

G. Quirchmayr et al. (Eds.): CD-ARES 2012, LNCS 7465, pp. 218–232, 2012.
© IFIP International Federation for Information Processing 2012

TinyStream Sensors

Pedro Furtado

University of Coimbra,
Polo II, Coimbra
pnf@dei.uc.pt

Abstract. Stream processing engines have been proposed in the past for han-
dling streaming data coming from data sources. But considering sensor net-
works, there is a need for an approach that allows stream models to reach also
computation-capable constrained embedded devices and to implement storage,
exchange and computation on those. We propose a stream model that imple-
ments sensor-device data handling. The stream processing abstraction and inter-
face allows small motes to store and process the data locally and to route
processed data to consumer streams on-demand. This eliminates the need to
code motes operation in lower-level languages, allows easy configuration of
operations of different types and saves communication energy. The approach is
quite useful in diverse contexts, including wireless sensor networks. We
describe the approach and show its advantages experimentally.

Keywords: distributed systems, sensor networks, stream processing.

1 Introduction

Researchers and companies have realized over the years that high-level programming
approaches are necessary for increasing the adoption of technologies in practical set-
tings. Stream and complex event processing engines realize that goal for handling
streaming data from data sources. However, up to now those engines were not availa-
ble within constrained embedded devices of sensor networks. Devices such as wire-
less sensors are small nodes with computation, storage and radio power, but they are
programmed in low-level fashion, in spite of being deployed as part of a wider hete-
rogeneous networked system for monitoring and actuating over the physical world.
The use of microcontrollers with some processing and storage capabilities allows in-
sensor processing and retention of data, and the use of flash memory offers gigabytes
of space. Data can be managed inside the embedded node, we can even collect a
whole day or month of data before communicating it to some collector node, saving a
lot of battery.

What is needed is some high-level programming abstraction that models data sto-
rage and retrieval using typical operations, data processing, data routing between
producers and consumers, time-ordered operation (e.g. keep a full day of data before
computing some statistics and sending it to a consumer stream in some remote
workstation). Stream models provide all these features, fulfilling the data manage-
ment needs in the heterogeneous sensor networks context. On the implementation

 TinyStream Sensors 219

perspective, small streams with few samples fit into a few bytes in the small memo-
ries of the embedded devices, while larger streams are flash-disk resident. All opera-
tions work over both memory and flash streams.

Our TinyStream proposal defines the language, processing engine and efficient
implementation of operations in constrained devices. We show how it applies stream
processing engine mechanisms to individual sensor nodes as well as the whole distri-
buted system, without the need for application programmers to know low-level pro-
gramming details of individual devices. This way they concentrate on the application
objectives. Our experimental results show that the approach occupies only a conve-
niently small footprint in constrained embedded devices, which receive simple codi-
fied stream commands that are then parsed and executed in the node. Operations are
implemented with small memory requirements, in order to run on the constrained
devices.

Previous proposals related to this one include complex event processing engines,
which are not designed for running in constrained devices and do not fit their limita-
tions, and sensor network middleware such as TinyDB [4] or Cougar [1], which do
not manage data inside individual nodes and provide only a system-wide database
model, transforming database queries into data collection code forwarding data to the
sink. TinyStreams adds the time-ordered stream model – e.g. one can create a stream
to collect 10 hours of data, compute a summary and then send it to some remote
Smartphone; autonomous node engines and querying – we can create, drop, delete or
update streams in memory or flash in individual nodes; as well as easy and powerful
stream-based data routing specification as parts of stream commands – we can specify
that the stream data should be periodically routed into another remote stream.

The paper is organized as follows: section 2 discusses related work. Section 3 dis-
cusses the model and architecture of the approach, then section 4 presents experimen-
tal results and section 5 concludes the paper.

2 Related Work

Previous work related to this one includes stream processing engines and high-level
programming approaches and middleware for sensor networks.

