Consensus Building and In-operation Assurance
for Service Dependability™

Yutaka Matsuno** and Shuichiro Yamamoto

Strategy Office, Information and Communication Headquarters, Nagoya University

Abstract. Recent information systems have become large and complex
by interacting with each other via networks. This makes assuring de-
pendability of systems much more difficult than ever before. For this
problem, we observe that requirement elicitation and risk analysis meth-
ods should be tightly connected with assurance methods. Furthermore,
requirements should be ensured also in operation in such open environ-
ment where several interdependency may exist. This paper describes our
initial research result and preliminary implementation toward consen-
sus building and in-operation assurance for service dependability. We
propose a process cycle for consensus building among stakeholders with
assurance cases. We extend conventional assurance cases for ensuring
that stakeholders’ requirements are satisfied during operation. The ex-
tended assurance case is called D-Case[16]. We also describe how D-Case
is used for in-operation assurance.

1 Introduction

Recent information systems have become large and complex by interacting each
other via networks. This makes assuring dependability of systems much more
difficult than ever before.

For assuring dependability of such systems, we observe that stakeholders
should reach consensus on dependability requirements, and there should be a
mechanism to ensure that dependability requirements are satisfied during in op-
eration in such open environment where several interdependency may exist. We
extend conventional assurance cases for ensuring that stakeholders’ requirements
are satisfied during operation. The extended assurance case is called D-Case[16].

Based on above observation, this paper proposes a consensus building cycle
which consists of the following three phases: 1) requirements elicitation and risk
analysis, 2) stakeholders’ agreement on requirements, and 3) In-operation as-
surance using D-Case. In the course of consensus building, elicited requirements
may possibly be revised. Requirements are also changing when stakeholder’s
agreements are updated (Fig).

Assume that a system is newly developed for some service objectives given
by stakeholders. In the first phase, requirements are elicited from each of the

* This work was done while the first author was in Information Technology Center,
the University of Tokyo.
** matsu@icts.nagoya-u.ac.jp

G. Quirchmayr et al. (Eds.): CD-ARES 2012, LNCS 7465, pp. 639-B53] 2012.
© IFIP International Federation for Information Processing 2012

matsu@icts.nagoya-u.ac.jp

640 Y. Matsuno and S. Yamamoto

v
1) Reguirement
Elicitation/ Risk
Analysis

Requirements
Change

2) Making
Stakeholder's
Agreement with >
D-Case
|

D-Script

3) In-Operation

D-Script
Assurance

Failed

Fig. 1. Consensus Building and In-operation Assurance Cycle

stakeholders who have their needs described in an informal way, and then risks
for their requirements are analyzed from various viewpoints. In the second phase,
these elicited requirements are argued among the stakeholders using D-Case in
order to reach agreement. In case the stakeholders cannot reach agreement on
the requirements, some of the requirements will be returned to the first phase
to revise. Once the agreement is made, programs are developed according to the
D-Case description and other documents such as functional specifications. At the
same time, D-Scripts, scripting codes for failure mitigation actions, are extracted
from the D-Case description, which will be used to monitor the system, to collect
logs, and to respond to failures quickly. When the system needs to be revised due
to objectives/environment changes, this cycle is restarted with new requirements
being elicited and old requirements being modified. This corresponds to the
Change Accommodation Cycle.

The third phase provides the means to assure the agreement in the program
execution by monitoring and instructing the system and managing requirements
online for accountability achievement. A runtime environment called D-RE, mon-
itors the system and collects logs of the system as designated by D-Scripts. If
some logs show a deviation of some parameters from their in-operation ranges,
the corresponding failure responsive actions designated as D-Script codes are
activated. D-RE and D-Scripts have been developed in DEOS (Dependable Em-
bedded Operating System) Project[21]. In case a need for a requirements change
occurs as a result of the failure responsive actions, the above mentioned cycle is
restarted with some requirements being modified. There may be a case that a
failure responsive action fails to respond to the failure. Such a case may happen
due to some unexpected environment changes, inadequate risk analysis, bugs of
the D-Script itself, and so forth. In such a situation, the above mentioned cycle
must also be restarted.

