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Abstract. This paper presents a solution to the biped locomotion prob-
lem. The robot used for the experiments is robot Nao by Aldebaran
Robotics and it is simulated in Webots mobile robot simulator. Our
method of solution does not requires the dynamic model of the robot,
thus making this approach usable to other biped robots. For faster re-
sults the number of degrees of freedom is kept low, only six are used.
The walking gait is generated using Central Pattern Generators with
limit-cycle oscillators. For the oscillator connection weights required for
synchronization, a genetic algorithm is implemented. Our solution is gen-
erated automatically and the best results allow the robot to walk twice
as fast as the Aldebaran’s webots walk and four times faster than the
default walk in Robotstadium.

Keywords: central pattern generator, genetic algorithm, biped robot,
robot nao, robot simulation.

1 Introduction

In this paper we present a solution to create a stable and fast walking gait for
the robot Nao [1] in the Webots [5] simulator. This proposed solution allows a
Nao robot to walk without the requirement of the dynamic model by using a
bio-inspired approach. We suggest the use of Central Pattern Generators (CPGs)
based on coupled limit-cycle oscillators together with genetic algorithms (GA).
The oscillators generate trajectories that are followed by the robot’s servomotors.
For the oscillator coupling, we use a GA to optimize the synchronization param-
eters. This work also minimizes the required parameters for the optimization to
provide fast results with a relatively low number of evaluations.

We decided to use CPGs [10] to create a controller that is equivalent in the way
humans and animals generate locomotion. The CPG is the low level locomotion
controller and generates the motion type that a higher level controller requires,
such as the interaction between the spinal cord and the brain. We selected genetic
algorithms for being very good at finding solutions when the evaluation is simple,
in this case, the distance traveled. Both CPG and GA were used to generate the
controller in a bio-inspired approach.
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This paper is divided in six sections. Related Work section gives a brief sum-
mary of the state-of-the-art in biped locomotions controllers. In section 3, we de-
scribe the CPGs and the oscillator used. In section 4, the Nao robot is introduced
together withWebots simulator, also includes the connections proposed for the os-
cillator coupling and the genome used in the GA. In Section 5, we show the results
obtained with this approach, the optimized genome, the oscillation behavior and
the walking gait obtained. Finally, Conclusion and Future Works section makes a
brief summary on this work and our current and future research projects.

2 Related Work

Designing and implementing locomotion controllers for a robot is a complex task
that often requires the knowledge of the dynamic model of the robot in order to
generate robust and practical gaits. This is a task far from trivial, and can be
approached in many different ways. The most common approach is using control
theory. By manipulation of limb trajectories, it creates a desired motion and by
using a controller, the balance is achieved.

Several works implement Zero-Movement Point(ZMP) [17] for the generation
of trajectories that allows the center of mass to remain inside a stability poly-
gon and thus avoid falling. In [16], ZMP was used to create an engine for an
omnidirectional walk. For their dynamic model they use an inverted pendulum
with all the mass in the CoM, then a preview controller generates dynamically
balanced center of mass trajectories.

Another common approach is the use of heuristic methods to avoid using the
dynamic model but still being able to generate a successful motion. Heuristic
approaches include: genetic algorithms, reinforcement learning, policy gradient,
among others. In [9], genetic algorithms are used together with partial Fouries
series and they generate the trajectories based mainly on the CoM to monitor
the stability of the gait. In [12], reinforcement learning is used for a robot to
learn where to place the swing leg. They also modify the desired walking cycle
frequency based on online measurements. Finally, in [3], an extension of the
classic Policy Gradient algorithm that takes into account parameter relevance is
used. It allows for better solutions when only a few experiments are available.

A third approach exists, a bio-inspired approach. Instead of creating new
methods for achieving locomotion, this approach heavily relies on the observa-
tion of the living organisms in nature. Works using bio-inspired approaches use
Central Pattern Generators (CPGs) as its foundation [6]. In [8], the CPG net-
work consists of the Matsuoka neuron model, and is introduced to realize the
locomotion of a bipedal robot, they also use genetic algorithms in several steps
to find out large number of parameters according to structure of CPG network.
In [7], an oscillator is proposed for a salamander robot to generate the transition
between swimming and walking. This same oscillator was used in [2] to generate
locomotion for modular robots and in [11] to generate trajectories for the biped
robot hoap2. In bio-inspired models, genetic algorithms are often the algorithm
of choice for parameter optimization since it is based on evolution.
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3 CPG Description

CPGs are neural networks found in vertebrate and invertebrate animals that pro-
duce rhythmic outputs without rhythmic inputs. Rhythms in nature are abun-
dant, and are common in animal activities such as the heartbeat, breathing,
chewing and digesting.