Stream processing or complex events processing engines have been proposed be-
fore in the context of processing high-rate data from data sources. Examples of readi-
ly deployable CEP engines include StreamBase and Esper [10,11]. Examples adapted
to over the internet integration and processing of data from sensor sources include
GSN [12] and Hourglass[13]. However, those engines are not deployable in individu-
al constrained embedded devices (they merely see internet data sources), and there
have been no previous works on developing such engines for embedded devices, even
though stream models offer extremely useful primitives for time-ordered streams and
data routing between streams. There has also been no effort in the past into creating
node-wise stream processing engines that allow direct operation in individual
embedded device nodes.

220 P. Furtado

Previous works concerning data processing in sensor networks closest to this one
include database-like models TinyDB [4] and Cougar [1]. Both TinyDB and Cougar
provide a database front-end to a sensor network by running a small database-like
query engine at a sink node. They assume that data is forwarded into the sink for
processing, without providing means for explicitly commanding how individual nodes
should manage their data. They are therefore not node engines, nor do they apply
stream processing to manage and route the data inside the sensor network. Tiny-
Streams, on the contrary, creates streams in individual nodes, can place those in
memory or flash, provides operations for individual nodes to manage their data and
provides stream producer-consumer data routing primitives for intuitive formulation
of stream routing between nodes.

While sensor network resident streams are a novelty, databases resident in embed-
ded devices have been mentioned before for instance in [3] and in PicoDBMS [8] (a
small database engine developed for smart cards).

From the perspective of sensor network usage in ubiquitous applications, wireless
sensor networks are common nowadays and provide means to deploy easily and ex-
tensively sensors and actuators in very disparate application settings. Being able to
declaratively configure what such a sensor network is to do and how it sends data to
some remote logging station is a very important step forward in the wider adoption of
the technology.

Many of the use cases involve collecting sensor data. In those applications sensors
send data to workstations. Users must specify when to sample, how much time to
keep the data, how to transform the data and when and how to transfer data remotely.
With TinyStreams this is easily done by non-experts, users may even wish to keep
hours or days of data in the sensor devices themselves and issue queries either ad-hoc
or pre-planned to retrieve the data when required. In data logging applications the
sensed data is stored and the logs are collected later on. The data can be logged in
flash and retrieved later with a query. Keeping data in the sensors for longer also re-
duces energy consumption significantly. This is because data transmission consumes
a lot more power than logging data to flash or aggregating it in the sensors and send-
ing it much less often. This capability is crucial in many applications where a wireless
sensor network is expected to work autonomously on batteries.

TinyStreams is also a language and operation configuration abstraction for sensor
networks. In the rest of this section, we review a classification for sensor network
programming abstractions and examples of such approaches.

 According to [18], there are two main sub-classes concerning sensor network pro-
gramming abstractions: one sub-class focuses on providing the programmer with
abstractions that simplify the task of specifying the node local behavior of a distri-
buted computation. Consequently, the overall system behavior must be described in
terms of pair-wise interactions among nodes within radio range; differently, the
second sub-class is characterized by higher-level abstractions used to program the
system as a whole (macro-programming), regardless of the single devices. Likewise,
in [17] low-level programming abstractions are programming languages that require
the programmer to code individual nodes and to specify inter-node communications in

 TinyStream Sensors 221

detail, while high-level programming abstracts away those details and provides ways
to specify the behavior globally. According to [17], some of the relevant characteris-
tics concerning language are: communication and computation perspectives, pro-
gramming idiom and distribution model.

The communication perspective distinguishes languages that directly offer con-
structs for physical neighborhoods (e.g. NesC [14] and ATaG [19]), those that allow
targeting subsets of nodes depending on application-level information (e.g. Regiment
[20] and Pieces [21]) and those offering a global view programming of the system
(e.g. TinyDB [4]). The main advantage that some global view programming styles
such as TinyDB offer is simplicity, while the drawbacks are related to the lack of
flexibility and reach, since the user does not control details. TinyStreams allows users
to work at any of those levels, since it is possible to manage and route between neigh-
bors, over groups or over the whole system using individual commands.