Consensus Building and In-operation Assurance 641

The structure of this paper is as follows. In Section 2, we introduce our re-
quirement elicitation and risk analysis methods. Section 3 introduces D-Cases
for making agreement among stakeholders and in-operation assurance. Require-
ments management is described in Section 4. In Section 5, we show current
implementation status. Section 6 concludes this paper.

2 Requirements Elicitation and Risk Analysis

The requirements elicitation starts with the service objectives. Stakeholders can
be defined according to their service objectives. Requirements are generated
from each stakeholder’s objectives and needs. Here, requirements include service
requirements and dependability requirements. Regulations made by regulatory
agencies can be considered as a kind of requirements. The activities for require-
ments elicitation must include identification of various levels of requirements in
order for this task to be manageable.

In requirements engineering, various requirements elicitation methods have
been proposed: Ethno-Methodology, Trolling, Business Modeling, Goal Oriented
Analysis, Use Case Analysis, Misuse Case Analysis, Triage, etc.[7124]5/13]

We focuses on dependability in its requirements elicitation and requirements
analysis. First, needs are extracted from stakeholders who describe them infor-
mally and verbally, and from these, dependability needs are obtained. Second,
“dependability requirements” are identified through the analysis of dependabil-
ity needs. Next, “service continuity scenarios” are created based on risk analysis
and service requirements. More precisely, service continuity scenarios are devel-
oped by considering and determining countermeasures for each factor causing
deviations. Finally, D-Case and D-Script are created through consensus building
among stakeholders based on the service continuity scenarios.

Table [l shows management techniques used to elicit requirements and an-
alyze risks. Service consensus building card (SCBC) is used to define service
requirements and to agree on the requirements among stakeholders. Depend-
ability Control Board (DCB) manages consensus building process with SCBC.
DCB members are representatives of stakeholders. Dependability Control Map
(DCMap) describes relationships among dependability goals as well as roles of
stakeholders. D-Cases are stored in D-Case DB and used to achieve dependabil-
ity goals for dependability requirements of services. Service Risk Brake-down
Structure (SRBS) hierarchically decomposes risks into categories. Service Fault
Tree (SFT) describes the logical conditions for failures. Service Continuity Sce-
nario (SCS) are designed to mitigate risks for dependability requirements. SCS
are implemented by D-Scripts. Service Risk Management Table (SRMT) defines
service risks based on probabilities and impacts of failures according to ser-
vice event scenarios. Service Requirements State Management (SRSM) manages
service requirements state not only during online but also offline. Figl2l shows
relationships among techniques given in Table [[l Dependability requirements in
DCMap are precisely defined and agreed on using SCBC. SRBS is then used to
analyze risk category. SRMT is used to identify and mitigate risks of services

642 Y. Matsuno and S. Yamamoto

Table 1. Requirement Management Table

SCBC is used to define service requirements and agree on

SCBC Service consensus building card et i S

DCB manages consensus building process with SCBC.
DCB members are representatives of stakeholders.

DC Map describes relationships among dependability
goals as well as roles of stakeholders.

D-Cases are stored to achieve dependability requirements

DCB Dependability Control Board
DCMap Dependability Control Map

D-Case DB D-Case data base

of services.
SRBS Service Risk Braek-down Structure SRBS hierarchically decomposes risks into categories.
SFT Service Fault Tree SFT describes the logical conditions for failures.

SCS are designed to mitigate risks to dependability

Bus Bl il i el requirements. SCS are implemented by D-Scripts.

SRMT defines service risks based on probabilities and

SEMI Service Risk Management Table impacts for service event scenarios.

Service Requirements State SRSM manages service requirements state not only online
SRSM 5
Management but also offline.

elicited using SCBC. SFT is developed for each scenario in SRMT to show con-
ditions of fault occurences. D-case is developed to confirm the dependability for
services against risks based on the information of DCMap and SRMT. identify
and mitigate risks of services elicited by SCBC. SF'T is developed for each sce-
nario in SRMT to show its occurrence condition. D-case is developed to confirm
the dependability for services against risks based on the information of DCMap
and SRMT.

An example of Dependability Control Map is shown in Fig. Bl DCMap
contains three columns that are stakeholder, roles, and dependability goals.
Stakeholders and roles columns constitute RACI matrix [II]. In the role col-
umn, RACI identify roles of stakeholders such that Responsible, Accountable,
Consulted, and Informed.

The dependability goals column describes goals of stakeholders and their
relationships. DCMap can be used to analyze goals as follows. Users want to
reach consensus on service dependability. This is accomplished by accountabil-
ity achievement goal of system providers. The accountability achievement goal is
supported by goals of developer and maintainer. Dependability goal of developer
is also supported by hardware dependability and valid software authorization.

Table 2 shows an example of service consensus building card. SCBC consists
of requirements name, event, response, input, output, functional requirements
steps, initiation condition, completion condition, and roles of stakeholders. This
figure omits the identification of SCBC for simplicity. Fig.[d shows an example of
Service Risk Breakdown Structure. Service risks are broken down into internal,
goal, external, organizational, and technical risks. A service has a goal that is the
intention and result that an actor, who wants to use the service, expects to get
from the system. By getting an event from actors, services will act on objects and
generate a result to achieve the goal. Services will also make responses to actors.
Services work on an environment including hardware and network. Deviations

Consensus Building and In-operation Assurance

D-Case

SFT

Fig. 4-2 Relationships of RM Techniques

Fig. 2. Relationship of RM Techniques

Authorization

Stakeholders Roles Dependability Goals
Users | I:l Consensus Building
Y
Systems Providers AR, Accountability Achievement
T~
—
Customer Py
Developers C,R /Iil Satisfaction I;l Dependability
Maintainers C,R I__Ll vald / \
Operation
Hardware Providers C,R Hardware -
Dependability
&
Coriiors o Valid HW Iil vaiasw [
Authorization

R: Responsible, A: Accountable, C: Consulted, |: Informed

Fig. 3. An Example Dependability Control Map

643

644 Y. Matsuno and S. Yamamoto

Table 2. An Example Service Consensus Building Card

To keep services running after unexpected occurrences by using service
continuity scenarios

Deviations from service requirements
oceur

Requirements

Service continuity

Event parameters

Input

Service continuity scenario(5CS) is
Response activated and the impaired service is Output
repaired

*Identify deviations through service execution
*Determine SCS for each deviation

Service continuity activity
log records

Functional 4 i
; =Apply 5CS to the problem situation
requirements 'nggrm service cgntinuity by successful achievement of SCS
*Report incidents to DCB when the applied SCS unsuccessfully is unsuccessful
P, DCB is organized
gg;té?ttilggs Service ar?d dependability reé[uirements are developed
Risks and SCSs are develope

Completion | Valid SCS has been applied to the deviation and successfully completed
conditions | Otherwise, the result has to be hierarchically is passed on to DC

Providers of services or | Define parameters for service continuity requirements
products Agree on the results of SCS application
Roles of

stakeholders | Providers of systems Develop SCSs

DCB Build consensus on service continuity requirements
and operations

of these ordinal service constituents will cause service risks. Service continuity
scenarios can be constructed to mitigate these risks by considering deviations of
service constituents. This risk breakdown structure is based on those of PMBOK.

TableBlshows an example of Service Risk Management Table. SRMT describes
initial events, dependability actions, scenarios, probabilities, severity of impacts,
and risks. The structure of SRMT is decomposed into two parts. The left part of
SRMT describes scenarios using a binary tree of success and failure. The right
part of SRMT describes the risk of each scenario.

