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{eric.angel,fadi.kacem,dimitris.letsios}@ibisc.univ-evry.fr

2 LIP6, Université Pierre et Marie Curie, France
{Evripidis.Bampis}@lip6.fr

Abstract. We study the problem of scheduling a set of jobs with re-
lease dates, deadlines and processing requirements (works), on parallel
speed-scalable processors so as to minimize the total energy consump-
tion. We consider that both preemption and migration of jobs are al-
lowed. We formulate the problem as a convex program and we propose a
polynomial-time combinatorial algorithm which is based on a reduction
to the maximum flow problem. We extend our algorithm to the multipro-
cessor speed scaling problem with preemption and migration where the
objective is the minimization of the maximum lateness under a budget
of energy.

1 Introduction

Energy consumption is a major issue in our days. Great efforts are devoted to the
reduction of energy dissipation in computing environments ranging from small
portable devices to large data centers. From an algorithmic point of view, new
challenging optimization problems are studied, in which the energy consumption
is taken into account as a constraint or as the optimization goal itself (for recent
reviews see [1], [2]). This later approach has been adopted in the seminal paper of
Yao et al. [11], where a set of independent jobs with release dates and deadlines
have to be scheduled on a single processor so that the total energy is minimized,
under the so-called speed-scaling model where the processor may run at variable
speeds. Under this model, if the speed of a processor is s then the power con-
sumption is sα, where α > 1 is a constant, and the energy consumption is the
power integrated over time.

Single Processor Case. Yao et al., in [11], proposed an optimal off-line algo-
rithm, known as the YDS algorithm, for the preemptive problem, i.e., where the
execution of a job may be interrupted and resumed later on. In the same work,
they initiated the study of online algorithms for the problem, introducing the
Average Rate (AVR) and the Optimal Available (OA) algorithms. Bansal et al.
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[5] proposed a new online algorithm, the BKP algorithm, which improves the
competitive ratio of OA for large values of α.

Multiprocessor Case. There are two variants of the model. The first variant
allows the preemption of the jobs but not their migration. We call this vari-
ant, the non-migratory variant. This means that a job may be interrupted and
resumed later on, on the same processor, but it is not allowed to continue its
execution on a different processor. In the second variant, the migratory variant,
both the preemption and the migration of the jobs are allowed.

In [4], Albers et al. considered the multiprocessor non-migratory problem of
minimizing the total energy consumption of a set of jobs with release dates and
deadlines. For unit-work jobs with agreeable deadlines, they proposed a polyno-
mial time algorithm. When the release dates and deadlines of jobs are arbitrary,
they proved that the problem becomes NP-hard even for unit-work jobs and
proposed approximation algorithms with constant approximation ratios for the
off-line version of the problem. A generic reduction is given by Greiner et al. (see
[9]) transforming a β-approximation algorithm for the single-processor prob-
lem to a βBα-approximation algorithm for the multi-processor non-migratory
problem, where Bα is the α-th Bell number. Furthermore, they showed that a
β-approximation for multiple processors with migration yields a deterministic
βBα-approximation algorithm for multiple processors without migration.

For the migratory variant, Chen et al., in [8], initiated the study of the en-
ergy minimization speed scaling problem on multiprocessors with migration and
they proposed a efficient algorithm when the jobs have arbitrary works but a
common release date and deadline. In [7], Bingham and Greenstreet proposed a
polynomial-time algorithm for the general problem when the release dates and
deadlines of jobs are arbitrary. Their algorithmmakes use of the Ellipsoid method
(see [10]). Since the complexity of the Ellipsoid algorithm is high for practical
applications, it was interesting to define a faster combinatorial algorithm.

When preparing a previous version of this paper, it came to our knowledge
that Albers et al. [3], independently of our work, considered the same problem
and proposed an optimal O(n2f(n))-time combinatorial algorithm, where n is
the number of jobs and f(n) is the complexity of finding a maximum flow in a
graph with O(n) vertices. They, also, extended the analysis of the single processor
OA and AVR online algorithms to the multiprocessor case with migration.