The computation perspective distinguishes imperative approaches, which are pro-
gramming solutions based on sequential or event-driven semantics (e.g. Abstract
Regions [22] and Pleaides [23], or platform code such as NesC), and declarative solu-
tions, which are usually very concise in describing the system behavior using, for
instance, database-style or rule-oriented semantics (e.g. TinyDB [4] and Cougar [1]).
Functional paradigms express application processing by applying one or more func-
tions to data sensed in some part of the system (e.g. Regiment [20] and snBench
[24]). Flask [16] is also a functional, domain specific language embedded in Haskell,
offering high-level reusable abstractions to the sensor network, and FlaskDB is a ma-
cro-programming language over it. Flask uses an intermediate distributed dataflow
graph model that is compiled into node-level binaries. If more than a single idiom is
associated to address different aspects, those are hybrid approaches, such as the one
presented in ATaG [19]. Declarative SQL-like approaches are very intuitive and easy
to use and to learn, not so with rule-based systems or functional paradigms. The im-
perative approaches range from low-level platform languages, which require whole
specifications, to more abstract solutions, which are not particularly intuitive or easy
to use. TinyStreams is declarative and streamSQL-like, similar to the idioms of
stream engines such as Streambase [12].

Distribution models can be classified as database-oriented, where SQL-like queries
are used as in a relational database (e.g. TinyDB [4]), data sharing-oriented, where
nodes can read or write data in the shared memory space (e.g. Kairos [18] and Ab-
stract Regions [22]); or as message passing, based on exchanging messages between
nodes (e.g. NesC [14], DSWare [25] or Contiki [15]). Message passing paradigms are
typically much more flexible, since they allow the programmer to specify exactly
what is exchanged and how. The advantage of other alternatives such as database-
style or data-sharing is to allow the user to specify complex patterns of processing and
sharing data with only a few, system-wide commands, hiding the precise details of
communications into their code generation logic. Clearly, a good compromise solu-
tion would be one that would allow the specification of data exchanges at the level
desired by the programmer, which varies with application context. Stream to stream
routing, where streams may reside in any node or group of nodes, makes TinyStreams
such an approach.

222 P. Furtado

3 TinyStreams

TinyStreams implements a
heterogeneous system that
cerning the individual emb
management engine for qu
and updating tuples, both
tem, TinyStreams allows d
route data from producers
the main TinyStreams mo
systems such as TinyOS [1
ry, file system, radio, sens
sql-like syntax in a client c
parsed in a compact fixed
engine on top of the operati
stream data messages (thro
them and processes the com
tives. The ‘Stream and
processing that requires ver
depending on their size. M
while file-based operation
dles simple select express
typical SQL-like primitives

3.1 Model and Comma

Streams are time-ordered s
corresponding to attributes

a stream model over embedded device nodes and over
includes those nodes and other computing devices. C

bedded devices, TinyStreams implements a local stre
uerying, creating and dropping streams, inserting, delet
in memory and on flash. Concerning the distributed s
definition of references and stream routing primitives
to consumers along the distributed system. Fig. 1 sho

odules on embedded device nodes. Embedded operat
4] or Contiki [15] offer API primitives concerning mem
e and actuation. TinyStreams queries are submitted in

console, parsed locally and forwarded to target nodes p
-offsets bytearray. Embedded nodes have a TinyStrea
ing system. The engine receives command byte arrays

ough the communication module shown in Fig. 1), par
mmands and data using data access, sense and act pri
Query Processor’ module implements tuple-at-a-ti

ry little memory and manages streams in memory or fl
Memory operation is faster but only serves small strea

is able to handle larger streams. The query processor h
sions, conditions, alarms, sampling windows and ot
s.

Fig. 1. Node Engine Modules

ands

sets of tuples, and a tuple is a sequence of attribute val
with an attribute data type and domain. Stream metadat

the
Con-
eam
ting
sys-
s to
ows
ting
mo-
n an
pre-
ams
and
rses
imi-
ime
lash

ams,
han-
ther

lues
ta is

a structure defining the se
stream may have a windo
stream at any time. While
(similar to database tables
memory size, therefore they

Fig. 2 shows a windowed

TinyStreams has data a

flash stream residency. Sin
fined special “sensor stream
“sensorX”, the correspondi
attribute named “value” th
allows users to command a
stream collecting 24 hours’

Create stream senso
in DepositsSensorNo
as select value
from sensorX
window 24 hours
sample every 1 minu

Table 1 shows TinyStreams
Stream data routing is b

data from some producer st
ing in a remote control stat
SensorXvalues. The Sensor
of a set of sensor nodes.

