improves the performance of the scheduling
algorithm by enabling computation-communication overlap as well as communication-
communication overlap across the places. Within a place, the online unfolding of the
computation DAG happens in a depth-first manner to enable efficient space and time
execution. To achieve load balancing within a place, work-stealing is enabled to allow
load-balanced execution of the computation sub-graph associated with that place. The
computation DAG unfolds in an online fashion in a breadth-first manner across places
when the threads are pushed (remote spawns) onto remote places for better load bal-
ance. This execution strategy leads to low overall stack space requirement as compared
to prior approaches which use a combination of work-first and help-first policies [[10].
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Fig. 2. (a) Distributed data-structures at a Place. (b) Work Stealing & Remote Spawns

3.1 Distributed Data Structures

Each place has a dedicated communication processor (different from workers) to man-
age remote communication with other places. This processor manages the following
data-structures (Fig.2U(b)): (a) Fresh Activity Buffer(FAB) is a non-blocking FIFO data-
structure. It contains threads that are remote spawned onto this place by remote nodes
due to either the place annotation of the thread or the need for inter-group load bal-
ancing; (b) Remote Spawn queue (RS) is a non-blocking FIFO data-structure which
contains all the threads that are to be remote spawned by local processors onto remote
places; (¢) Remote Enable Buffer (RE) is a non-blocking deque data structure, which
contains all the remote enable signals issued by local processors to remote places;and,
(d) Remote Stealing queue (RSRQ) is a FIFO data-structure contains all the remote steal
requests received by this particular place from other places within the same group.

Each worker (processor) at a place has the following data-structures (refer Fig.2l(b)):
(a) Ready Deque: is a deque that contains the threads of the parallel computation that
are ready to execute locally. This is accessed by the local processor only; (b) Steal
queue: is a non-blocking deque that contains threads that are ready to be stolen by the
some other processor at a local or remote place. It is accessed by other local processors
or communication processor for work stealing from this processor. In helps in reducing
the synchronization overheads on the local processor;and, (c) Stall Buffer: is a deque
that contains the threads that have been stalled due to dependency on another thread
that are either spawned locally or remotely in the parallel computation. This is only
accessed by the local processor.

3.2 Algorithm Design

During execution, the LDSS algorithm is able to keep track of data and control depen-
dencies in the computation DAG, by using enable signals. Flow of enable signals across
the places is managed by the dedicated communication processor at each place, using
the Remote Enable buffer. The root place receives communication from each place on
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the status of work at each place and based on the termination condition of the program,
the root node sends termination signal to each node. This technique can be further en-
hanced using well-known global termination detection techniques. The actions taken
by the (general) processors and the dedicated communication processor at each place,
P;, are described below.

General Processor Actions: At any step, a thread A at the 7" processor (at place i),
W/, may perform the following actions:

1. Spawn

(a) A spawns B locally: B is successfully created and starts execution whereas A
is pushed into the bottom of the Ready Deque.

(b) A spawns B remotely: (¢) If affinity for B is for a place, P;, the target place =
P;. (i3) Else, if B is anyplace thread, then determine the target place using d-
choice randomized selection. (iii) Active message for B is enqueued on head
of the Remote Spawn queue with the destination as the target place.

2. Terminates (A terminates): The processor at place P;, W, where A terminated,
picks a thread from the bottom of the Ready Deque for execution. If none available
in its Ready Deque, then it tries to transfer all the threads from Steal queue to Ready
Deque and pick from the bottom of the deque. If steal queue is empty then it steals
from the top of other processors’ Steal queue. Each failed attempt to steal from
another processor’s Steal queue is followed by attempt to get the topmost thread
from the FAB at that place. If there is no thread in the FAB then another victim
processor is chosen from the same place. If no thread is available at that place, then
enable inter place work stealing. (The communication processor helps in inter-place
work-stealing by using the d-choice prioritized random selection of victim places
and deciding the target place.)

3. Stalls (A stalls): A thread may stall due to control or data dependencies in which
case it is put in the Stall Buffer in a stalled state. Then same as Terminates (case 2)
above.

4. Enables (A enables B): A thread, A, (after termination or otherwise) may enable a
stalled thread B . If B is a local thread then the state of B changes to enabled and it
is pushed onto the appropriate position of the Ready Deque. It B is remotely stalled
then push the enable signal for that place at the bottom of the Remote Enable buffer.

Dedicated Communication Processor Actions: At any moment during the execution,
the dedicated communication processor at place ¢ will try pick up an active message
from the bottom of the Remote spawn queue. Each failed attempt is followed by attempt
to pick up an enable signal from bottom of the Remote Enable buffer. If there is no
enable signal in Remote Enable buffer and inter place work stealing is enabled then it
randomly non-uniformly (with priority) chooses d distinct places (with higher priority
to places within its own group) and sends the active messages requesting workloads. On
receiving reply from these places, it selects that target place (victim place) as the one
with the highest load (as measured in the prior time interval). If this fails, then it tries
to pick up the request from the bottom of the Remote Stealing buffer and sends it an
available thread at this place. All these operations require asynchronous and one-sided
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communication with other places. Hence, we implemented our LDSS algorithm using
GASNet.