Our Contribution and Organization of the Paper. We consider the mul-
tiprocessor migratory scheduling problem with the objective of minimizing the
energy consumption. In Section 3, we give a convex programming formulation
of the problem and in Section 4, we apply, the well known KKT conditions to
our convex program. In this way, we obtain a set of properties that are satisfied
by any optimal schedule. Then in Section 5, we propose an optimal algorithm in
the case where the jobs have release dates, deadlines and the power function is of
the form sα, where α > 2. The time complexity of our algorithm, which we call
BAL, is in O(nf(n) logU), where n is the number of jobs, U is the range of all
possible values of processors’ speed divided by the desired accuracy and f(|V |)
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is the complexity of computing a maximum flow in a layered graph with O(|V |)
vertices. Notice that our algorithm is faster than the one of Albers et al. [3] only
if moderate precision is required. If full accuracy is required, our algorithm is
not faster. Finally, we extend our algorithm so as to obtain an optimal algorithm
for the problem of maximum lateness minimization under a budget of energy.

2 Preliminaries

Let J = {j1, ..., jn} be a set of jobs. Each job ji is specified by a workwi, a release
date ri and a deadline di. We define the span of a job ji to be spani = [ri, di] and
we say that ji is alive at time t if t ∈ spani. We also define the density of job ji as
deni = wi/(di− ri). We assume a set of m variable-speed processors in the sense
that they can all, dynamically, change their speeds and have a common speed-
to-power function P (t) = s(t)α, where P (t) is the power consumption at time t,
s(t) is the speed at time t and α > 2 is a constant. Consider any interval of time
[a, b] and a given processor. The amount of work processed by this processor and

its energy consumption, during [a, b], are
∫ b

a s(t)dt and
∫ b

a s(t)αdt, respectively.
Hence, if the processor runs at a constant speed s, during [a, b], then s · (b − a)
units of work are executed and sα · (b− a) units of energy are consumed, during
[a, b]. In our setting, preemption and migration of jobs are allowed. That is,
the processing of a job may be suspended and resumed later, on the same or
on different processor. Nevertheless, we do not allow parallel execution of a job
which means that a job cannot be run simultaneously on two or more processors.
We also assume that a continuous spectrum of speeds is available and that there
is no upper bound on the speed of any processor. Our objective is to find a
feasible schedule that minimizes the total energy consumed by all processors.

We define T = {t0, . . . , tL} to be the set of release dates and deadlines taken
in a non-decreasing order and without duplication. Clearly, t0 = minji∈J {ri}
and tL = maxji∈J {di}. Let Ij = [tj−1, tj ], for 1 ≤ j ≤ L, and I = {I1, . . . , IL}.
We denote |Ij | the length of the interval Ij . Also, let A(j) be the set of jobs that
are alive during Ij , i.e. all the jobs ji with Ij ⊆ spani, and aj = |A(j)| be the
number of jobs in A(j). Given any schedule, we denote ti,j the total units of time
that job ji is processed during the interval Ij . As already mentioned in many
other works (see [11] for example), one can show, through a simple exchange
argument, that, in any optimal schedule, every job ji is executed at a constant
speed si and this comes from the convexity of the power function.

Next, we state a problem which is a variation of our problem that we will need
throughout our analysis, we call it the Work Assignment Problem (or WAP)
and can be described as follows: Consider a set of n jobs J = {j1, j2, . . . , jn}
and a set of intervals I = {I1, I2, · · · , IL}. Each job can be alive in one or
more intervals in I. During each interval Ij there are mj available processors.
Moreover, we are given a value v. Our objective is to find whether or not there
is a feasible schedule that executes all jobs in J with constant speed v. Recall
that a schedule is feasible if and only if each job is executed during its alive
intervals and is executed by at most one processor at each time t. Preemption
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and migration of jobs are allowed. Note that the WAP is almost the feasibility
scheduling problem where, given a set of jobs J = {j1, j2, . . . , jn}, so that each
job ji has a processing time pi, a release date ri and a deadline di, we ask
whether there exists a feasible preemptive and migratory schedule that executes
each job between its release date and its deadline (according to the classical
3-field notation of Graham, this problem is denoted by P |ri, di, pmtn|−). The
P |ri, di, pmtn|− problem is almost the same with the WAP with the difference
that, in WAP, not all intervals have the same number of available processors.
Therefore, WAP is polynomially solvable by applying a variant of an algorithm
for P |ri, di, pmtn|− (see [6]).