A CPG can be implemented with oscillators as the basic neural unit and
create the connected network by oscillator coupling. An oscillator is a system
that executes a periodic behavior. For example, a swinging pendulum executes
a periodic behavior once it is released at a certain height and it returns to the
same point every cycle. A common oscillator has a characteristic period.

A special form of oscillator often found in nature is a limit-cycle oscillator. A
limit-cycle not only has a characteristic period but also a characteristic ampli-
tude. If the limit cycle is affected by some perturbations it is able to return to
its original trajectory after a given time. Those characteristics are important for
locomotion since it makes the system resistant to small perturbations. A more
in-depth information about oscillators and limit-cycles can be found in [15].

The oscillator used for the CPG was proposed by Professor A. Ijspeert from
BIRG[7]. It is a non-linear oscillator and has the interesting property of having
the limit cycle behave like a sinusoidal signal with an amplitude

√
E and a period

2πτ .

τ v̇ = −α
x2 + v2 − E

E
v − x (1)

τẋ = v (2)

The variable x represents position and v represents velocity. Variables τ ,α and
E are positive constants. By modifying τ , the period of the oscillator can be
manipulated and changing α changes the system speed convergence. The energy
of the system is represented as E. For oscillator coupling:

τ v̇i = −α
x2
i + v2i − E

E
vi − xi +

∑
aijxj + bijvj +

∑
cijsj (3)

τẋi = vi (4)

Where aij and bij represent how oscillator j influences oscillator i. The last
summatory allows for sensory input.

A previous work by Mojon [11] suggests a modification on the oscillator to al-
low the connection strength to be independent from the energy of the oscillators.
This is achieved by normalizing the connections:

τ v̇i = −α
x2
i + v2i − E

E
vi − xi +

∑ aijxj + bijvj
x2
j + v2j

(5)

τẋi = vi (6)

The last equations represent the final model of the oscillator used in this work.
One oscillator per DoF was used.
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4 Experimental Setup

The robot used in this paper is the robot Nao from Aldebaran Robotics [1].
This robot is now used in the official Robocup Standard Platform League(SPL)
[13,14]. Since the robot requires no hardware modifications is greatly useful for
software development. Nao has 21 degrees of freedom(DoF) which makes it highly
customizable and has a high number of possible movements. For this paper we
tried to reduce the search space all we could to be able to obtain fast results
with a relatively low number of experiments. For this reason only 6 DoF were
used, 3 from each leg: AnklePitch, KneePitch and HipPitch. These three were
selected because the propulsion force for walking is given only in the sagittal
plane. Any extra DoF could be used not for propulsion but for stabilization.

The experiments were developed and tested in Webots simulator [5] by Cy-
berbotics. Inspired by the online robot soccer competition, Robotstadium [4],
this software was selected to develop and implement a locomotion controller for
Nao robot. The version of the software used is 6.2.4 PRO and the model used is
the NaoV3R used for Robotstadium 2009/2010.

Connections subsection includes the DoF used, the oscillators network and
the parameters required. Finally, the Genome and Genetic Algorithm section
show how we optimized the CPG.

4.1 Connections

Since we use six DoF, six oscillators were used. Each DoF should require 6 or
8 parameters: A(Amplitude), X0 for a non-cero centered oscillation, aij and bij
for a single connection or aij ,bij , aik and bik for a double connected oscillator,
τ for period, and α for convergence speed between connections.

To enable every oscilator to affect and be affected, the links are double con-
nected. With the connections proposed in Fig. 1, we have 4 DoF with 8 param-
eters and 2 DoF with 6, this makes 44 total parameters to optimize. Forty-four
parameters represents a big search space considering each parameter could take
real values from [−1.0, 1.0]. To reduce the number of free parameters, τ and α
are fixed, reducing to 4 or 6 parameter per DoF for a total of 32. We set τ ≈ 1hz
and α = 1 for maximum convergence speed. Previous work with this oscillator
by Mojon [11] gave us some methods for reducing further the search space by
obtaining the weight paremeters to force 0, π

2 , π and 3π
2 phase difference. For

the first reduction, a certain phase can be forced by controlling a and b param-
eters. Instead of single evolving every oscillator a simetry is asumed, and only
one leg is optimized while the other leg use the same parameters. The trick for
this concists in forcing a π phase difference between the left hip and the right
hip. With this reduction instead of 32, there are only 16 parameters.

