Skip to main content

Abstract

This chapter presents an overview of adaptive optics (AO) systems, including a brief summary of their development history and their importance in high-resolution imaging systems. The first section of this chapter introduces the basic optical concepts of wavefronts and aberrations. The operating principle of AO systems and the primary components of these systems are then presented. Covered in the last section is a review of retinal imaging AO systems, including a brief review of the history of ophthalmic imaging systems and the requirements and challenges to their practical implementation using AO systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez AW (1967) Two-element variable-power spherical lens, US Patent 3305294

    Google Scholar 

  • Artal P, Navarro R (1989) High-resolution imaging of the living human fovea: measurement of the intercenter cone distance by speckle interferometry. Opt Lett 14:1098–1100

    Article  Google Scholar 

  • Artal P, Chen L, Fernandez EJ, Singer B, Manzanera S, Williams DR (2004) Neural compensation of the eye’s optical aberrations. J Vis 4:281–287

    Article  Google Scholar 

  • Babcock HW (1953) The possibility of compensating astronomical seeing. Publ Astron Soc Pac 65:229–236

    Article  Google Scholar 

  • Baudouin L, Prieur C, Guignard F, Arzelier D (2008) Robust control of a bimorph mirror for adaptive optics systems. Appl Opt 47:3637–3645

    Article  Google Scholar 

  • Berkefeld T, Soltau D, Schmidt D, von der Lühe O (2010) Adaptive optics development at the German solar telescopes. Appl Opt 49(31):G155–G166

    Article  Google Scholar 

  • Born M, Wolf E (1997) Principles of optics. Cambridge University Press, Cambridge

    Google Scholar 

  • Borra EF (2009) Liquid mirrors in engineering. Optics and Photonics News, pp 14–17, September 2009

    Google Scholar 

  • Borra EF, Brousseau D, Cliche M, Parent J (2008) Aberration correction with a magnetic liquid active mirror. Mon Not R Astron Soc 391(4):1925–1930

    Article  Google Scholar 

  • Brousseau D, Borra EF, Ruel HJ, Parent J (2006) A magnetic liquid deformable mirror for high stroke and low order axially symmetrical aberrations. Opt Express 14:11486–11493

    Article  Google Scholar 

  • Brousseau D, Borra EF, Rochette M, Landry DB (2010) Linearization of the response of a 91-actuator magnetic liquid deformable mirror. Opt Express 18(8):8239–8250

    Article  Google Scholar 

  • Carroll J, Neitz M, Hofer H, Neitz J, Williams DR (2004) Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness. Proc Natl Acad Sci USA 101:8461–8466

    Article  Google Scholar 

  • Chen L, Kruger PB, Hofer H, Singer B, Williams DR (2006) Accommodation with higher-order monochromatic aberrations corrected with adaptive optics. J Opt Soc Am A 23:1–8

    Article  Google Scholar 

  • Chen DC, Jones SM, Silva DA, Olivier SS (2007) High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors. J Opt Soc Am A 24:1305–1312

    Article  Google Scholar 

  • Correia C, Raynaud HF, Kulcsar C, Conan JM (2010a) Minimum variance control for woofer tweeter systems in adaptive optics. J Opt Soc Am A 27(11):133–144

    Article  Google Scholar 

  • Correia C, Raynaud HF, Kulcsar C, Conan JM (2010b) On the optimal reconstruction and control of adaptive optical systems with mirror dynamics. J Opt Soc Am A 27(2):333–349

    Article  Google Scholar 

  • Dai G (2008) Wavefront optics for vision correction, vol PM179, SPIE press monograph. SPIE Publications, Bellingham

    Book  Google Scholar 

  • Dalimier E, Dainty C (2005) Comparative analysis of deformable mirrors for ocular adaptive optics. Opt Express 13:4275–4285

    Article  Google Scholar 

  • Devaney N, Dalimier E, Farrell T, Coburn D, Mackey R, Mackey D, Laurent F, Daly E, Dainty C (2008) Correction of ocular and atmospheric wavefront: a comparison of the performance of various deformable mirrors. Appl Opt 47(35):6550–6562

    Article  Google Scholar 

  • Doble N, Miller DT (2006) Wavefront correctors for vision science. In: Porter J, Queener H, Lin J, Thorn K, Awwal A (eds) Adaptive optics for vision science: principles, practices, design and applications. Wiley, New York

