
 

G. Quirchmayr et al. (Eds.): CD-ARES 2012, LNCS 7465, pp. 218–232, 2012. 
© IFIP International Federation for Information Processing 2012 

TinyStream Sensors 

Pedro Furtado 

University of Coimbra, 
Polo II, Coimbra 
pnf@dei.uc.pt 

Abstract. Stream processing engines have been proposed in the past for han-
dling streaming data coming from data sources. But considering sensor net-
works, there is a need for an approach that allows stream models to reach also 
computation-capable constrained embedded devices and to implement storage, 
exchange and computation on those. We propose a stream model that imple-
ments sensor-device data handling. The stream processing abstraction and inter-
face allows small motes to store and process the data locally and to route 
processed data to consumer streams on-demand. This eliminates the need to 
code motes operation in lower-level languages, allows easy configuration of 
operations of different types and saves communication energy. The approach is 
quite useful in diverse contexts, including wireless sensor networks. We  
describe the approach and show its advantages experimentally. 
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1 Introduction 

Researchers and companies have realized over the years that high-level programming 
approaches are necessary for increasing the adoption of technologies in practical set-
tings. Stream and complex event processing engines realize that goal for handling 
streaming data from data sources. However, up to now those engines were not availa-
ble within constrained embedded devices of sensor networks. Devices such as wire-
less sensors are small nodes with computation, storage and radio power, but they are 
programmed in low-level fashion, in spite of being deployed as part of a wider hete-
rogeneous networked system for monitoring and actuating over the physical world. 
The use of microcontrollers with some processing and storage capabilities allows in-
sensor processing and retention of data, and the use of flash memory offers gigabytes 
of space. Data can be managed inside the embedded node, we can even collect a 
whole day or month of data before communicating it to some collector node, saving a 
lot of battery. 

What is needed is some high-level programming abstraction that models data sto-
rage and retrieval using typical operations, data processing, data routing between 
producers and consumers, time-ordered operation (e.g. keep a full day of data before 
computing some statistics and sending it to a consumer stream in some remote 
workstation). Stream models provide all these features, fulfilling the data manage-
ment needs in the heterogeneous sensor networks context. On the implementation 
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perspective, small streams with few samples fit into a few bytes in the small memo-
ries of the embedded devices, while larger streams are flash-disk resident. All opera-
tions work over both memory and flash streams.   

Our TinyStream proposal defines the language, processing engine and efficient 
implementation of operations in constrained devices. We show how it applies stream 
processing engine mechanisms to individual sensor nodes as well as the whole distri-
buted system, without the need for application programmers to know low-level pro-
gramming details of individual devices. This way they concentrate on the application 
objectives. Our experimental results show that the approach occupies only a conve-
niently small footprint in constrained embedded devices, which receive simple codi-
fied stream commands that are then parsed and executed in the node. Operations are 
implemented with small memory requirements, in order to run on the constrained 
devices.     

Previous proposals related to this one include complex event processing engines, 
which are not designed for running in constrained devices and do not fit their limita-
tions, and sensor network middleware such as TinyDB [4] or Cougar [1], which do 
not manage data inside individual nodes and provide only a system-wide database 
model, transforming database queries into data collection code forwarding data to the 
sink. TinyStreams adds the time-ordered stream model – e.g. one can create a stream 
to collect 10 hours of data, compute a summary and then send it to some remote 
Smartphone; autonomous node engines and querying – we can create, drop, delete or 
update streams in memory or flash in individual nodes; as well as easy and powerful 
stream-based data routing specification as parts of stream commands – we can specify 
that the stream data should be periodically routed into another remote stream.     

The paper is organized as follows: section 2 discusses related work. Section 3 dis-
cusses the model and architecture of the approach, then section 4 presents experimen-
tal results and section 5 concludes the paper. 

2 Related Work 

Previous work related to this one includes stream processing engines and high-level 
programming approaches and middleware for sensor networks.  