The dedicated communication processor also helps in maximizing computation-
communication overlap as well as communication-communication overlap. When, a
thread needs data from another place, it sends the request to the communication pro-
cessor. The communication processor forwards that request to the place that contains
that data. This goes in parallel with the computation that can be performed at the pro-
cessor where the data request originated. Hence, one gets computation-communication
overlap. Moreover, multiple communication requests including remote steal requests,
remote enable and d-choice selection all can proceed in parallel with different places,
leading to effective communication-communication overlap.

Remote Spawns

Place(i) Place(j)

Steal Deque

Steal Deque

=

R
WI ’T‘ Stall Buffer

ReadyDeque
ReadyDeque

Stall Buffer

RSA = Remote request queue, RS = R queus, FAB = Fresh Activity buffer, & RE = Remote enable buffer

Fig. 3. Remote-spawn from Place(i) to Place(j)

Remote Spawns: Any processor that needs to spawn a thread (Fig [3), enqueues the
active message for creation of that thread at the head of the Remote Spawn buffer. The
dedicated communication processor pops the active message from the Remote Spawn
buffer and sends it to the appropriate place asynchronously. The communication proces-
sor uses d-choice randomized load balancing for choosing the appropriate destination
place. Here, random d groups are selected and the one with the lowest load is chosen as
the destination. Each place maintains a load vector that contains load of d places. This
load vector is updated (d each time) at periodic intervals. The rate of remote spawns is
adjusted automatically (by considering relative load difference between this node and
system average load) to reduce overheads while at the same time provide optimal trade-
off between load balancing across the places and scheduling overheads. The d-choice
based remote spawns result in good load balancing while keeping low schedul-
ing overheads. It is well-known [[11]] that pure random assignment of m balls (threads)

to n bins (m >> n) leads to O(\/mlof(”)) gap across the bins (servers, processors)

while d-choice based assignment leads to O(Inln(n)) gap across the bins. Thus, the
instantaneous load-imbalance across the nodes (places) reduces in the system.
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Workstealing: Each core (processor) uses Ready Deque (lockless queue for threads
intended for local execution and Steal queue (synchronized queue) for threads that can
be stolen. Each place in the system is associated with one and only one group. For
inter-place work stealing higher priority is given to the groups close in the target topol-
ogy as compared to the groups farther away. Once all the processors becomes idle at a
place, the dedicated (communication) processor at that place (thief)) queries a randomly
selected place (victim) about its load. When the victim dedicated communication pro-
cessor receives the request for worksteal from a thief, it randomly deques a thread from
one of its local processors’ Ready deque and sends it to thief place for its continuation.

4 Results and Analysis

Experimental Setup: We used upto 4096 compute nodes/places (with 4 cores/
processors per place, total 16384 cores in the system) of Blue Gene/P (Watson 4P H)
for empirical evaluation of our distributed scheduling algorithm. Each compute node
(place) in Watson 4P is a quad-core chip with frequency of 850 MHz having 4 GB of
DRAM and 32 KB of L1 instruction and data cache per core. Nodes (places) are inter-
connected by a 3D torus interconnect (3.4 Gbps per link in each of the six directions)
apart from separate collective and global barrier networks. For efficient compute and
communication overlap, GASNet was used since it provides asynchronous one sided
message passing primitives. GASNet is a language-independent, low level network-
ing layer that provides network-independent, high performance communication primi-
tives tailored for implementing Parallel Global Address Space. GASNet’s DCMF (Deep
Computing Messaging Framework) conduit is the native port of GASNet to BlueGene/P
architecture as it uses DCMF for the lower level communication between nodes.

Benchmarks: We implemented our distributed scheduling algorithm (LDSS) using
pthreads (NPTL API) and GASNet as the underlying communication layer. The LDSS
algorithm and benchmarks were compiled using mpixlc r with optimization options -
03, -qarch=450, -qtune=450 and -qthreaded. We present comparison of performance
and scalability with Charm++ [[15]] on Blue Gene/P architecture and show that we have
superior results. The benchmarks used for evaluation include:

— Unbalanced Tree Search (UTS): The Unbalanced Tree Search problem is to count
the number of nodes in an implicitly constructed tree that is parameterized in shape,
depth, size and imbalance, and,

— NQueens: NQueens is a backtracking search problem to place N queens on a N by
N chess board so that they do not attack each other. We target at finding all solu-
tions for N Queen problem.