    Google Scholar 

  • Doble N, Williams DR (2004) The applications of MEMS technology for AO in vision science. IEEE J Sel Top Quantum Electron 10(3):629–635

    Article  Google Scholar 

  • Downie J, Goodman W (1989) Optimal wavefront control for adaptive segmented mirrors. Appl Opt 28:5326–5332

    Article  Google Scholar 

  • Dreher AW, Bille JF, Weinreb RN (1989) Active optical depth resolution improvement of the laser tomographic scanner. Appl Opt 28:804–808

    Article  Google Scholar 

  • Dubra A, Sulai Y, Norris JL, Cooper RF, Dubis AM, Williams DR, Carroll J (2011) Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope. Biomed Opt Express 2(7):1864–1876

    Article  Google Scholar 

  • Ellenbroek R, Verhaegen M, Doelman N, Hamelinck R, Rosielle N, Steinbuch M (2006) Distributed control in adaptive optics: deformable mirror and turbulence modeling. Proc SPIE 6272:62723K

    Article  Google Scholar 

  • Evans JW, Zawadzki RJ, Jones SM, Olivier SS, Werner JS (2009) Error budget analysis for an adaptive optics optical coherence tomography system. Opt Express 17(16):13768–13784

    Article  Google Scholar 

  • Feinleib J (1982) Proposal 82–P4. Adaptive Optics Associates, Cambridge

    Google Scholar 

  • Ferguson RD, Zhong Z, Hammer DX, Mujat M, Patel AH, Deng C, Zou W, Burns SS (2010) Adaptive optics scanning laser ophthalmoscope with integrated wide field retinal imaging and tracking. J Opt Soc Am A 27(11):265–277

    Article  Google Scholar 

  • Fernandez EJ, Hermann B, Povazay B, Unterhuber A, Sattmann H, Hofer B, Ahnelt PK, Drexler W (2008) Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina. Opt Express 16:11083–11094

    Article  Google Scholar 

  • Fernandez EJ, Prieto PM, Artal P (2009) Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator. Opt Express 17(13):11013–11025

    Article  Google Scholar 

  • Ficocelli M, Ben Amara F (2012) Online tuning for retinal imaging adaptive optics systems. IEEE Trans Control Syst Technol 20(3):747–754

    Article  Google Scholar 

  • Fraanje R, Massioni P, Verhaegen M (2010) A decomposition approach to distributed control of dynamic deformable mirrors. Int J Optomechatron 4(3):269–284

    Article  Google Scholar 

  • Fried DL (1966) Limiting resolution looking down through the atmosphere. J Opt Soc Am 56:1380–1384

    Article  Google Scholar 

  • Godara P, Dubis AM, Roorda A, Duncan JL, Carroll J (2010) Adaptive optics retinal imaging: emerging clinical applications. Optom Vis Sci 87(12):930–941

    Article  Google Scholar 

  • Goodman JW (2004) Introduction to Fourier optics. Roberts & Company, Colorado

    Google Scholar 

  • Greenwood DP (1977) Bandwidth specification for adaptive optics systems. J Opt Soc Am 67:390–393

    Article  Google Scholar 

  • Guzmán D, Juez F, Myers R, Guesalaga A, Lasheras FS (2010) Modeling a MEMS deformable mirror using non-parametric estimation techniques. Opt Express 18(20):21356–21369

    Article  Google Scholar 

  • Hampson KM (2008) Adaptive optics and vision. J Mod Opt 55(21):3425–3467

    Article  Google Scholar 

  • Happer W, MacDonald GJ, Max CE, Dyson FJ (1994) Atmospheric turbulence compensation by resonant optical backscattering from the sodium layer in the upper atmosphere. J Opt Soc Am 11(1):263–276

    Article  Google Scholar 

  • Hardy JW (1998) Adaptive optics for astronomical telescopes. Oxford University Press, New York

    Google Scholar 

  • Hardy JW, Lefebvre JE, Koliopoulos CL (1977) Real-time atmospheric compensation. J Opt Soc Am 67:360–369

    Article  Google Scholar 

  • Hart M (2010) Recent advances in astronomical adaptive optics. Appl Opt 49(16):D17–D29

    Article  Google Scholar 

  • Hecht E (2002) Optics. Addison Wesley, San Francisco

    Google Scholar 

  • Helmbrecht MA, Juneau T (2007) Piston-tip-tilt positioning of a segmented MEMS deformable mirror. Proc SPIE 6467:64670M