We also consider the problem of maximum lateness minimization given a fixed
budget of energy. We are given a set of n jobs J = {j1, ..., jn}, a set of m parallel
homogeneous processors and a budget of energy E. Each job ji is characterized
by a release date ri, a due date d̄i and a work wi. Given a schedule S, the lateness
of a job ji in S is defined as Li(S) = Ci(S)− d̄i, where Ci(S) is the completion
time of ji is S. The objective is to find a feasible schedule, where preemption and
migration of jobs are allowed, with minimum Lmax = maxi{Li} whose energy
consumption does not exceed a given budget E.

3 Convex Programming Formulation

In order to derive a convex program for our problem, we introduce a variable
si and a variable ti,j , for each ji ∈ J and for all Ij such that ji ∈ A(j), to be
the speed of job ji and the total execution time of job ji during the interval Ij ,
respectively. So, we propose the following convex programming formulation:

min
∑

ji∈J
wis

α−1
i (1)

wi

si
−

∑

Ij : ji∈A(j)

ti,j = 0 ji ∈ J (2)

∑

ji∈A(j)

ti,j −m · |Ij | ≤ 0 1 ≤ j ≤ L (3)

∑

ji∈A(j)

ti,j − aj · |Ij | ≤ 0 1 ≤ j ≤ L (4)

ti,j − |Ij | ≤ 0 1 ≤ j ≤ L, ji ∈ A(j) (5)

−ti,j ≤ 0 1 ≤ j ≤ L, ji ∈ A(j) (6)

−si ≤ 0 ji ∈ J (7)

Note that the total running time and the total energy consumption of each job ji
is wi

si
and wis

a−1
i , respectively. Then, the term (1) is the total energy consumed

by all jobs which is our objective function and the constraints (2) enforce that
wi units of work must be executed for each job ji. The constraints (3) enforce
that we can use at most m processors for |Ij | units of time during any interval
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Ij . Also, we can use at most aj processors operating for |Ij | units of time during
any interval Ij , otherwise we would have parallel execution of a job and this is
expressed by (4). The constraints (5) prevent any job ji from being executed for
more than |Ij | units of time during any interval Ij ⊆ spani, otherwise we would
have parallel execution of a job. The constraints (6) and (7) insure the positivity
of the variables ti,j and si, respectively.

The above mathematical program is indeed convex because the objective func-
tion and the first constraint are convex while all the other constraints are linear.
Since our problem can be written as a convex program, it can be solved in poly-
nomial time to arbitrary precision, by applying the Ellipsoid Algorithm [10].
Nevertheless, the Ellipsoid Algorithm is not used in practice and we would like
to construct a faster and less complicated combinatorial algorithm.

At this point, notice that once the speeds of the jobs are computed, by solving
the convex program, a further step is needed in order to construct a feasible
schedule. This can be done by solving the feasibility problem P |ri, di, pmtn|−.

4 Structure of the Optimal Schedule

We apply the KKT conditions to our convex program so as to obtain neces-
sary conditions for optimality of a feasible schedule. We next show that these
conditions are sufficient for optimality.

The following lemma is a direct consequence of the KKT conditions applied
to the convex program of our problem combined with the fact that the power
function with respect to the speed is convex.

Lemma 1. There is always an optimal schedule for our problem that satisfies
the following properties:

1. Each job ji is executed at a constant speed si.

2. During any interval Ij, we have that
∑

ji∈A(j) ti,j = min{aj ,m}|Ij|.
3. If aj ≤ m during an interval Ij , then ti,j = |Ij |, for every ji with Ij ⊆ spani.