Note: UTS and NQueens are strict parallel computations as both of them have
parent-child dependencies.

Scalability Analysis: Here, we present scalability analysis for the benchmarks. Fig.[dl(a)
and Fig. dl(b) demonstrate the strong scalability of LDSS algorithm with increasing

o http://www.research.ibm.com/bluegene
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number of nodes (places) from 128 to 4096 for geometric type UTS tree with 270 Bil-
lion, and 1 Trillion tree size respectively. Here, the granularity of work-stealing was
kept as 50 and the group size chosen was 8. For 270B geometric tree, the LDSS al-
gorithm achieves super-inear speedup of around 36.6 x (from 25245 to 69s) with 32x
increase in number of nodes. The LDSS algorithm has better performance as compared
to Charm++ by at least 28% throughout the variation in compute nodes. For the 1T ge-
ometric tree, the LDSS algorithm also achieves super-linear speedup of around 37.5x
(from 9491s to 253s) with 32X increase in number of nodes. Here again, the LDSS
algorithm has better performance (2352s) as compared to Charm++ (3667s) by around
36% at 512 compute nodes, and by 35% (1007s vs 1541s) at 1024 nodes. Charm++
gave memory error for 128 and 256 nodes (places).

On 4096 nodes, LDSS had a completion time of 69s for 270B nodes, 253s for 1T
nodes, 993s for 4T nodes and 4037s for 16T nodes; which demonstrates better than
linear data scalability. For 16Trillion nodes, LDSS delivers processing rate of 3.96G
Nodes/s, which is the best reported so far in the literature. Further, the parallel effi-
ciency achieved is slightly better as compared to the best prior work [7], and this is
demonstrated on the geometric tree 16Trillion tree nodes which is largest amongst the
maximum sizes considered by any prior work including [[14]] [16] [10].

Fig. Bl(a) and Fig. Bl(b) demonstrate the strong scalability of LDSS algorithm with
increasing number of nodes (places) from 128 to 1024 for binomial type UTS tree with
157 Billion, and 295 Billion tree size respectively. Here, the granularity of work-stealing
was kept as 50, the group size chosen was 8, the base remote spawn rate was set at 50
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and d was chosen as 3 for d-choice randomized load balancing during remote spawns.
For 157B binomial tree, the LDSS algorithm achieves a speedup of around 7.34 x (from
1021s to 139s) with 8 x increase in number of nodes, resulting in parallel efficiency of
around 92%. The performance of LDSS is better than Charm++ by around 27% at 128
nodes and by around 22% at 1024 nodes.

For the 295B binomial tree, the LDSS algorithm also achieves a speedup of around
7.34x (from 1715s to 234s) with 8 x increase in number of nodes, resulting in parallel
efficiency of 91.75%. The efficiency achieved is better than the best prior work [[16] by
around 5%. Further, for 295 B nodes, LDSS has lower time than Charm++ by around
32% at 128 nodes and by around 35% at 1024 nodes.

The efficiency for binomial tree is lower than the geometric tree case since the bino-
mial tree has larger depth and smaller breadth and hence more unbalanced as compared
to the geometric tree. Due to this, the scheduling algorithm incurs larger overheads of
remote spawns and work stealing in-order to achieve load balance across the compute
nodes in the system. Hence, the geometric tree is able to achieve high efficiency even
without remote spawns. The average (across varying number of compute nodes) single
node performance of LDSS for Binomial tree is 1.1/ nodes/sec as compared to 0.85M
nodes/s for Charm++; while that for Geometric tree it is 0.96 M nodes/s (for LDSS) as
compared to 0.70M nodes/s for Charm-++.

The parallel efficiency results (w.r.t. 128 nodes (places)) for NQueens benchmark are
presented in Fig. Bl(c). While for NQueens 20, LDSS delivers super-linear scalability
and sustains parallel efficiency of 103% even at 2048 nodes; for NQueens 18 the parallel
efficiency drops to 91% at 2048 nodes (places). This is due to exponential increase in
size of NQueens 20 w.r.t. NQueens 18. For NQueens 18, the parallel efficiency achieved
by LDSS is better than that for Charm++ (around 85%) [13].
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Fig. [6lc) illustrates the impact of change in group size on the overall performance
of the LDSS algorithm. This variation is considered with different values of d in d-
choice randomized spawns. For most group sizes (16, 64, 128, 256), as the value of d
increases, the time increases while for group size 32, d value equal to 40 gives the best
performance. Thus, there is an optimal combination of group size and d that gives the
best performance. In general, as d increases for a given group size, the communication
overheads increase leading to a larger overall time, while for some values of group
size, larger d could also lead to better load balance within the system. For d = 32
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we observed this by studying the load across the compute nodes in the system. This
represents complicated trade-offs between load balance and communication overheads
involved in scheduling binomial UTS trees.

Fig.[6l(a) presents space usage (in number of stack frames) of the total space usage
per processor (including the space used by the dedicated communication processor) as
the computation progresses in the case of UTS/binomial tree with 15758 nodes. The
maximum space used is less than 2000 stack frames. This at least 3 lesser than that
reported by HotSLAW [10], which reports maximum space usage of around 8000 stack
frames and stays above 2000 stack frames for quite sometime. This is because LDSS
does not use help-first policy which leads to BFS expansion of the graph and larger
usage of space, while HotSLAW uses a combination of work-first and help-first policy
as does SLAW [6]]. Fig.[6l(b) reports the standard deviation in load across the compute
nodes in the system for LDSS with tuned (gasnet-opt) and untuned (MPI-unopt) pa-
rameters , as the computation progresses for 157 B binomial tree. By using GASNET
and parameter tuning LDSS achieves around 8 x lower standard deviation (and hence
better load balance) as compared to MPI implementation and untuned parameters.

5 Related Work

Distributed Scheduling for parallel computations is a well studied problem in the shared
memory context starting from the pioneering research by Blumofe and Leiserson [3]]
on Cilk scheduling, followed by later work including [2] [1] [4] [6] amongst many
others. These efforts are primarily focused on work-stealing efficiency improvement
in shared-memory architectures without considering explicit affinity annotations by the
programmer. With the advent of distributed memory architectures, lot of recent research
on distributed scheduling looks at multi-core and many-core clusters.

Olivier et.al. [[14] consider work stealing algorithms in distributed and shared mem-
ory environments, with one sided asynchronous communications. This work considers
task migration on pull based mechanism and ignores affinity as well as it considers
computations with no dependencies.

Dinan et.al. [7] construct distributed and local task pools for its dynamic load bal-
ancing model. [[7] restricts the execution model by requiring that all tasks enqueued in
task pool are independent. The model is confined to tasks that require only parent-child
dependencies not other way around. Our model supports all the computations that are
strict in nature hence allowing tasks to wait for completion of other tasks.

Saraswat et.al. [16]] introduce a lifeline based global load balancing technique in X/0
which provides better load balancing for tasks as compared to random work stealing,
along with global termination detection using the finish (X10) construct. Our algorithm
considers multiple workers per place and handles data dependencies across the threads
in the computation tree. We demonstrate better efficiency and performance on the bino-
mial tree in UTS benchmark than [16].

Ravichandran et.al. [9] introduce work stealing for multi-core HPC clusters which
allow multiple workers per place and two separate queues for local threads and for re-
mote stealing, but this does not consider locality or data dependencies. Min et.al. [10]

10 Rate of remote spawns, rate of workstealing, granularity of workstealing and group size.
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present a task library, called HotSLAW, that uses Hierarchical Victim Selection (HVS)
and Hierarchical Chunk Selection (HCS) to improve performance as compared to prior
approaches. Our LDSS algorithm uses an elegant combination of two-level work steal-
ing and remote-place (inter-group) work pushing to achieve optimal trade-offs between
load balancing and scheduling overheads. Further, our space requirement is much lower
than that reported by [10] for the UTS benchmark as presented in the Results section 4l
Frameworks such as Scioto framework [5] and KAAPIE] consider distributed setup but
have not demonstrated results at large scale for state space search problems.

Charm++ is a C++ based parallel programming system that implements a message-
driven migratable objects programming model, supported by an adaptive runtime sys-
tem and work stealing [13] [[15)]. Charm++ supports work stealing across places [15]]
and uses a hierarchical mechanism [18] to migrate objects to places (processors) for
load balancing. Zheng et.al. [[18]] consider hierarchical load balancing in Charm++. Our
algorithm incorporates randomized d-choice based work pushing and prioritized inter-
place work-stealing to ensure better instantaneous load balance across the places in the
system. Further, on the UTS benchmark we demonstrate upto 40% better performance
as compared to Charm++ on Blue Gene/P.

6 Conclusions and Future Work

We have addressed the challenging problem of online distributed scheduling of state
space search oriented parallel computations, using a novel combination of d-choice
based randomized remote spawns and topology-aware work stealing. On multi-core
clusters such as Blue Gene/P (MPP architecture), our LDSS algorithm demonstrates
superior performance and scalability (for UTS) and parallel efficiency (for NQueens
benchmark) as compared to prior state-of-the-art approaches such as Charm++. For
UTS (binomial tree) we have delivered highest parallel efficiency (close to 92%) for
binomial tree (better than [16] which delivers 87%); and upto 40% better performance
as compared to Charm-++ [15]. In future, we plan to look into balanced allocation [/11]]
based arguments to compute optimum trade-offs between work sharing and work steal-
ing in large scale distributed environments.
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