TinyStream Sensors

et of attributes and corresponding types and domains
w, which limits the number of tuples that can be in
e flash-resident streams can be created with no wind
), memory-resident streams must fit into the constrai
y have window size limitations.
d memory stream and a file-based flash-resident stream.

Fig. 2. Memory and Flash Streams

access primitives abstracting away from memory ver
nce embedded devices have sensors, there are also pre
ms” that correspond to each sensor. If the sensor is nam
ing stream will be called sensorX and will have a sin

hat corresponds to the sensor readings. A sampling cla
acquisition with a sampling rate. The syntax for a sen
worth of per-minute sensor values is:

orXvalues
odes

ute;

s SQL-like constructs.
based on consumer streams specifying that they consu
tream(s). For instance, the following consumer stream se
tion – SensorXData - gets its data from a producer stre
rXvalues producer stream can be a stream running in e

223

. A
the

dow
ned

.

rsus
ede-
med
ngle
ause
nsor

ume
eat-
eam
each

224 P. Furtado

Table 1. TinyStreams SQL Constructs

Stream creation and dropping

(streams with no window and
tables are equivalent entities)

Create stream a
(nodeID numeric,
a numeric)

Create table a
(nodeID numeric,
a numeric)

Drop stream a;
Drop table a;

Stream creation from select,
with window and sampling
rate

Create stream
sensorXvalues
in DepositsSensorNodes
as select nodeID, value
from sensorX
window 24 hours
sample every 1 minute;

Select command
Select nodeID avg(value)
from sensorXvalues
Group by nodeID

Insert command
Insert into a values(2);

Delete command
Delete from a where
nodeID=1;

Create stream SensorXData
in controlstation as
Select *
From sensorXvalues;

If sensorXvalues was created with a 24 hour window, its values will be forwarded
into SensorXData in the control station every 24 hours. If, instead of logging every
value to the control station, one wants to get only a summary of the values, one way
to do that would be to aggregate in the sensors and issue a query for the aggregated
values (or registering a control station stream with periodic aggregation query).

 TinyStream Sensors 225

Create stream
sensorXvalues
in DepositsSensorNodes
as select nodeID, value
from sensorX
window 24 hours
sample every 1 minute;

Create stream
sensorXvaluesAgg
in DepositsSensorNodes
as select nodeID, avg(value)
from sensorXvalues
group by nodeID;

Create stream
SensorXData
in controlstation as

Select *
From sensorXvaluesAgg;

Fig. 3. Example Collecting Aggregated Stream

3.2 Stream Creation and Querying

Stream creation syntax allows a user to create a stream from a list of attributes or to
create a stream as a select command with multiple optional clauses:

Create stream streamName
[in [nodeID| nodeSet]] as
Select [select expressions]
From [sensorID | streamName]
[Group by clause]
[sample clause]
[window clause]
[storage clause];

Commands are submitted through a console in a node with access to the distributed
sensor network system. This console has an associated catalog that keeps node ad-
dresses information and node referencing identifiers, which are created to ease the
task of specifying nodes and node groups in commands. The following example iden-
tifies node address suffixes and a set of two nodes as “DepositsSensorNodes”.

SensorNode1 = “1333:8068”;SensorNode2 = “137b:d539”;
DepositsSensorNodes = {SensorNode1,SensorNode2};

Sensor node identifiers are specified using the “in” clause of stream creation com-
mands. The “from” clause specifies input from streams. The stream with the name in
the “from” clause (producer) will be sending its output into the stream that is being
created (consumer). The producer and consumer streams may be in different nodes,
commanding data forwarding from producer to consumer. Since the producer stream
may be in more than one node, we can for instance command stream production in
multiple nodes with a single command, by specifying a node set referencing in the
“in” clause, and send all the data from those producers to a consumer node by speci-
fying a stream that consumes from that multiple-node stream.