4. If aj > m then

i. All jobs ji that are alive during Ij , with 0 < ti,j < |Ij |, have equal speeds.

ii. If a job ji is not executed during an interval Ij ⊂ spani, i.e. ti,j = 0,
then si ≤ sk for every job jk with Ij ⊆ spank and tk,j > 0.

iii. If a job ji has ti,j = |Ij | in an interval Ij , then si ≥ sk for any job jk
alive during Ij with tk,j < |Ij |.

Proof. The Properties 1, 2 and 3 can be easily proved by applying the definition
of convexity and a simple exchange argument.

Next, we focus on proving the Property 4. For this, we will use the KKT
conditions whose general form can be found in the full version. In order to apply
the KKT conditions, we need to associate with each constraint a dual variable.
Therefore, to each set of the constraints from (2) up to (7), we associate the dual
variables βi, γj, δj , εi,j , ζi,j and ηi, respectively.
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By stationarity conditions, we have that

∇
∑

ji∈J
wis

α−1
i +

∑

ji∈J
βi · ∇

(
wi

si
−

∑

Ij : ji∈A(j)

ti,j

)

+

L∑

j=1

γj∇
( ∑

ji∈A(j)

ti,j −m · |Ij |
)

+

L∑

j=1

δj∇
( ∑

ji∈A(j)

ti,j − aj · |Ij |
)

+

L∑

j=1

∑

ji∈A(j)

εij∇(ti,j − |Ij |) +
L∑

j=1

∑

ji∈A(j)

ζij∇(−ti,j) +
∑

ji∈J
ηi∇(−si) = 0

The previous equation can be rewritten equivalently as

L∑

j=1

∑

ji∈A(j)

(

− βi + γj + δj + εi,j − ζi,j

)

∇ti,j

+
∑

ji∈J

(

(α− 1)wis
α−2
i − βiwi

s2i
− ηi

)

∇si = 0 (8)

Furthermore, complementary slackness conditions imply that

γj ·
( ∑

ji∈A(j)

ti,j −m · |Ij |
)

= 0 1 ≤ j ≤ L (9)

δj ·
( ∑

ji∈A(j)

ti,j − aj · |Ij |
)

= 0 1 ≤ j ≤ L (10)

εij · (ti,j − |Ij |) = 0 1 ≤ j ≤ L, ji ∈ A(j) (11)

ζij · (−ti,j) = 0 1 ≤ j ≤ L, ji ∈ A(j) (12)

ηi · (−si) = 0 ji ∈ J (13)

We can safely assume that there are no jobs with zero work because we may treat
such jobs as if they did not exist. So, for any job ji, it holds that si > 0 and∑

Ij⊆spani
ti,j > 0. Then, (13) implies that ηi = 0. We set the coefficients of the

partial derivatives ∇si and ∇ti,j equal to zero so as to satisfy the stationarity
conditions. Thus, (8) gives that βi = (α− 1)sαi for each job ji ∈ J and

(α− 1)sαi = γj + δj + εi,j − ζi,j (14)

for each ji ∈ J and Ij ⊆ spani. Now, for each interval Ij such that aj > m,
because of (10), we have that δj = 0. Next, we consider the following cases for
the execution time of any job ji ∈ A(j):

– 0 < ti,j < |Ij |
Complementary slackness conditions (11), (12) imply that εi,j = ζi,j = 0. As
a result, (14) can be written as

(α− 1)sαi = γj . (15)
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The variable γj is specific for each interval and thus, all such jobs have the
same speed throughout the whole schedule and Property 4(i) is valid.

– ti,j = 0
This means, by (11), that εi,j = 0 and (14) is expressed as (α − 1)sαi =
γj − ζi,j . Thus, since ζi,j ≥ 0, we get that

(α− 1)sαi ≤ γj . (16)

– ti,j = |Ij |
In this case, by (12), we get that ζi,j = 0. So, (14) becomes (α − 1)sαi =
γj + εi,j . Because of dual feasibility conditions, εi,j ≥ 0. Hence, all jobs of
this kind have

(α− 1)sαi ≥ γj . (17)

By Equations (15), (16) and (17), we get Properties 4(ii) and 4(iii). �	

Given a solution of the convex program that satisfies the KKT conditions, we
derived some relations between the primal variables. Based on them, we defined
some structural properties of any optimal schedule. These properties are neces-
sary for optimality and we show that they are also sufficient because all schedules
that satisfy these properties attain equal energy consumptions.