There are two types of dependability actions. D-Scripts are applied to re-
sponsive recovery for deviations by failures. In the change accommodation cycle
of DEOS process [2I], human operators manage deviations in cooperation with
DCB. Logical structure of failure scenarios in SRMT can be described in the
similar way of fault trees.

Leveson[I5] and Ericson[9] introduced methods for safety requirements anal-
ysis, such as FMEA, HAZOP, FTA, ETA. Kotonya and Sommerville showed a
method for analyzing safety requirements using Hazard analysis and FTA [I3].
Troubitsyna proposed Component based FMEA (Failure Mode and Effects Anal-
ysis) to analyze how component failures affect behavior of systems [22]. Sask.
and Taniyama proposed Multiple Risk Communicator to the personal informa-
tion leakage problem [18/20].

Consensus Building and In-operation Assurance 645

Internal | | Goal | | External | | Organizational

| Technical |

Software | Intention | Operator | Stakeholders Architecture
Result | Environment

Object to be
operated
. Hardware
Ref: PMBOK 4th Edition

Fig. 4. An Example of Service Risk Breakdown Structure

Table 3. An Example of Service Risk Management Table

Dependability action
Initial event D-script Scenarios Probability Impact Risk
Quter loop
application execution
Success - 51 Py & P15
Deviation detection Success Success Sa 173 Sa PaSa
Failure
Failure 3 Py S3 P3S3
Success S4 Py Sq P4S4
Failure
Failure S5 P3 S5 P5Ss
Failure probability - - P3+Pg s]

3 D-Case: Assurance Case for Stakeholders Agreement
and In-operation Assurance

It has become almost impossible to sustain dependability of the systems only
by conventional methods such as formal methods and testing. We observe that
the best way is stakeholders argue dependability of the system with evidences
supported by experts, and try to reach agreement that the system is dependable
through the whole system lifecycle. For the objectives, first, we need a method to
describe and evaluate dependability requirements. Dependability requirements
need to be understood by diverse stakeholders involved in the whole system life-
cycle. Second, a mechanism should be in place that ensures traceability between
dependability agreement and actual system behaviors. The mechanism not only
keeps track of the development phases of a system, but also its run-time op-
erations by constantly checking whether dependability requirements are being
satisfied or not. In particular, we must update dependability agreement when
changes occur. To achieve these two goals, we have started our study with sys-
tem assurance. The notion of assurance is to convince a person (usually to a

646 Y. Matsuno and S. Yamamoto

certification body) that something is definitely true. We aim to extend assur-
ance to agreement among stakeholders. Risk communication is used in similar
contexts, but risk is only a part of dependability. We decided to exploit as-
surance case [4] to describe and evaluate dependability requirements. Assurance
cases are structured documents for assuring dependability /safety /reliability /etc.
of systems based on evidences. This simple framework has recently been widely
used for safety critical domain. This is because as systems become large and com-
plex, only following some safety checklists does not satisfy safety requirements,
but assuring safety of systems becomes crucial. Assurance case is one of promis-
ing approach to dependability achievement. Current assurance cases, however,
are mostly written in weakly-structured natural languages, and it is difficult to
ensure traceability between assurance cases (and associated documents) and sys-
tem’s actual states during the whole lifecycle. Based on the above observations,
we propose D-Case [16] to achieve these two goals. The two goals are re-stated
as follows:

— Develop a method to evaluate and describe dependability of the system, and
reach agreement among stakeholders on the dependability.

— Develop a mechanism to ensure traceability between the dependability de-
scription and the systems actual behaviors. We call this mechanism as
“In-Operation Assurance”.

Due to space limit, in this paper we only show our initial ideas and implemen-
tation for “In-Operation Assurance.”

3.1 D-Case

Background. System assurance has become very important in many industrial
sectors. Safety cases (assurance cases for safety of systems) are required to be
submitted to certification bodies for developing and operating safety critical
systems, e. g., automotive, railway, defense, nuclear plants and sea oils. There
are several standards, e.g., EUROCONTROL [I0] and MoD Defence Standard
00-56, which mandate the use of safety cases. There are several definitions for
assurance cases. We give one such definition as follows [IJ.

a documented body of evidence that provides a convincing and valid
argument that a system is adequately dependable for a given application
in a given environment.

Assurance cases are often written in a graphical notation. Goal Structuring No-
tation (GSN) is one of such notations [I2]. Writing assurance cases and reusing
them in a cost effective way is a critical issue for organizations. Patterns and
their supporting constructs are proposed in GSN to enable the reuse of existing
assurance cases, which includes parameterized expressions. Another widely used
notation is Claims, Arguments and Evidence (CAE), which was developed by
Adelard and City University London [2].

Consensus Building and In-operation Assurance 647

Goal Strategy Context Undeveloped

Fig. 5. D-Case Nodes

D-Case Nodes and Example. Based on the assurance cases, we define D-
Case. We show D-Case nodes (Figll) and an example (Figl). Current D-Case
syntax is based on GSN with extensions for our needs: monitoring node and
external node.

We briefly explain constructs and their meanings in D-Case. Arguments in
D-Case are structured as trees with a few kinds of nodes, including: Goal nodes
for claims to be argued for, Strategy nodes for reasoning steps that decompose
a goal into sub-goals, and Evidence nodes for references to direct evidences that
respective goals hold. Undeveloped nodes are attached to goals if there are no
supporting arguments for the goals at that time. In D-Case, monitoring nodes
are a sub-class of evidence nodes. They are intended to represent evidences
available at runtime, corresponding to the target values of in-operation ranges.
An external node is a link to the D-Case of other system. External node will
be used in cases where part of the dependability of a system is supported by
another system. Previously it was called “system component” node [16]. Fig.
is a simple example of D-Case. The root of the tree must be a goal node, called
top goal, which is the claim to be argued (G1). A context node C1 is attached to
complement G1. Context nodes are used to describe the context (environment)
of the goal to which the context is attached. A goal node is decomposed through
a strategy node S1 into sub goal nodes (G2, G3, and G4). The strategy node
contains an explanation, or reason, for why the goal is achieved when the sub
goals are achieved. S1 explains the way of arguing (argue over each possible
fault: A and B). When successive decompositions reach a sub goal (G2) that has
a direct evidence of success, an evidence node (E1) referring to the evidence is
added. Here we use a result of fault tree analysis (FTA) as the evidence. The sub
goal (G3) is supported by monitoring node M1. In this D-Case, G3 is supported
by runtime log results. The sub goal (G4) is supported by external node (Ext1).
This indicates that the dependability requirement 3 (security) in C1 would be
supported by another system.

3.2 In-operation Assurance

This section shows our initial idea of in-operation assurance by describing a
reference implementation. A demo of our idea was presented in Embedded

648 Y. Matsuno and S. Yamamoto

System X Depe_ndability
) Requirements
1S N
Dependable 1 Safety
2 Availability

v

Argument over
each Requirement

v\

System X System X System X
is is is
Safe Available Secure

v v v
Results

Fig. 6. D-Case Example

3 Security

AN

Technology 2011, one of the largest exhibitions for embedded systems in Japan.
Figld shows a reference system for In-Operation Assurance.