Stream processing or complex events processing engines have been proposed be-
fore in the context of processing high-rate data from data sources. Examples of readi-
ly deployable CEP engines include StreamBase and Esper [10,11]. Examples adapted 
to over the internet integration and processing of data from sensor sources include 
GSN [12] and Hourglass[13]. However, those engines are not deployable in individu-
al constrained embedded devices (they merely see internet data sources), and there 
have been no previous works on developing such engines for embedded devices, even 
though stream models offer extremely useful primitives for time-ordered streams and 
data routing between streams. There has also been no effort in the past into creating 
node-wise stream processing engines that allow direct operation in individual  
embedded device nodes.  
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Previous works concerning data processing in sensor networks closest to this one 
include database-like models TinyDB [4] and Cougar [1]. Both TinyDB and Cougar 
provide a database front-end to a sensor network by running a small database-like 
query engine at a sink node. They assume that data is forwarded into the sink for 
processing, without providing means for explicitly commanding how individual nodes 
should manage their data. They are therefore not node engines, nor do they apply 
stream processing to manage and route the data inside the sensor network. Tiny-
Streams, on the contrary, creates streams in individual nodes, can place those in 
memory or flash, provides operations for individual nodes to manage their data and 
provides stream producer-consumer data routing primitives for intuitive formulation 
of stream routing between nodes.  

While sensor network resident streams are a novelty, databases resident in embed-
ded devices have been mentioned before for instance in [3] and in PicoDBMS [8] (a 
small database engine developed for smart cards). 

From the perspective of sensor network usage in ubiquitous applications, wireless 
sensor networks are common nowadays and provide means to deploy easily and ex-
tensively sensors and actuators in very disparate application settings. Being able to 
declaratively configure what such a sensor network is to do and how it sends data to 
some remote logging station is a very important step forward in the wider adoption of 
the technology.  

Many of the use cases involve collecting sensor data. In those applications sensors 
send data to workstations. Users must specify when to sample, how much time to 
keep the data, how to transform the data and when and how to transfer data remotely. 
With TinyStreams this is easily done by non-experts, users may even wish to keep 
hours or days of data in the sensor devices themselves and issue queries either ad-hoc 
or pre-planned to retrieve the data when required. In data logging applications the 
sensed data is stored and the logs are collected later on. The data can be logged in 
flash and retrieved later with a query. Keeping data in the sensors for longer also re-
duces energy consumption significantly. This is because data transmission consumes 
a lot more power than logging data to flash or aggregating it in the sensors and send-
ing it much less often. This capability is crucial in many applications where a wireless 
sensor network is expected to work autonomously on batteries.     

TinyStreams is also a language and operation configuration abstraction for sensor 
networks. In the rest of this section, we review a classification for sensor network 
programming abstractions and examples of such approaches. 

 According to [18], there are two main sub-classes concerning sensor network pro-
gramming abstractions: one sub-class focuses on providing the programmer with 
abstractions that simplify the task of specifying the node local behavior of a distri-
buted computation. Consequently, the overall system behavior must be described in 
terms of pair-wise interactions among nodes within radio range; differently, the 
second sub-class is characterized by higher-level abstractions used to program the 
system as a whole (macro-programming), regardless of the single devices. Likewise, 
in [17] low-level programming abstractions are programming languages that require 
the programmer to code individual nodes and to specify inter-node communications in  
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detail, while high-level programming abstracts away those details and provides ways 
to specify the behavior globally. According to [17], some of the relevant characteris-
tics concerning language are: communication and computation perspectives, pro-
gramming idiom and distribution model.  

The communication perspective distinguishes languages that directly offer con-
structs for physical neighborhoods (e.g. NesC [14] and ATaG [19]), those that allow 
targeting subsets of nodes depending on application-level information (e.g. Regiment 
[20] and Pieces [21]) and those offering a global view programming of the system 
(e.g. TinyDB [4]). The main advantage that some global view programming styles 
such as TinyDB offer is simplicity, while the drawbacks are related to the lack of 
flexibility and reach, since the user does not control details. TinyStreams allows users 
to work at any of those levels, since it is possible to manage and route between neigh-
bors, over groups or over the whole system using individual commands. 

The computation perspective distinguishes imperative approaches, which are pro-
gramming solutions based on sequential or event-driven semantics (e.g. Abstract  
Regions [22] and Pleaides [23], or platform code such as NesC), and declarative solu-
tions, which are usually very concise in describing the system behavior using, for 
instance, database-style or rule-oriented semantics (e.g. TinyDB [4] and Cougar [1]). 
Functional paradigms express application processing by applying one or more func-
tions to data sensed in some part of the system (e.g. Regiment  [20] and snBench 
[24]). Flask [16] is also a functional, domain specific language embedded in Haskell, 
offering high-level reusable abstractions to the sensor network, and FlaskDB is a ma-
cro-programming language over it. Flask uses an intermediate distributed dataflow 
graph model that is compiled into node-level binaries. If more than a single idiom is 
associated to address different aspects, those are hybrid approaches, such as the one 
presented in ATaG [19]. Declarative SQL-like approaches are very intuitive and easy 
to use and to learn, not so with rule-based systems or functional paradigms. The im-
perative approaches range from low-level platform languages, which require whole 
specifications, to more abstract solutions, which are not particularly intuitive or easy 
to use. TinyStreams is declarative and streamSQL-like, similar to the idioms of 
stream engines such as Streambase [12].    

Distribution models can be classified as database-oriented, where SQL-like queries 
are used as in a relational database (e.g. TinyDB [4]), data sharing-oriented, where 
nodes can read or write data in the shared memory space (e.g. Kairos [18] and Ab-
stract Regions [22]); or as message passing, based on exchanging messages between 
nodes (e.g. NesC [14], DSWare [25] or Contiki [15]). Message passing paradigms are 
typically much more flexible, since they allow the programmer to specify exactly 
what is exchanged and how. The advantage of other alternatives such as database-
style or data-sharing is to allow the user to specify complex patterns of processing and 
sharing data with only a few, system-wide commands, hiding the precise details of 
communications into their code generation logic. Clearly, a good compromise solu-
tion would be one that would allow the specification of data exchanges at the level 
desired by the programmer, which varies with application context. Stream to stream 
routing, where streams may reside in any node or group of nodes, makes TinyStreams 
such an approach.    
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Table 1. TinyStreams SQL Constructs 

 
Stream creation and dropping 

 
(streams with no window and 
tables are equivalent entities)  

Create stream a 
(nodeID numeric,  
a numeric) 
 
Create table a 
(nodeID numeric,  
a numeric) 
 
Drop stream a; 
Drop table a; 

Stream creation from select, 
with window and sampling 
rate 

Create stream  
sensorXvalues 
in DepositsSensorNodes 
as select nodeID, value 
from sensorX 
window 24 hours 
sample every 1 minute; 
 

Select command 
Select nodeID avg(value)  
from sensorXvalues 
Group by nodeID 

Insert command 
Insert into a values(2); 

Delete command 
Delete from a where  
nodeID=1; 

Create stream SensorXData  
in controlstation as  
Select * 
From sensorXvalues; 

If sensorXvalues was created with a 24 hour window, its values will be forwarded 
into SensorXData in the control station every 24 hours. If, instead of logging every 
value to the control station, one wants to get only a summary of the values, one way 
to do that would be to aggregate in the sensors and issue a query for the aggregated 
values (or registering a control station stream with periodic aggregation query).  
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Create stream  
sensorXvalues 
in DepositsSensorNodes 
as select nodeID, value 
from sensorX 
window 24 hours 
sample every 1 minute; 

Create stream  
sensorXvaluesAgg 
in DepositsSensorNodes 
as select nodeID, avg(value)
from sensorXvalues 
group by nodeID; 
 

Create stream  
SensorXData  
in controlstation as 
 
Select * 
From sensorXvaluesAgg; 
 

Fig. 3. Example Collecting Aggregated Stream  

3.2 Stream Creation and Querying 

Stream creation syntax allows a user to create a stream from a list of attributes or to 
create a stream as a select command with multiple optional clauses: 

Create stream streamName  
[in [nodeID| nodeSet]] as  
Select [select expressions] 
From [ sensorID | streamName ] 
[Group by clause] 
[sample clause]  
[window clause] 
[storage clause]; 

Commands are submitted through a console in a node with access to the distributed 
sensor network system. This console has an associated catalog that keeps node ad-
dresses information and node referencing identifiers, which are created to ease the 
task of specifying nodes and node groups in commands. The following example iden-
tifies node address suffixes and a set of two nodes as “DepositsSensorNodes”. 