The final model is composed by 3 oscillators. The hip oscillator is connected
to the other hip and to its corresponding knee. The knee oscillator is connected
to its correspondent hip and ankle. Finally, the ankle is only connected to the
knee. Table 1 summarizes the possible values the oscillators are using. Extra
adaptations include the maximum range for the amplitude parameter. We allow
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Fig. 1. The Oscillator connections. All the connections are bi-directional

Table 1. Oscillator values. The value range for a variable is displayed in each cell,
missing values are values not required.

x0 A a1 a2 b1 b2

Hip [−1.0, 1.0] [−1.0, 1.0] 0 [−1.0, 1.0] [−1.0, 0.0] [−1.0, 1.0]

Knee [−1.0, 1.0] [−1.0, 1.0] [−1.0, 1.0] [−1.0, 1.0] [−1.0, 1.0] [−1.0, 1.0]

Ankle [−1.0, 1.0] [−1.0, 1.0] [−1.0, 1.0] [−1.0, 1.0]

the max amplitude be up to π
2 for each oscillator. And for the connections

strength the maximum allowed is 0.7 to have a smoother synchronization [2].
If the maximum connection strenght is too high the oscillators may not reach
synchronization.

4.2 Genome and Genetic Algorithm

The genome used is displayed in Table 2. It corresponds to the values the genetic
algorithm optimizes and it is the concatenation of the parameters required by
the oscillators. The first five values correspond to the hip, in which a1 is always
zero, thus ommited from the genome. The next six values corresponds to the
knee oscillator and the last four are required by the ankle oscillator. All the
parameters can take values from [−1.0, 1.0]. The only exception is b1 from the
hip which can only take values from [−1.0, 0.0].

TheX0 value indicates the bias for the oscillator to allow for non-zero centered
oscillation. A is the amplitude of the oscillation, internally it can only take

Table 2. Genome

X0 A a2 b1 b2 X0 A a1 a2 b1 b2 X0 A a1 a2
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positive numbers. The π phase difference between legs is forced by making hip
values a1 = 0 and b1 = [−1.0, 0.0].

For the Genetic Algorithm(GA) implementation we used GAlib [18]. All the
genes are real value numbers and are represented as a float data type. The
genetic algorithm is a GASimpleGA which corresponds to the genetic algorithm
proposed by Holland.

Tournament selection was used. Two chromosomes from the population are
randomly selected and the one with best fitness is selected.

The crossover type used was GARealOnePointCrossover, which randomly
selects one crossover point to swap genes from the parents. The probability of
crossover was 0.90. And for mutation it was used GARealUniformMutator,
which randomly selects a new value from the alleles [−1.0, 0.0]. Mutation prob-
ability was set to 0.01.

The population size is 30 individuals, twice the size of the genes. The GA was
configured to run until the convergence of the population. A 95% convergence
ratio was used as criteria for stopping the GA and it had to be concistent for
fifty generations. Elitism was used to preserve the best individual from each
generation.

Only the best individual is obtained as a result of each GA execution. Several
GAs were executed secuentially and all the best individuals were recorded. The
fitness evaluation is the following:

Fitness =

{
0 if Distance < 20

Distance ∗ StandingSimulationSteps
TotalSimulationSteps otherwise

(7)

The Distance was measured in centimeters. StandingSimulationSteps is the
number of simulation steps until the robot falls or the 30 second timer expires.
TotalSimulationSteps are the total simulation steps in 30 seconds.

5 Experimental Results

First of all, we have three key aspects involved which required careful tunning
for optimal performance. These aspects are: the fitness function, the number of
oscillators and the phase difference between oscillators.

Several fitness functions were tested, because a bad fitness generates a bad
behavior or at least an unwanted behavior. At the beginning, when the fitness
only measured the Distance, the robot learned to jump to reach for a larger
distance instead of generating trajectories that reward the robot later by walking.
Another approach used for the fitness function was to allow the robot to walk to
anywhere it wants and still obtain a positive fitness. For example, if the robot
moved backwards, the distance was multiplied by 0.50 to penalize the wrong
direction, but it still receive a non-zero fitness evaluation. Later, it was observed
that it was better to give a 0.0 fitness whenever the robot did not move forward.
Another important aspect was to encourage the robot to avoid falling. If the
reward is too big, the robot learns to reduce the amplitude of the oscillations
and it avoids falling, but it does not move forward. The fitness function had to be
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a balanced equation to give a reward for moving forward but not give too much
reward for not falling. To address this, the minimum valid distance required is
20 centimeters.