The “sample” clause is useful for sensor streams, indicating how often the sensors
should be sampled.

The “window” clause indicates the size of the data that should be kept at any time,
in either number of values or time period. This allows data holders to have a constant

226 P. Furtado

size, since data enters and leaves in ordered fifo order, while maintaining up to
window size of data. When a window fills-up, its data is sent to consumer streams and
the window is emptied for another round. A time-based stream window is defined by
specifying a time unit (e.g. “window 1 hour”), while a size-based window is speci-
fied with a number of tuples (e.g. “window 10 tuples”).

A stream may be stored either in memory (if it is sufficiently small to fit there) or
on flash disk. The storage clause allows users to specify where to store the data.

A metadata structure describes each stream. The structure contains the stream
name, attribute names and domains (NUMERIC, LONG, STRING). The physical
representation of tuples is through a compact byte-array record of the attribute values.

Creation of a consumer stream also creates a periodic query to fill the consumer
from producer streams. Alternatively, a query can also be posed as a one-time query.
Processing a query involves retrieving tuples one-by-one into memory, operating on
the tuple, incrementally computing aggregations if specified, then either sending the
result tuples through the communication interface to a consumer stream in the form of
a stream data message, writing the result in stream storage, or printing the result in the
console or in a serial port. The tuple-by-tuple processing saves a lot of memory.

Stream selection projects attributes and may aggregate values along tuples of the
stream. The aggregation functions are COUNT, MAX, AVG, MIN, and SUM, each of
which is updated for each processed tuple that satisfies the SELECT predicate. The
result set of tuples will contain a single tuple for each group of the aggregated values.
As an example, the following query retrieves the average and maximum temperature
per month:

Create stream temperatureSummary
in BuildingNodes
as
SELECT AVG(value),
MAX(value),month(timestamp),year(timestamp)
FROM temperatureSensor
Group by month(timestamp),year(timestamp);

The query processor computes aggregations incrementally. For instance, a maximum
is computed incrementally as the maximum between the current maximum and the
value of the current tuple; likewise, a sum is the current sum plus the new value from
the current tuple, and an average is the current sum divided by the current number of
tuples. This is done for each aggregation group, groups being addressed as a hashmap
with the key being the group attribute values.

Conditions are added through the where clause, selecting a subset of the tuples in a
stream. While processing the current tuple, the query processor verifies whether the
conditions evaluate to true and only considers the tuple for further processing if the
condition is true.

The delete command removes all tuples matching the condition indicated in the
command. The delete is implemented by scanning all tuples, selecting those that do
not match the delete condition into a new stream that replaces the previous one.

 TinyStream Sensors 227

Stream drop commands free the memory occupied by the data and the metadata
structure.

Since embedded sensor devices frequently also actuate on some physical system
through DAC interfaces, actuation conditions and syntax is added to the approach.
Fig. 4 shows an example closing shades if a temperature alarm goes on (temperature
> 30) and opening them if it goes off (temperature<25). This is done in the sensor
nodes themselves. The example also shows the use of variables and customized
functionality (the closeOpenShades code, which is developed in the platform coding
language).

shades=SensorNodes.Action(code=”dev/closeOpenShades”,
 api={closeShades(),openShades()});
shades.openShades();
shadesOpen=true;

create Stream temperatureBasedShadesOpenClose
in SensorNodes as
 select NodeID, value
 From temperatureSensor
 Where temperature>30
 Action {

 If(shadesOpen==true)
 shades.closeShades();
 shadesOpen=false;
 }
 Where temperature<25
 Action {
 If(shadesOpen==false)
 shades.openShades();
 shadesOpen=true;
 }

Fig. 4. Specifying an Action

3.3 Query Processor

Fig. 5 shows the command processing path in the networked environment. Users
submit a command through a console. A parser interprets the commands and accesses
a catalog for addressing references and other details, producing a command bytecode.
That bytecode is sent to the target nodes, which receive it through a communications
interface, parse it and process against the local streams. The processing of a stream is
done by a ‘Process & Send’ (P&S) functionality.