    Article  Google Scholar 

  • Hinnen K, Verhaegen M, Doelman N (2007) Exploiting the spatiotemporal correlation in adaptive optics using data-driven H2-optimal control. J Opt Soc Am A 24:1714–1725

    Article  Google Scholar 

  • Hinnen K, Verhaegen M, Doelman N (2008) A data driven H2 optimal control approach for adaptive optics. IEEE Trans Control Syst Technol 16(3):381–389

    Article  Google Scholar 

  • Hofer H, Artal P, Singer B, Aragon JL, Williams DR (2001a) Dynamics of the eye’s aberration. J Opt Soc Am A 18(3):497–505

    Article  Google Scholar 

  • Hofer H, Chen L, Yoon GY, Singer B, Yamauchi Y, Williams DR (2001b) Improvement in retinal image quality with dynamic correction of the eye’s aberrations. Opt Express 8:631–643

    Article  Google Scholar 

  • Huang J, Looze D, Denis N, Castanon D, Wirth A (1995a) Dynamic modeling and identification of an adaptive optics system. In: Proceedings of the 4th IEEE conference on control applications, Albany, NY, USA, pp 456–463

    Google Scholar 

  • Huang J, Looze D, Denis N, Castanon D, Wirth A (1995b) Control design for an adaptive optics system. In: Proceedings of the IEEE conference on decision and control, New Orleans, LA, USA, pp 3753–3756

    Google Scholar 

  • Huang H, Inoue T, Tanaka H (2011) Stabilized high-accuracy correction of ocular aberrations with liquid crystal on silicon spatial light modulator in adaptive optics retinal imaging system. Opt Express 19(16):15026–15040

    Article  Google Scholar 

  • Iqbal A, Ben Amara F (2007) Modeling of a magnetic fluid deformable mirror for retinal imaging adaptive optics systems. Int J Optomechatron 1(2):180–208

    Article  Google Scholar 

  • Iqbal A, Ben Amara F (2008) Modeling and experimental evaluation of a circular magnetic-fluid deformable mirror. Int J Optomechatron 2(2):126–143

    Article  Google Scholar 

  • Iqbal A, Wu Z, Ben Amara F (2009) Closed-loop control of magnetic fluid deformable mirrors. Opt Express 17(21):18957–18970

    Article  Google Scholar 

  • Iqbal A, Wu Z, Ben Amara F (2010) Mixed sensitivity H control of magnetic fluid deformable mirrors. IEEE/ASME Trans Mechatron 15(4):548–556

    Article  Google Scholar 

  • Kellerer A (2010) Curvature sensors: noise and its propagation. J Opt Soc Am A 27:A29–A36

    Article  Google Scholar 

  • Kocaoglu OP, Lee S, Jonnal RS, Wang Q, Herde AE, Derby JC, Gao W, Miller DT (2011) Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics. Biomed Opt Express 2(4):748–763

    Article  Google Scholar 

  • Kreyszig E (1993) Advanced engineering mathematics. Wiley, New York

    MATH  Google Scholar 

  • Kulcsár C, Raynaud HF, Petit C, Conan JM, de Lesegno Viaris P (2006) Optimal control, observers and integrators in adaptive optics. Opt Express 14:7464–7476

    Article  Google Scholar 

  • Li C, Sredar N, Ivers KM, Queener H, Porter J (2010) A correction algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system. Opt Express 18(16):16671–16684

    Article  Google Scholar 

  • Liang J, Williams DR (1997) Aberration and retinal image quality of the normal human eye. J Opt Soc Am A 14(11):2873–2883

    Article  Google Scholar 

  • Liang JZ, Grimm B, Goelz S, Bille JF (1994) Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wavefront sensor. J Opt Soc Am A 11:1949–1957

    Article  Google Scholar 

  • Liang J, Williams DR, Miller DT (1997) Supernormal vision and high-resolution retinal imaging through adaptive optics. J Opt Soc Am A 14(11):2884–2892

    Article  Google Scholar 

  • Liu YT, Gibson JS (2007) Adaptive control in adaptive optics for directed energy systems. Opt Eng 46(4):046601

    Article  Google Scholar 

  • Looze DP (2009) Linear quadratic Gaussian control for adaptive optics systems using a hybrid model. J Opt Soc Am 26(1):1–9