D-Case DB contains D-Case patterns for failure response. D-Case Pattern
< Module Mapping Table contains mappings between variables used in D-Case
pattern and corresponding system modules. Using the table, D-Case pattern is
translated to D-Script. The right-hand side of Fig[flis a simplified D-RE, in which
the Monitoring Unit and Action Unit have monitoring and failure response action
modules, respectively for system components. The key concept of the reference
system is that only system behaviors, which are agreed upon and stored as D-
Cases, can be executed. Operators of the system would choose appropriate action
as a failure response action based on D-Case from agreed upon D-Cases. Fig.
[shows an example of D-Case pattern, which is an argument for over usage
of CPU resources. The D-Case pattern argues that if CPU usage rate becomes
over 50% (this can be detected by monitoring), the failure recover control unit
invokes CPU resource usage module to restrict CPU usage under 50%. In Figl§ a
monitoring node is exploited. Task “A”, “CPU resource usage rate”, and “under
50%” in those monitoring nodes are value of parameters which operators and
other stakeholders agreed. For example, we can specify the name of some other
CPU task instead of “A”, “Memory resource usage rate” instead of “CPU usage
rate”, etc. Setting the values of parameters automatically generates executable
codes.

Consensus Building and In-operation Assurance 649

D-RE CcPU
Monitoring
Modules

Monitoring Memory

Unit Monitoring
Module
D-Case Failure
D-Case) A 3
BB [<—>| Translation Reacting
Unit Control Unit CPU
Resource
Usage Madule
D-Case . Memory
Pattern & Action Resource
Module Unit Usage Module
Mapping
Table Task
Usage Module

Fig. 7. A Reference System for In-Operation Assurance

4 Requirements Management

In requirements management, as mentioned above, states of requirements are
managed. There are four kinds of the states; elicited, agreed, ordinarily operated,
and deviated (Fig.[). First, requirements are elicited from stakeholders. These
elicited requirements may conflict with each other. By consensus-building, re-
quirements are agreed upon among the stakeholders. Agreed-upon requirements
are then implemented in ordinary operations. When objectives and environments
change, some ordinarily operated requirements may become obsolete and new
requirements must be elicited again. This is referred to as the change accommo-
dation cycle.

If a requirement is not fulfilled, i.e., there is deviation from the corresponding
in-operation range, it moves to the deviated state. When a responsive action is
possible, it moves back to the ordinarily operated state. This is referred to as the
failure reaction cycle. If the service continuity scenarios cannot work for some
requirements in the deviated state, these requirements should be modified and
move to the elicited state. If deviations came from the implementation problems,
the corresponding elicited requirements do not need any change. But it is neces-
sary to agree on other requirements to revise the faulty implementation. This is
done by consensus-building. The elicited and agreed states of requirements are
managed at offline, whereas ordinarily operated and deviated states are man-
aged online. The state of the system is represented by a set of these requirements
states. Fig[Ill shows how this set of requirements are managed by requirements
management table as the system evolves.

Traditional requirements management (TRM) methods only consider states of
requirements at offline [I3J7ITITA23IT76]. These requirements engineering text

650

Y. Matsuno and S. Yamamoto

= <Java EE> - dcaseTest/hoge22.dcase_diagram - Eclipse ==
File Edit Diagram Navigate Search Project Run Sample D-Case Window Help

rom-ARe & [E)

Tahoma 9 B 7 ‘ T
o
B-r0O-Q- (=N N =N g
H o~ 5] v 4o o~ -
DSBenchTEST-ENV.dcas (*hoge22.dcase_diagra 53 . s =0
e O A o A e o o B e P o GBI 3 e o B o Dsies AR i o L g 4
) o I
OGoal:G_1
CPU Task "A" satisfies —
; appropriate
g "CPU resource usage rate”
;; i Strategy:S_1
Argument over monitoring
2 and failure response actions
o
: OGoal:6_2 OGoal:G_3
- "CPU resource usage rate” of "CPU resource usage rate” of
E}
= Task "A" is "under 50%" Task "A" can be
- can be monitored “restricted” to "under 50 %"
u
3
- (i Monitor:M_1
2 Monitoring Task "A™'s QO Bvidence:E 1
7 "CPU resource rate” is Test Result | 4
& "under 50%"
%
5 -
4 e »
o B