Lemma 2. The properties of Lemma 1 are also sufficient for optimality.

Proof. Assume for the sake of contradiction that there is a schedule A, that
satisfies the properties of Lemma 1, which is not optimal and let B be an optimal
schedule that also satisfies the properties (by Lemma 1 we know that the schedule
B always exists). We denote EX , sXi and tXi,j the energy consumption, the speed
of job ji and the total execution time of job ji during the interval Ij in schedule
X , respectively. Because of our assumption, EA > EB. Let S be the set of jobs ji
with sAi > sBi . Clearly, there is at least one job jk such that sAk > sBk , otherwise
A would not consume more energy than B. So, S 
= ∅. By definition of S,

∑

ji∈S

∑

Ij :ji∈A(j)

tAi,j <
∑

ji∈S

∑

Ij :ji∈A(j)

tBi,j .

Hence, there is at least one interval Ip such that

∑

ji∈S

tAi,p <
∑

ji∈S

tBi,p.

If ap ≤ m, then there is at least one job jq such that tAq,j < tBq,j . Due to the

property 3 of Lemma 1, it should hold that tAq,j = tBq,j = |Ij | which is a contra-

diction. So, assume that ap > m. Then, the last equation gives that tAk,p < tBk,p
for some job jk ∈ S. Thus, tAk,p < |Ip| and tBk,p > 0. Both schedules have equal
sum of processing times

∑
ji∈Ij

ti,j during any interval Ij . So, there must be a

job j� /∈ S such that tA�,p > tB�,p. Therefore, t
A
�,p > 0 and tB�,p < |Ip|. We conclude

that sA� ≥ sAk > sBk ≥ sB� , which contradicts the fact that j� /∈ S. �	
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Notice that the properties of Lemma 1 do not explain how to find an optimal sched-
ule. The basic reason is that they do not determine the exact speed value of each
job. Moreover, they do not specify exactly the structure of the optimal schedule.
That is, they do not specify which job is executed by each processor at each time.

5 An Optimal Combinatorial Algorithm

In this section, we propose an optimal combinatorial algorithm for our problem.
Our algorithm always constructs a schedule satisfying the properties of Lemma
1 which, as we have already showed, are necessary and sufficient for optimality.

Our algorithm is based on the notion of critical jobs defined below. Initially,
the algorithm conjectures that all jobs are executed at the same speed and it
assigns to all of them a speed which is an upper bound on the maximum speed
that a job has in any optimal schedule. The key idea is to continuously decrease
the speeds of jobs step by step. At each step, it assigns a speed to the critical jobs
that we ignore in the subsequent steps and goes on with the remaining subset
of jobs. At the end of the last step, every job has been assigned a speed. Critical
jobs are recognized by finding a minimum (s, t)-cut in an (s, t)-network as we
describe in the following.

Now, for each instance of the WAP, we define a graph so as to reduce our
original problem to the maximum flow problem. Given an instance < J , I, v >
of the WAP, consider the graph G = (V,E) that contains one node xi for each
job ji, one node yj for each interval Ij , a source node s and a destination node
t. We introduce an edge (s, xi) for each ji ∈ J with capacity wi

v , an edge (xi, yj)
with capacity |Ij | for each couple of ji and Ij such that ji ∈ A(j) and an edge
(yj , t) with capacity mj |Ij | for each interval Ij ∈ I. We say that this is the
corresponding graph of < J , I, v >.

We are ready, now, to introduce the notion of criticality. Given a feasible
instance for the WAP, we say that job jc is critical iff for any feasible schedule
and for each Ij ⊆ spanc, either tc,j = |Ij | or

∑
ji∈A(j) ti,j = mj |Ij |. Moreover,

we say that an instance < J , I, v > of the WAP is critical iff v is the minimum
speed so that the set of jobs J can be feasibly executed over the intervals in I
and we refer to the speed v as the critical speed of J and I.

5.1 Properties of the Work Assignment Problem

Next, we will prove some lemmas that will guide us to an optimal algorithm.
Our algorithm will be based on a reduction of our problem to the maximum flow
problem which is a consequence of the following theorem whose proof is omitted.

Theorem 1. [6] There exists a feasible schedule for the work assignment prob-
lem iff the corresponding graph has maximum (s, t)-flow equal to

∑n
i=1

wi

v .

Based on the above theorem, we can extend the notion of criticality. Specifically,
with respect to graph G that corresponds to a feasible instance of the WAP, a
job jc is critical iff, for any maximum flow, either the edge (xc, yj) or the edge
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(yj , t) is saturated for each path xc, yj, t. Recall that an edge is saturated by a
flow F if the flow that passes through the edge according to F is equal to the
capacity of the edge. Moreover, we say that a path is saturated if at least one of
its edges is saturated.

The following lemmas that involve the notions of critical job and critical in-
stance are important ingredients for the analysis of our algorithm. The following
lemma links the concept of a critical instance with the concept of a critical job
and it is omitted due to space constraints.

Lemma 3. If < J , I, v > is a critical instance of WAP, then there is at least
one critical job ji ∈ J .

Note that the instance < J , I, v − ε > is not feasible if < J , I, v > is critical.
Up to now, the notion of a critical job has been defined only in the context of
feasible instances. We extend this notion for infeasible instances as follows: in an
infeasible instance < J , I, v− ε >, a job ji is called critical if every path xi, yj , t
is saturated by any maximum (s, t)-flow in the corresponding graph G′.

Let < J , I, v > be a critical instance of the WAP and let G be its correspond-
ing graph. Next, we propose a way for identifying the critical jobs of < J , I, v >
using the graph G′ that corresponds to the instance < J , I, v − ε >, for some
sufficiently small constant ε > 0 based on Lemmas 4 and 5 below. The value of
ε is such that the two instances have exactly the same set of critical jobs. More-
over, the critical jobs of < J , I, v− ε > can be found by computing a minimum
(s, t)-cut in the graph that corresponds to < J , I, v−ε >. The proofs of Lemmas
4 and 5 can be found in the full version of the paper.

Lemma 4. Given a critical instance < J , I, v > of the WAP, there exists a
constant ε > 0 such that the unfeasible instance < J , I, v − ε > and the critical
one have exactly the same critical jobs. The same holds for any other value ε′

such that 0 < ε′ ≤ ε.

Lemma 5. Assume that < J , I, v > is a critical instance for the WAP and
let G′ be the graph that corresponds to the instance < J , I, v − ε >, for any
sufficiently small constant ε > 0 in accordance with the Lemma 4. Then, any
minimum (s, t)-cut C′ of G′ contains exactly:

i. at least one edge of every path xi, yj, t for any critical job ji,
ii. the edge (s, xi) for each non-critical job ji.

5.2 The BAL Algorithm

We are now ready to give a high level description of our algorithm. Initially,
we will assume that the optimal schedule consumes an unbounded amount of
energy and we assume that all jobs are executed with the same speed sUB . This
speed is such that there exists a feasible schedule that executes all jobs with
the same speed. Then, we decrease the speed of all jobs up to a point where no
further reduction is possible so as to obtain a feasible schedule. At this point,
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all jobs are assumed to be executed with the same speed, which is critical, and
there is at least one job that cannot be executed with speed less than this, in
any feasible schedule. The jobs that cannot be executed with speed less than
the critical one form the current set of critical jobs. So, the critical job(s) is
(are) assigned the critical speed and is (are) ignored after this point. That is,
in what follows, the algorithm considers the subproblem in which some jobs
are omitted (critical jobs), because they are already assigned the lowest speed
possible (critical speed) so that they can be feasibly executed, and there are less
than m processors during some intervals because these processors are dedicated
to the omitted jobs.