228 P. Furtado

All commands have a
(create, drop, delete, upda
command only has those e
commands have a stream-li

The select clause fields m
specific codes for identifyi
operators.

The query processor in
events:

• If a stream creation c
the stream metadata is c
stream. If the stream is
stream has a timed wind
riodically waking up and
with sampling rate, then
periodically waking up a

• Stream window timer exp
data is executed against th

• One-time-query (Select
> the stream selection q
Process&Send functiona

• Acquisition timer expir
created with the corresp
dow, either in memory o

• Stream data arriving thro
in the communication in
The data is stored in the

• Window expiration -> if
the window size is reach
retrieved and applied a
functionality;

Fig. 5. Command Processing Path

command type, and SQL-related bytecoded comma
ate, insert, select) all have a stream identifier. The d
elements, but stream creation, selection, delete and upd
ike structure with fields for expressing query clauses.
may be attributes, constants or aggregation functions, w
ing each individual alternative - operands, functions

each node responds to the following timer and netw

command arrives through the communication interfa
created and the necessary memory space is created for
flash resident, a new file is created for the stream. If

dow, a window-related timer is created and armed for
d operating on the stream. If the stream is a sensor stre
a sensor acquisition-related timer is created and armed

and acquiring the signal through the sensor ADC;
piration –> the stream selection query stored in stream m
he stored stream using the Process&Send functionality;
command) arriving through the communication interfac

query is executed against the stored stream data using
ality;
ration -> the hardware ADC is sampled and a tuple
ponding values. The tuple is inserted into the stream w
or in file;
ough the communication interface -> if stream data arri
nterface, the consumer stream is identified in the messa
data area of that stream, either in memory or in flash.
f a stream has a window and a registered select query,
hed, then the select query stored in the stream metadat
against the stored stream data using the Process&S

ands
drop
date

with
and

work

ace,
the
the
pe-
am,

d for

meta-

ce -
the

e is
win-

ives
age.

and
ta is
end

 TinyStream Sensors 229

• Other commands arriving through the communication interface -> the commands
are executed.

Tuple-by-tuple operation is implemented in the “Process & Send” (P&S) functionality
in the following manner: the stream data is scanned tuple-by-tuple (either from RAM
or flash). For each tuple, the query processor first applies where clause conditions to
determine if the tuple is to contribute to further computation and output. If the condi-
tion evaluates to true, then P&S looks at each select clause field and:

─ If the field is a constant, it outputs the constant into a temporary tuple space;
─ If the field is an attribute, it copies the attribute value of the current tuple into the

temporary tuple space;
─ After a tuple is processed, if the query is not specifying an aggregation, then the

result tuple is returned immediately;
─ If the field is an aggregation (e.g. sum, count, avg, max, min), the attribute values

of the current tuple update a temporary aggregation computation structure for the
select aggregation expressions. The aggregation computation structure maintains a
set of additive aggregation computations for the select field expression. The addi-
tive aggregation computations are: count - n, linear sum -ls, square sum - ss, max-
imum - max and minimum - min. This structure allows immediate return of (sum,
avg, max, min, count) expressions as soon as all the tuples have been processed. If
there is a group by clause, then there is a hashmap with the group-by values as
keys and an aggregation structure of the type described above for each hashmap
entry. Each tuple now updates the aggregation computations for the corresponding
aggregation structure.

If the query specifies an aggregation, after all the tuples have been processed, the
query processor needs to take the aggregation structures and return the aggregation
values that are needed by the query.

4 Evaluation

TinyStreams was implemented as an evolution of a system configuration interface
developed for an industrial application in the context of European Project Ginseng -
Performance Controlled Wireless Sensor Networks. It was implemented on top of the
Contiki operating system using C programming language. It can be ported to other
operating systems for resource-constrained devices, by adjusting the storage and
communication layers to the new operating system API. The main operating system
interface API primitives needed are send/receive and read/write. At the level of Tiny-
Streams, the read and write primitives are abstracted, with implementations for both
flash and RAM. Flash storage was implemented on the Coffee file system [9] in the
prototype.

We measured the code size and query processing performance with simple queries
over our experimental testbed.