Fig. 8. An Example of D-Case Pattern

Insertion Consensus Building Deletion
Agreed

Objective/ Environment Change

Modification Implementation

Consensus Building

Ordinarily
Deviation from In-Operation Range Operated

Deviated

Cause Analysis

Responsive Action

Requirements at Online

@ Change Accommodation Cycle
@ Failure Response Cycle

Fig. 9. Requirements State Management Model

Consensus Building and In-operation Assurance 651

Requirements Evolution

2
bl
N
bl
w
»
2

Time R5
T
T2

T3
Temporal T4
Progress

T5
T6
T7
T8
T9
T10

Q|O|O|O|O|O|O|=|m
O|»|O0|O(O|T|OC|=(m

o|o|o|o|o|o|=|=|m| |
| |=|o|lo|o|O|=|m| |
>m|olo|o|o|=|m]| |

(o]
(@]

E: Elicited, A: Agreed-upon, O:Operated, D:Deviated [offiine

:Online
Fig. 10. System Requirement State Management Table

books describes requirements management process by Change Control Board
(CCB) with requirements change requests. TRM does not consider requirements
deviations at runtime. Requirements management state model can take into ac-
count deviations of requirements at runtime. To detect and manage deviation,
it is necessary to record the deviation situations on requirements with identifi-
cations, events, inputs, outputs, and responses. Otherwise, there is no evidence
on deviations and it is impossible to analyze failures.

5 Implementation Status

Currently the requirement elicitation and risk analysis methods have been de-
signed. Also, we have been developing “D-Case Editor” [3], which is a tool to
support stakeholders’ agreements, and “D-Case Viewer”, which is a tool to moni-
tor whether stakeholders’ agreements are satisfied or not. Current D-Case Editor
is a graphical editor as an Eclipse plug-in. Figl] is also a snapshot of D-Case
Editor.

D-Case Editor has several basic functions and experimental functions includ-
ing the followings.

1. Checks on the graph structure of D-Case (e.g. no-cycle, no-evidence directly
below a strategy, etc.)

. External documents via URL can be attached to a node.

3. “Patterns” with typed parameters can be registered and recalled with pa-
rameter instantiations.

4. Graphical diff to compare two D-Cases.

5. A “ticket” in Redmine, a project management web application, can be at-
tached to a goal; the ticket’s status can be reflected graphically in D-Case.

[\

The main function of D-Case Viewer is monitoring: a URL to be polled by Viewer

can be attached to a node; the answer is dynamically reflected in D-Case.
Fig[MTlis a snapshot of web server system demo shown at ET2011, Yokohama,

Japan (D-Case Viewer has been currently under development, and D-Case Editor

652 Y. Matsuno and S. Yamamoto

&
BEM S 27V B
: 5

Failure mitigation actions invoked.
Corresponding part of
D-Case is highlighted.

Fig.11. A Snapshot of Web Server Demo

is instead used for monitoring.) In D-Case Viewer, the monitoring node about
access number of the web server and the goal are highlighted as red to indicate
that access number of the web server system exceeded over 2500 times/minutes
(this is an in-operation range). Nodes highlighted as yellow are about failure
response actions invoked at just that time. Using D-Case Viewer, operators of
the system can always see that all in-operation ranges are within as required
or not, and which failure response actions are invoked, as agreed or not. This
correspondence between D-Case description and systems actual behaviors is an
important source for achieving accountabilityEl.

6 Concluding Remarks

This paper has reported our initial ideas and implementation for consensus build-
ing and in-operation assurance for service dependability. We have presented sev-
eral methods for requirement elicitation and risk analysis. Also we have presented
D-Case, which is an extension of assurance case for in-operation assurance. One
clear challenge is to develop a method to describe D-Case from those require-
ment elicitation and risk analysis as inputs. Methods for developing assurance
cases have been developed in some works such as [§]. We would like to report
our progress, and compare with such works in near future.