SensorNode1 = “1333:8068”;SensorNode2 = “137b:d539”; 
DepositsSensorNodes = {SensorNode1,SensorNode2}; 

Sensor node identifiers are specified using the “in” clause of stream creation com-
mands. The “from” clause specifies input from streams. The stream with the name in 
the “from” clause (producer) will be sending its output into the stream that is being 
created (consumer). The producer and consumer streams may be in different nodes, 
commanding data forwarding from producer to consumer. Since the producer stream 
may be in more than one node, we can for instance command stream production in 
multiple nodes with a single command, by specifying a node set referencing in the 
“in” clause, and send all the data from those producers to a consumer node by speci-
fying a stream that consumes from that multiple-node stream.  

The “sample” clause is useful for sensor streams, indicating how often the sensors 
should be sampled. 

The “window” clause indicates the size of the data that should be kept at any time, 
in either number of values or time period. This allows data holders to have a constant  
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size, since data enters and leaves in ordered fifo order, while maintaining up to  
window size of data. When a window fills-up, its data is sent to consumer streams and 
the window is emptied for another round. A time-based stream window is defined by 
specifying a time unit (e.g.  “window 1 hour”), while a size-based window is speci-
fied with a number of tuples (e.g. “window 10 tuples”).   

A stream may be stored either in memory (if it is sufficiently small to fit there) or 
on flash disk. The storage clause allows users to specify where to store the data.  

A metadata structure describes each stream. The structure contains the stream 
name, attribute names and domains (NUMERIC, LONG, STRING). The physical 
representation of tuples is through a compact byte-array record of the attribute values.  

Creation of a consumer stream also creates a periodic query to fill the consumer 
from producer streams. Alternatively, a query can also be posed as a one-time query. 
Processing a query involves retrieving tuples one-by-one into memory, operating on 
the tuple, incrementally computing aggregations if specified, then either sending the 
result tuples through the communication interface to a consumer stream in the form of 
a stream data message, writing the result in stream storage, or printing the result in the 
console or in a serial port. The tuple-by-tuple processing saves a lot of memory. 

Stream selection projects attributes and may aggregate values along tuples of the 
stream. The aggregation functions are COUNT, MAX, AVG, MIN, and SUM, each of 
which is updated for each processed tuple that satisfies the SELECT predicate. The 
result set of tuples will contain a single tuple for each group of the aggregated values. 
As an example, the following query retrieves the average and maximum temperature 
per month: 

Create stream temperatureSummary 
in BuildingNodes 
as 
SELECT AVG(value), 
MAX(value),month(timestamp),year(timestamp)  
FROM temperatureSensor  
Group by month(timestamp),year(timestamp); 

The query processor computes aggregations incrementally. For instance, a maximum 
is computed incrementally as the maximum between the current maximum and the  
value of the current tuple; likewise, a sum is the current sum plus the new value from 
the current tuple, and an average is the current sum divided by the current number of 
tuples. This is done for each aggregation group, groups being addressed as a hashmap 
with the key being the group attribute values.   

Conditions are added through the where clause, selecting a subset of the tuples in a 
stream. While processing the current tuple, the query processor verifies whether the 
conditions evaluate to true and only considers the tuple for further processing if the 
condition is true.   

The delete command removes all tuples matching the condition indicated in the 
command. The delete is implemented by scanning all tuples, selecting those that do 
not match the delete condition into a new stream that replaces the previous one.  
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Stream drop commands free the memory occupied by the data and the metadata 
structure. 

Since embedded sensor devices frequently also actuate on some physical system 
through DAC interfaces, actuation conditions and syntax is added to the approach. 
Fig. 4 shows an example closing shades if a temperature alarm goes on (temperature 
> 30) and opening them if it goes off (temperature<25). This is done in the sensor 
nodes themselves. The example also shows the use of variables and customized 
functionality (the closeOpenShades code, which is developed in the platform coding 
language).  

shades=SensorNodes.Action(code=”dev/closeOpenShades”, 
           api={closeShades(),openShades()}); 
shades.openShades(); 
shadesOpen=true; 
 
create Stream temperatureBasedShadesOpenClose  
in SensorNodes as  
 select NodeID, value  
 From temperatureSensor 
 Where temperature>30 
 Action { 
 
  If(shadesOpen==true)  
   shades.closeShades();  
   shadesOpen=false; 
 } 
 Where temperature<25 
 Action { 
  If(shadesOpen==false) 
   shades.openShades();  
   shadesOpen=true; 
 } 

Fig. 4. Specifying an Action 

3.3 Query Processor 

Fig. 5 shows the command processing path in the networked environment. Users 
submit a command through a console. A parser interprets the commands and accesses 
a catalog for addressing references and other details, producing a command bytecode. 
That bytecode is sent to the target nodes, which receive it through a communications 
interface, parse it and process against the local streams. The processing of a stream is 
done by a ‘Process & Send’ (P&S) functionality.  
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• Other commands arriving through the communication interface -> the commands 
are executed. 

Tuple-by-tuple operation is implemented in the “Process & Send” (P&S) functionality 
in the following manner: the stream data is scanned tuple-by-tuple (either from RAM 
or flash). For each tuple, the query processor first applies where clause conditions to 
determine if the tuple is to contribute to further computation and output. If the condi-
tion evaluates to true, then P&S looks at each select clause field and: 

─ If the field is a constant, it outputs the constant into a temporary tuple space; 
─ If the field is an attribute, it copies the attribute value of the current tuple into the 

temporary tuple space; 
─ After a tuple is processed, if the query is not specifying an aggregation, then the 

result tuple is returned immediately; 
─ If the field is an aggregation (e.g. sum, count, avg, max, min), the attribute values 

of the current tuple update a temporary aggregation computation structure for the 
select aggregation expressions. The aggregation computation structure maintains a 
set of additive aggregation computations for the select field expression. The addi-
tive aggregation computations are: count - n, linear sum -ls, square sum - ss, max-
imum - max and minimum - min. This structure allows immediate return of (sum, 
avg, max, min, count) expressions as soon as all the tuples have been processed. If 
there is a group by clause, then there is a hashmap with the group-by values as 
keys and an aggregation structure of the type described above for each hashmap 
entry. Each tuple now updates the aggregation computations for the corresponding 
aggregation structure. 

 
If the query specifies an aggregation, after all the tuples have been processed, the 
query processor needs to take the aggregation structures and return the aggregation 
values that are needed by the query.   

4 Evaluation  

TinyStreams was implemented as an evolution of a system configuration interface 
developed for an industrial application in the context of European Project Ginseng - 
Performance Controlled Wireless Sensor Networks. It was implemented on top of the 
Contiki operating system using C programming language. It can be ported to other 
operating systems for resource-constrained devices, by adjusting the storage and 
communication layers to the new operating system API. The main operating system 
interface API primitives needed are send/receive and read/write. At the level of Tiny-
Streams, the read and write primitives are abstracted, with implementations for both 
flash and RAM. Flash storage was implemented on the Coffee file system [9] in the 
prototype.  

We measured the code size and query processing performance with simple queries 
over our experimental testbed.   
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Table 2 shows the runtime memory requirements of TinyStreams, not counting the 
space occupied by each stream metadata and stream data.  

Table 2. Runtime Memory Requirements  

 

5 Conclusion 

We have proposed a TinyStreams model and engine for dealing with data in net-
worked sensor systems with embedded sensing devices. We have shown how the 
approach allows data storage, retrieval, processing and routing. Memory and file sys-
tem storage is abstracted into a stream management layer and a producer-consumer 
stream model allows networked configuration and processing with ease. The major 
advantage of the approach is that it allows users to specify what each node of a  sen-
sor network with computation-capable devices should do and how the data should be 
routed in a simple manner.  
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