The number of oscillators and the phase difference between oscillators was
fixed to reduce to the maximum the number of free parameters and to allow a
faster convergence for the genetic algorithm. Preliminary tests were made with
12 oscillators instead of the 6 presented in this paper. The servos used for each
leg were: 3 from each hip, 1 for the knee and 2 from the ankles. The robot was
able to walk small distances, but the walking speed was far from good and most
of the times the gait of the robot was a weird non human-like movement. For that
reason, the number of required oscillators was minimized to generate a walking
gait with the minimum required parameters.

The oscillation values are shown in Fig. 2. The servo motors start at 0.0
where the robot is in resting position and later begins locomotion with the
synchronization of all the servos. The resulting genome is displayed in Table.3.
All the values are within [−1.0, 1.0]. As mentioned in the Experimental Setup
section, the first five values correspond to the hip, in which a1 is always zero,
thus ommited from the genome. The next six values corresponds to the knee
oscillator and the last four are required by the ankle oscillator

The best results are shown in Fig. 3 with a fitness of almost 350. The average
fitness is affected by the mutation and crossover in which some individuals obtain
a bad fitness. As it can be appreciated, the best results are obtained aproximately
from the 50th generation where it converges. In order to obtain satisfactory
results, the genetic algorithm was restarted whenever it converges to increment

Fig. 2. Comparative between the oscillations generated by the CPG (bottom) and the
real oscillations by the servomotors (top)
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Table 3. Solution obtained for the CPG (Split in two for display purposes)

X0 A a2 b1 b2 X0 A a1

-0.118 0.132 -0.627 0.314 -0.787 0.939 0.119 -0.178

a2 b1 b2 X0 A a1 a2

0.636 -0.164 0.040 -0.787 -0.049 0.528 0.072

Fig. 3. Fitness per Generation displaying the best individual and the average for each
generation

the number of posible solutions. Depending on the population sometimes the
convergence can take from several hours to minutes. The Nao learned to walk
making small steps to keep balance and avoid falling. It can be appreciated
in Fig.4. Its double support phase is very brief, balancing in one feet most of
the time. Since the CPG has an oscillator behavior, the cycle is repeated the
required times. Once it breaks the standing pose, it can cross the whole field
without problem.

In order to compare the results obtained from the GA in a more graphical
way, a special world in Webots was programmed to allow three different robot
controllers to compete on a race to cross half of the soccer field. The controllers
were: the one generated in this paper, the default walking motion from Robot-
stadium and the default walking controller from the Nao provided as default by
Aldebaran Robotics.

The results of the race can be appreciated in Fig.5. From top to bottom:
Aldebaran’s controller, our controller and Robotstadium’s controller. Our con-
troller can walk four times faster than the default controller in Robotstadium
and aproximately twice as fast than the Nao default walk by Aldebaran Robotics
in naoqi 1.6. The results obtained are satisfactory since our controller is an open
loop that may be improved further with reflexes and/or a stability controller.

An additional aspect to have in consideration is the first step of the robot,
since the resting position is outside the walking trajectories. Several ways to
help with the first step were implemented. The first one was to allow some
time for the CPG to synchronize and then connect the servos. It wasn’t as
useful as we thought and the results were negative. Another variation was to let
them synchronize and then when the values were closer to the X0 the servos
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Fig. 4. Nao walking. Can be appreciated from top-left to bottom-right.

Fig. 5. Race between the controllers. Top blue: Aldebaran’s controller. Center black:
our controller. Bottom red: Robotstadium’s default walk

were connected, but the same negative results were obtained. Finally the last
approach was to initiate the servos at the same time of the CPG and allow it to
synchronize.

About the time requiered for good individuals, in one 16-hour session good
individuals were generated and tested. Our Webots PRO license allows to run
in fast mode which gave us 12x the speed of a simulation.

6 Conclusions and Future Work

As the previous section showed, a good locomotion controller can be created by
using CPGs. Limit-cycle oscillators provide some resistance to perturbations and
allow the robot to generate by itself the first step to break the rest position and
walk forward. It was shown that a walking gait can be generated by using only
the pitch servomotors: hipPitch, kneePitch and anklePitch. Another advantage
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of using a low number of oscillators is that the size of the search space is reduced,
obtaining faster results.

Research in progress includes the automated generation of side steps. In pre-
liminary experiments we have obtained very good results, but are still not con-
clusive. Additional experiments will include rotational walk and hopefully an
omnidirectional walk with the integration of all the results. At the same time,
we are working in optimizing the algorithm in order implement it in the real
Nao.Future work will include an implementation in the physical Nao to replace
the actual default walk for a hopefully better gait. Additional future work in-
cludes the evolution of an adaptive controller simultaneously with the CPG to
allow a closed-loop control and achieve faster and more stable gaits.
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