References

1. http://www.csr.city.ac.uk/research.html
2. http://www.adelard.com/web/hnav/ASCE/choosing-asce/cae.html

! Interested reader may check a demo video:
http://dl.dropbox.com/u/13455869/demo . mp4

http://www.csr.city.ac.uk/research.html
http://www.adelard.com/web/hnav/ASCE/choosing-asce/cae.html

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Consensus Building and In-operation Assurance 653

http://www.il.is.s.u-tokyo.ac.jp/deos/dcase

Workshop on Assurance Cases: Best Practices,Possible Obstacles, and Future Op-
portunities, DSN 2004 (2004)

Aurum, A., Wohlin, C. (eds.): Engineering and Managing Software Requirements
Engineering and Managing Software Requirements. Springer (2010)

Berenbach, B., Paulish, D., Kazmeier, J., Dudorfeer, A.: Software and Systems
Requirements Engineering In Practice. McGraw-Hill (2009)

Davis, A.M.: Just Enough Requiremtns Management- Where Software Develop-
ment Meets Marketing. Dorset House Publishing (2005)

Despotou, G.: Managing the Evolution of Dependability Cases for Systems of Sys-
tems. PhD thesis, Department of Computer Science, University of York (2007)
Ericson, C.A.: Hazard Analysis Techniques for System Safety. John Wiley and
Sons, Inc. (2005)

European Organisation for the Safety of Air Navigation. Safety case development
manual. European Air Traffic Management, 2006.

IIBA. BABOK 2.0 (2009)

Kelly, T., Weaver, R.: The goal structuring notation - a safety argument notation.
In: Proc. of the Dependable Systems and Networks 2004, Workshop on Assurance
Cases (2004)

Kotonya, G., Sommerville, I.: Requirements Engineering-Process and Techniqeus.
John Wiley and Sons (2002)

Leffingwel, D., Widrig, D.: Managing Software Requirements A Unified Approach.
Addison-Wesley Professional (2000)

Leveson, N.G.: Safeware: System Safety and Computers. Addison-Wesley (1995)
Matsuno, Y., Nakazawa, J., Takeyama, M., Sugaya, M., Ishikawa, Y.: Toward a
language for communication among stakeholders. In: Proc. of the 16th IEEE Pacific
Rim International Symposium on Dependable Computing, PRDC 2010 (2010)
Pohl, K.: Requirements Enginerring Fundamentals, Principles, and Techniques.
Springer (2010)

Sasaki, R., Ishii, S., Hidaka, Y., Yajima, H., Yoshiura, H., Murayama, Y.: Devel-
opment Concept for and Trial Application of a “Multiple Risk Communicator”. In:
Funabashi, M., Grzech, A. (eds.) Challenges of Expanding e-Commerce, e-Business,
and e-Government. IFIP, vol. 189, pp. 203-217. Springer, Boston (2005)
Sommerville, 1., Sawyer, P.: Requirements Engineering: A Good Practice Guide.
John Wiley and Sons (1997)

Taniyama, M., Hidaka, Y., Arai, M., Kai, S., Igawa, H., Yajima, H., Sasaki, R.:
Application of Multiple Risk Communicator to the Personal Information Leakage
Problem, pp. 284-289. World Academy of Science (2008)

Tokoro, M.: White paper: Dependable embedded operating system for practical
use (DEOS) project, version 3 (2011)

Troubitsyna, E.: Elicitation and specification of safety requirements. In: ICONS
2008, pp. 202-207 (2008)

Wiegers, K.: Software Requirements- Practical techniques for gathering and man-
aging requirements through the product development cycle. Microsoft Corporation
(2003)

Zowghi, D., Couling, C.: Requirements Elicitation: A survey of Techniques, Ap-
proaches, and Tools. Springer (2010)

http://www.il.is.s.u-tokyo.ac.jp/deos/dcase

	Consensus Building and In-operation Assurance
for Service Dependability
	Introduction
	Requirements Elicitation and Risk Analysis
	D-Case: Assurance Case for Stakeholders Agreement and In-operation Assurance
	D-Case
	In-operation Assurance

	Requirements Management
	Implementation Status
	Concluding Remarks
	References