230 P. Furtado

The total code size of
TinyStreams code running o
ly into the ROM available i
operating system code and
nality, in order to assess the
size and the size of the cod
the simple tuple-by-tuple qu
and with fixed in-memory
shown as the number of line

Fig

Fig. 7 shows the time tak
query ‘select sum(value) fr
dent streams with varied si
with the number of tuples,
es execution time by only a
tion is done incrementally o

Fig

the TinyStreams node component, shown in Fig. 6 (
on the embedded device) is less than 8KB, which fits ni
in most typical devices. We also compiled the base Con
then the same code with parts of the TinyStreams func
e code size of those parts (the difference between the to

de with the operating system only). The results show t
uery processing algorithm with no complex optimizer c
stream structures results in a small code size. This is a
es of code.

g. 6. Code Size for TinyStreams Parts

ken for the query ‘select value, nodeID from adc0’, and
rom adc0’ to execute, selecting either flash or RAM r
izes. The execution time increaed approaximately linea
and the computation of an aggregation expression incre

a small amount of time. This is as expected, since aggre
over an aggregation structure, with low extra overhead.

g. 7. Query Processing Times (msecs)

(the
ice-

ntiki
ctio-
otal
that
ode
also

the
resi-
arly
eas-
ega-

 TinyStream Sensors 231

Table 2 shows the runtime memory requirements of TinyStreams, not counting the
space occupied by each stream metadata and stream data.

Table 2. Runtime Memory Requirements

5 Conclusion

We have proposed a TinyStreams model and engine for dealing with data in net-
worked sensor systems with embedded sensing devices. We have shown how the
approach allows data storage, retrieval, processing and routing. Memory and file sys-
tem storage is abstracted into a stream management layer and a producer-consumer
stream model allows networked configuration and processing with ease. The major
advantage of the approach is that it allows users to specify what each node of a sen-
sor network with computation-capable devices should do and how the data should be
routed in a simple manner.

References

1. Bonnet, P., Gehrke, J., Seshadri, P.: Towards Sensor Database Systems. In: Tan, K.-L.,
Franklin, M.J., Lui, J.C.-S. (eds.) MDM 2001. LNCS, vol. 1987, pp. 3–14. Springer,
Heidelberg (2000)

2. Dai, H., Neufeld, M., Han, R.: Elf: an efficient log-structured flash file system for micro
sensor nodes. In: Proceedings of the International Conference on Embedded Networked
Sensor Systems (ACM SenSys), Baltimore, MD, USA (November 2004)

3. Diao, Y., Ganesan, D., Mathur, G., Shenoy, P.: Rethinking data management for storage-
centric sensor networks. In: Proceedings of the Third Biennial Conference on Innovative
Data Systems Research (CIDR), Asilomar, CA, USA (January 2007)

4. Madden, S., Franklin, M., Hellerstein, J., Hong, W.: TinyDB: an acquisitional query
processing system for sensor networks. ACM Transactions on Database Systems 30(1),
122–173 (2005)

5. Mathur, G., Desnoyers, P., Ganesan, D., Shenoy, P.: Capsule: an energy-optimized object
storage system for memory-constrained sensor devices. In: Proceedings of the Internation-
al Conference on Embedded Networked Sensor Systems (ACM SenSys), Boulder, Colora-
do, USA (November 2006)

6. Nath, S., Kansal, A.: FlashDB: Dynamic self-tuning database for NAND flash. In: Pro-
ceedings of the International Conference on Information Processing in Sensor Networks
(ACM/IEEE IPSN), Cambridge, MA, USA (April 2007)

7. Priyantha, B., Kansal, A., Goraczko, M., Zhao, F.: Tiny web services: Design and imple-
mentation of interoperable and evolvable sensor networks. In: Proceedings of the Interna-
tional Conference on Embedded Networked Sensor Systems (ACM SenSys), Raleigh, NC,
USA (2008)

232 P. Furtado

8. Pucheral, P., Bouganim, L., Valduriez, P., Bobineau, C.: PicoDBMS: Scaling down data-
base techniques for the smartcard. The VLDB Journal 10(2-3), 120–132 (2001)

9. Tsiftes, N., Dunkels, A., He, Z., Voigt, T.: Enabling Large-Scale Storage in Sensor Net-
works with the Coffee File System. In: Proceedings of the International Conference on In-
formation Processing in Sensor Networks (ACM/IEEE IPSN), San Francisco, CA, USA
(April 2009)

10. Streambase URL (2012), http://www.streambase.com
11. Esper (2012), http://esper.codehaus.org
12. Aberer, K., Hauswirth, M., Salehi, A.: Infrastructure for data processing in large-scale in-

terconnected sensor networks. In: Mobile Data Management (MDM), Germany (2007)
13. Shneidman, J., Pietzuch, P., Ledlie, J., Roussopoulos, M., Seltzer, M., Welsh, M.:

Hourglass: An Infrastructure for Connecting Sensor Networks and Applications. Technical
Report TR-21-04. Harvard University, EECS (2004)

14. Gay, D., Levis, P., Behren, R.V., Welsh, M., Brewer, E., Culler, D.: The nesC language: A
holistic approach to networked embedded systems. In: Proceedings of the ACM SIGPLAN
2003 Conference on Programming Language Design and Implementation, pp. 1–11. ACM,
San Diego (2003)

15. Dunkels, Gronvall, B., Voigt, T.: Contiki - A Lightweight and Flexible Operating System
for Tiny Networked Sensors. In: Proceedings of the 29th Annual IEEE International Con-
ference on Local Computer Networks, pp. 455–462. IEEE Computer Society (2004)

16. Mainland, G., Welsh, M., Morrisett, G.: Flask: A Language for Data-driven Sensor Net-
work Programs, Harvard University, Tech. Rep. TR-13-06 (2006)

17. Mottola, L.: Programming Wireless Sensor Networks: From Physical to Logical Neigh-
borhoods. PhD Thesis. Politecnico di Milano, Italy (2008)

18. Gummadi, R., Gnawali, O., Govindan, R.: Macro-programming Wireless Sensor Networks
Using Kairos. In: Prasanna, V.K., Iyengar, S.S., Spirakis, P.G., Welsh, M. (eds.) DCOSS
2005. LNCS, vol. 3560, pp. 126–140. Springer, Heidelberg (2005)

19. Bakshi, Prasanna, V.K., Reich, J., Larner, D.: The Abstract Task Graph: a methodology for
architecture-independent programming of networked sensor systems. In: Proceedings of
the 2005 Workshop on End-to-end, Sense-and-respond Systems, Applications and Servic-
es, pp. 19–24. USENIX Association, Seattle (2005)

20. Newton, R., Morrisett, G., Welsh, M.: The regiment macroprogramming system. In: Pro-
ceedings of the 6th International Conference on Information Processing in Sensor Net-
works, pp. 489–498. ACM, Cambridge (2007)

21. Liu, J., Chu, M., Reich, J., Zhao, F.: State-centric programming for sensor-actuator net-
work systems. IEEE Pervasive Computing 2, 50–62 (2003)

22. Welsh, M., Mainland, G.: Programming sensor networks using abstract regions. In: Pro-
ceedings of the 1st Conference on Symposium on Networked Systems Design and Imple-
mentation, vol. 1, p. 3. USENIX Association, San Francisco (2004)

23. Kothari, N., Gummadi, R., Millstein, T., Govindan, R.: Reliable and efficient program-
ming abstractions for wireless sensor networks. SIGPLAN Not. 42, 200–210 (2007)

24. Ocean, M.J., Bestavros, A., Kfoury, A.J.: snBench. In: Proceedings of the 2nd Internation-
al Conference on Virtual Execution Environments - VEE 2006, Ottawa, Ontario, Canada,
p. 89 (2006)

25. Li, S., Son, S., Stankovic, J.: Event Detection Services Using Data Service Middleware in
Distributed Sensor Networks. Telecommunication Systems 26, 351–368 (2004)

	TinyStream Sensors
	Introduction
	Related Work
	TinyStreams
	Model and Commands

	Stream Creation and Querying
	Query Processor

	Evaluation
	Conclusion
	References