    Article  Google Scholar 

  • Love GD, Kirby AK, Ramsey RA (2010) Sub-millisecond, high stroke phase modulation using polymer network liquid crystals. Opt Express 18(7):7384–7389

    Article  Google Scholar 

  • Manzanera S, Helmbrecht MA, Kempf CJ, Roorda A (2011) MEMS segmented-based adaptive optics scanning laser ophthalmoscope. Biomed Opt Express 2(5):1204–1217

    Article  Google Scholar 

  • Miller DT, Williams DR, Morris GM, Liang JZ (1996) Images of cone photoreceptors in the living human eye. Vision Res 36:1067–1079

    Article  Google Scholar 

  • Monirabbasi S, Gibson S (2010) Adaptive control in an adaptive optics experiment. J Opt Soc Am A 27(11):A84–A96

    Article  Google Scholar 

  • Mu Q, Cao Z, Hu L, Liu Y, Peng Z, Xuan L (2010) Novel spectral range expansion method for liquid crystal adaptive optics. Opt Express 18(21):21687–21696

    Article  Google Scholar 

  • Mujat M, Ferguson RD, Iftimia N, Hammer DX (2009) Compact adaptive optics line scanning ophthalmoscope. Opt Express 17(12):10242–10258

    Article  Google Scholar 

  • Mujat M, Ferguson RD, Patel AH, Iftimia N, Lue N, Hammer DX (2010) High resolution multimodal clinical ophthalmic imaging system. Opt Express 18(11):11607–11621

    Article  Google Scholar 

  • Ödlund E, Raynaud HF, Kulcsár C, Harms F, Levecq X, Martins F, Chateau N, Podoleanu AG (2010) Control of an electromagnetic deformable mirror using high speed dynamics characterization and identification. Appl Opt 49(31):G120–G128

    Article  Google Scholar 

  • Paschall R, Anderson D (1993) Linear quadratic Gaussian control of a deformable mirror adaptive optics system with time-delayed measurements. Appl Opt 32:6347–6358

    Article  Google Scholar 

  • Petit C, Conan JM, Kulcsár C, Raynaud HF (2009) Linear quadratic Gaussian control for adaptive optics and multiconjugate adaptive optics: experimental and numerical analysis. J Opt Soc Am A 26(6):1307–1324

    Article  Google Scholar 

  • Potsaid B, Wen JT (2008) Adaptive scanning optical microscope: large field of view and high-resolution imaging using a MEMS deformable mirror. J Micro/Nanolithogr MEMS MOEMS 7(2):021009

    Google Scholar 

  • Prieto PM, Fernandez EJ, Manzanera S, Artal P (2004) Adaptive optics with a programmable phase modulator: applications in the human eye. Opt Express 12:4059–4071

    Article  Google Scholar 

  • Raynaud HF, Correia C, Kulcsar C, Conan JM (2011) Minimum variance control of astronomical adaptive systems with actuator dynamics under synchronous and asynchronous sampling. Int J Robust Nonlinear Control 21(7):768–789

    Article  MathSciNet  MATH  Google Scholar 

  • Roddier F (1999) Adaptive optics in astronomy. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rodrigues G, Bastaits R, Roose S, Stockman Y, Gebhardt S, Schoenecker A (2009) Modular bimorph mirrors for adaptive optics. Opt Eng 48:034001

    Article  Google Scholar 

  • Roggemann MC, Welsh BM (1996) Imaging through turbulence. CRC-Press, Boca Raton

    Google Scholar 

  • Roorda A (2002) Human visual system – image formation. In: Hornak JP (ed) Encyclopedia of imaging science and technology, vol 1. Wiley, New York, pp 539–557

    Google Scholar 

  • Roorda A, Williams DR (1999) The arrangement of the three cone classes in the living human eye. Nature 397:520–522

    Article  Google Scholar 

  • Roorda A, Williams DR (2002) Optical fiber properties of individual human cones. J Vis 2:404–412

    Article  Google Scholar 

  • Rubin ML (1986) Spectacles: past, present and future. Surv Ophthalmol 30:321–327

    Article  Google Scholar 

  • Saleh BE, Teich MC (2007) Fundamentals of photonics. Wiley, New York

    Google Scholar 

  • Scharmer GB, Dettori P, L¨ofdahl MG, Shand M (2002) Adaptive optics and correlation tracker systems for the new Swedish solar telescope. In: Keil S, Avakyan S (eds) Innovative telescopes and instrumentation for solar astrophysics, Proceedings of SPIE, vol 4853–52, SPIE press, Bellingham