In detail, the algorithm consists of a number of steps, where at each step
a binary search is performed, in order to determine the minimum speed so as
to obtain a feasible schedule for the remaining jobs, i.e. the critical speed. We
denote scrit the critical speed and Jcrit the set of critical jobs at a given step.
In order to determine scrit and Jcrit, we perform a binary search assuming that
all the remaining jobs are executed with the same speed. We know that each job
will be executed with speed not less than its density. Therefore, given a set of
jobs J , we know that there does not exist a feasible schedule that executes all
jobs with a speed s < maxji∈J {deni}. Also, observe that if all jobs have speed

s = maxj{
∑

ji∈A(j) wi

|Ij | }, then we can construct a feasible schedule. These bounds

define the search space of the binary search performed in the initial step. In the
next step the critical speed of the previous step is an upper bound on the speed
of all remaining jobs and a lower bound is the maximum density among them.
We use these updated bounds to perform the binary search of the current step
and we go on like that. A high level pseudo-code of our algorithm follows.

Algorithm 1. BAL

1: sUB = maxj{
∑

ji∈A(j) wi

|Ij | }, sLB = maxji∈J {deni}
2: while J �= ∅ do
3: Find the minimum speed scrit so that the instance < J , I, scrit > of the WAP

problem is feasible, using binary search in the interval [sLB , sUB], through re-
peated maximum flow computations.

4: Pick a sufficiently small ε > 0.
5: Determine the set of critical jobs Jcrit by computing a minimum (s, t)-cut in the

graph G′ that corresponds to the instance < J , I, scrit − ε >.
6: Assign to the critical jobs speed scrit and set J = J \Jcrit.
7: Update the number of available processors mj for each interval Ij .
8: sUB = scrit, sLB = maxji∈J {deni}
9: Apply an optimal algorithm for P |ri, di, pmtn|− to schedule each job ji with pro-

cessing time wi/si.

Algorithm BAL produces an optimal schedule, and this holds because any
schedule constructed by the algorithm satisfies the properties of Lemma 1.

Theorem 2. Algorithm BAL produces an optimal schedule.
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Proof. First of all, it is obvious that the algorithm assigns a constant speed to
every job because each job is assigned exactly one speed in one step and the
Property 1 of Lemma 1 is true.

Recall that at each step of the algorithm, a set of jobs is assigned a speed and
some processors during some intervals are dedicated to these jobs. Consider the
k-th step. At the beginning of the step, the remaining jobs J (k) and available
intervals I(k) form the new instance of the WAP for which the critical speed and
jobs are determined. We denote G(k) the graph that corresponds to the instance

< J (k), I(k), v > of the WAP, where the speed v varies between s
(k)
UB and s

(k)
LB,

i.e. the bounds of the step.
Assume that the Property 2 is not true. Then, there must be an interval

Ij during which
∑

ji∈A(j) ti,j < min{aj ,m}|Ij |, i.e. we can decrease the speed
of some job and still get a feasible schedule. Note that it cannot be the case
that

∑
ji∈A(j) ti,j > min{aj ,m}|Ij| because BAL assigns speeds only if there

exists a feasible schedule with respect to these speeds. So, there must be a job
jc ∈ A(j) such that tc,j < |Ij | and there is an idle period during Ij such that
jc is not executed. Suppose that jc became critical during the k-th step. Then,
in the graph G(k), since jc is a critical job, either the edge (xc, yj) or the edge
(yj , t) belongs to a minimum (s, t)-cut and as a result, for any maximum flow in

G(k), either f(xc, yj) = |Ij | or f(yj , t) = m
(k)
j |Ij | where m

(k)
j is the number of

available processors during Ij at the beginning of the k-th step. Hence, we have
a contradiction on the fact that

∑
ji∈A(j) ti,j < min{aj ,m}|Ij| and tc,j < |Ij |.

For the Property 3, we claim that during the interval Ij with aj ≤ m, if a
job jc becomes critical, the edge (xc, yj) becomes saturated by any maximum
(s, t)-flow in G(k) (given that jc becomes critical at the k-th step). If this was
not the case, then there would be a maximum (s, t)-flow F in G(k) such that
f(xc, yj) < |Ij |. Also, in F it holds that f(xi, yj) ≤ |Ij | for any other ji ∈ A(j).
Hence, f(yj, t) < aj |Ij | ≤ m|Ij |. So, neither the edge (xc, yj) nor the edge (yj , t)
becomes saturated by F , contradicting the criticality of jc. Therefore, the total
execution time of jc during Ij is |Ij |.

Next we prove the Property 4. Initially, consider two jobs ji and j�, alive during
an interval Ij , such that 0 < ti,j < |Ij | and 0 < t�,j < |Ij |. We will show that the
jobs are assigned equal speeds by the algorithm. For this, it suffices to show that
they are assigned a speed at the end of the same step. So, assume that ji becomes
critical at the end of the k-th step. Then, either the edge (xi, yj) or the edge
(yj , t) belongs to a minimum (s, t)-cut C in G(k). Since 0 < ti,j < |Ij |, we know
that there exists a maximum (s, t)-flow in G(k) such that 0 < f(xi, yj) < |Ij |.
So, it is the edge (yj , t) that belongs in C. Therefore, in G(k), the edge (yj , t) is
saturated by any maximum (s, t)-flow, and as a result, all the processors during
the interval Ij are dedicated to the execution of some tasks at the end of the
k-th step. Hence, j� cannot be assigned a speed at a step strictly greater than
k. Similarly, ji is not assigned a speed later than j�. Hence, the two jobs are
assigned a speed at the same step. That is, 4(i) is true.

Next, for the Property 4(ii), consider the case where ti,j = 0 for a job ji
during an interval Ij ⊆ spani and assume that ji becomes critical at the k-th
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step. Then, either yj does not appear in G(k), that is no processors are available
during Ij , or (yj , t) belongs to a minimum (s, t)-cut of G(k). If none of these was
true, then (yj , t) would appear in G(k) and it would not belong to a minimum
(s, t)-cut. Then, all the edges (x�, yj) would belong to a minimum (s, t)-cut, for
all j� alive during Ij that appear in G(k). So, (xi, yj) would be saturated by any
maximum (s, t)-flow and we have a contradiction, since the fact that ti,j = 0
implies that there exists a maximum (s, t)-flow with f(xi, yj) = 0. In both cases,
that is if yj does not appear in G(k) or (yj , t) belongs to a minimum (s, t)-cut
of G(k), no job executed during Ij will be assigned a speed after the k-th step.
Hence, all jobs j� with t�,j > 0 do not have lower speed than ji.

Next, let ji be a job with ti,j = |Ij | and assume that it is assigned a speed at
the k-th step. As we have already shown, this cannot happen after a step where
a job j� with 0 < t�,j < |Ij | is assigned a speed because after such a step, the
interval Ij is no longer considered. Also, as we showed in the previous paragraph,
ji becomes critical not after a job j� with t�,j = 0. The Property 4(iii) follows.

Finally, because of Lemmas 4 and 5, BAL correctly identifies the critical jobs
at each step of the algorithm. The theorem follows. �	

We turn, now, our attention to the complexity of the algorithm. Because of
Lemma 3 at least one job (all critical ones) is scheduled at each step of the
algorithm. Therefore, there will be at most n steps. Assume that U is the range
of all possible values of speeds divided by our desired accuracy. Then, the binary
search needs to check O(logU) values of speed to determine the next critical
speed at one step. That is, BAL performs O(logU) maximum flow calculations
at each step. Thus, the overall complexity of our algorithm is O(nf(n) logU)
where f(|V |) is the complexity of computing a maximum flow in a graph with
|V | vertices.

6 Maximum Lateness with a Budget of Energy

In order to solve the problem of minimizing the maximum lateness under a
budget of energy, it is sufficient to determine an upper and a lower bound on
the maximum lateness of the optimal schedule and then perform a binary search
within this interval. The algorithm and its optimality are given in the full version
of the paper.

Theorem 3. The multiprocessor speed scaling problem of minimizing the maxi-
mum lateness of a set of jobs under a budget of energy can be solved in polynomial
time when preemption and migration are allowed.
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