    Google Scholar 

  • Seidel L (1856) Zur Dioptrik Uber die Entwicklung der Glieder 3ter Ordnung. Astron Nachr 43:289

    Article  Google Scholar 

  • Smirnov MS (1961) Measurement of the wave aberration of the human eye. Biophysics 6:687–703

    Google Scholar 

  • Stein G, Gorinevsky DM (2005) Design of surface shape control for large two-dimensional array. IEEE Trans Control Syst Technol 13:422–433

    Article  Google Scholar 

  • Thibos L, Applegate RA, Schweigerling JT, Webb R (2000) Standards for reporting the optical aberrations of eyes. In: Vision science and its applications. Optical Society of America, Washington, DC, pp 232–244

    Google Scholar 

  • Torti C, Považay B, Hofer B, Unterhuber A, Carroll J, Ahnelt PK, Drexler W (2009) Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina. Opt Express 17(22):19382–19400

    Article  Google Scholar 

  • Tyson RK (2000) Adaptive optics engineering handbook. Marcel Dekker, New York

    Google Scholar 

  • Tyson RK (2011) Principles of adaptive optics. CRC Press, Boca Raton

    Google Scholar 

  • Vdovin G, Soloviev O, Samokhin A, Loktev M (2008) Correction of low order aberrations using continuous deformable mirrors. Opt Express 16:2859–2866

    Article  Google Scholar 

  • Verpoort S, Wittrock U (2010) Actuator patterns for unimorph and bimorph deformable mirrors. Appl Opt 49:G37–G46

    Article  Google Scholar 

  • Vorontsov M, Weyrauch T, Carhart G, Beresnev L (2010) Adaptive optics for free space laser communications. In: Applications of lasers for sensing and free space communications, vol LSMA1, OSA technical digest series (CD). Optical Society of America, New York

    Google Scholar 

  • Voulgaris PG, Bianchini G, Bamieh B (2003) Optimal H2 controllers for spatially invariant systems with delayed communication requirements. Syst Control Lett 50:347–361

    Article  MathSciNet  MATH  Google Scholar 

  • Webb RH, Albanese MJ, Zhou Y, Bifano T, Burns SA (2004) Stroke amplifier for deformable mirrors. Appl Opt 43:5330–5333

    Article  Google Scholar 

  • Wiberg DM, Max CE, Gavel DT (2004a) A spatial non-dynamic LQG controller: part 1, application to adaptive optics. In: Proceedings of the IEEE conference on decision and control, Atlantis, Paradise Island, Bahamas, USA, pp 3326–3332

    Google Scholar 

  • Wiberg DM, Max CE, Gavel DT (2004b) A spatial non-dynamic LQG controller: part 2, theory. In: Proceedings of the IEEE conference on decision and control, Atlantis, Paradise Island, Bahamas, USA, pp 3333–3338

    Google Scholar 

  • Zawadzki RJ, Choi SS, Fuller AR, Evans JW, Hamann B, Werner JS (2009) Cellular resolution volumetric in vivo retinal imaging with adaptive optics optical coherence tomography. Opt Express 17(5):4084–4094

    Article  Google Scholar 

  • Zawadzki RJ, Jones SM, Pilli S, Balderas-Mata S, Kim DY, Olivier SS, Werner JS (2011) Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging. Biomed Opt Express 2(6):1674–1686

    Article  Google Scholar 

  • Zhang Y, Rha J, Jonnal R, Miller DT (2005) Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina. Opt Express 13:4792–4811

    Article  Google Scholar 

  • Zhang Y, Poonja S, Roorda A (2006) MEMS-based adaptive optics scanning laser ophthalmoscopy. Opt Lett 31:1268–1270

    Article  Google Scholar 

  • Zou W, Qi X, Burns SA (2011) Woofer-tweeter adaptive optics scanning laser ophthalmoscopic imaging based on Lagrange-multiplier damped least-squares algorithm. Biomed Opt Express 2(7):1986–2004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhizheng Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wu, Z., Iqbal, A., Amara, F.B. (2013). Adaptive Optics Systems. In: Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32229-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32229-7_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32228-0

  • Online ISBN: 978-3-642-32229-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics