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Abstract. It is notoriously difficult to create hardware that is immune
from side channel and tampering attacks. A lot of recent literature, there-
fore, has instead considered algorithmic defenses from such attacks. In
this paper, we show how to algorithmically secure any cryptographic
functionality from continual split-state leakage and tampering attacks.
A split-state attack on cryptographic hardware is one that targets sepa-
rate parts of the hardware separately. Our construction does not require
the hardware to have access to randomness. In contrast, prior work on
protecting from continual combined leakage and tampering [23] required
true randomness for each update. Our construction is in the common
reference string (CRS) model; the CRS must be hard-wired into the de-
vice. We note that prior negative results show that it is impossible to
algorithmically secure a cryptographic functionality against a combina-
tion of arbitrary continual leakage and tampering attacks without true
randomness; therefore restricting our attention to the split-state model
is justified. Our construction is simple and modular, and relies on a new
construction, in the CRS model, of non-malleable codes with respect to
split-state tampering functions, which may be of independent interest.

1 Introduction

Recently, the cryptographic community has been extensively studying various
flavors of the following general problem. Suppose that we have a device that
implements some cryptographic functionality (for example, a signature scheme
or a cryptosystem). Further, suppose that an adversary can, in addition to in-
put/output access to the device, get some side-channel information about its
secret state, potentially on a continual basis; for example, an adversary can
measure the power consumption of the device, timing of operations, or even
read part of the secret directly [25,18]. Additionally, suppose that the adversary
can, also possibly on a continual basis, somehow alter the secret state of the
device through an additional physical attack such as microwaving the device or
exposing to heat or EM radiation [4,1]. What can be done about protecting the
security of the functionality of the device?

Unfortunately, strong negative results exist even for highly restricted versions
of this general problem. For example, if the device does not have access to ran-
domness, but is subject to arbitrary continual leakage, and so, in each round i,
can leak to the adversary just one bit bi(si) for a predicate bi of the adversary’s
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choice, eventually it will leak its entire secret state. Moreover, even in a very re-
stricted leakage model where the adversary can continually learn a physical bit
of the secret state si, if the adversary is also allowed to tamper with the device
and the device does not have access to randomness, Liu and Lysyanskaya [28]
showed that the adversary will eventually learn the entire secret state. Further,
even with tampering alone, Gennaro et al. [16] show that security from arbi-
trary tampering cannot be achieved unless the device can overwrite its memory;
further, they show that security can only be achieved in the common reference
string model.

For the leakage-only case, positive results are known for continual attacks
assuming an on-device source or randomness [5,8,27,26]. The one-time leakage
case has also been studied [2,30,3,24]. For the tampering-only case, positive
results are known as well for different setup and tampering models [16,13,6].

Finally, there are positive results for signature and encryption devices when
both continual tampering and leakage are possible, and the device has access to
a protected source of true randomness [23]. One may be tempted to infer from
this positive result that it can be “derandomized” by replacing true randomness
with the continuous output of a pseudorandom generator, but this approach is
ruled out by Liu and Lysyanskaya [28]. Yet, how does a device, while under a
physical attack, access true randomness? True randomness is a scarce resource
even when a device is not under attack; for example, the GPG implementations
of public-key cryptography ask the user to supply random keystrokes whenever
true randomness is needed, which leads to non-random bits should a device fall
into the adversary’s hands.

In this paper, we investigate general techniques for protecting cryptographic
devices from continual leakage and tampering attacks without requiring access
to true randomness after initialization. Since, as we explained above, this is
impossible for general classes of leakage and tampering functions, we can only
solve this problem for restricted classes of leakage and tampering functions.
Which restrictions are reasonable? Suppose that a device is designed such that
its memory M is split into two compartments, M1 and M2, that are physically
separated. For example, a laptop may have more than one hard drive. Then it is
reasonable to imagine that the adversary’s side channel that leaks information
about M1 does not have access to M2, and vice versa. Similarly, the adversary’s
tampering function tampers with M1 without access to M2, and vice versa.
This is known as the split-state model, and it has been considered before in the
context of leakage-only [12,9] and tampering-only [13] attacks.

Our main result. Let G(·, ·) be any deterministic cryptographic functionality
that, on input some secret state s and user-provided input x, outputs to the
user the value y, and possibly updates its secret state to a new value s′; formally,
(y, s′) = G(s, x). For example, G can be a stateful pseudorandom generator that,
on input an integer m and a seed s, generates m + |s| pseudorandom bits, and
lets y be the first m of these bits, and updates its state to be the next |s| bits. A
signature scheme and a decryption functionality can also be modeled this way.
A participant in an interactive protocol, such as a zero-knowledge proof, or an
MPC protocol, can also be modeled as a stateful cryptographic functionality;
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the initial state s would represent its input and random tape; while the supplied
input x would represent a message received by this participant. A construc-
tion that secures such a general stateful functionality G against tampering and
leakage is therefore the most general possible result. This is what we achieve:
our construction works for any efficient deterministic cryptographic functional-
ity G and secures it against tampering and leakage attacks in the split-state
model, without access to any randomness after initialization, but with access to
a trusted common reference string (CRS). Any randomized functionality G can
be securely derandomized using a pseudorandom generator whose seed is chosen
in the initialization phase; our construction also applies to such a derandomized
version of G. Quantitatively, our construction tolerates continual leakage of as
many as (1 − o(1))n bits of the secret memory, where n is the size of the secret
memory.

Our construction assumes the existence of a one-time leakage resilient public-
key cryptosystem that allows leakage of any poly-time computable g(sk) of length
c|sk| for some constant c, for example one due to Naor and Segev [30]. Further, we
need robust non-interactive zero-knowledge proof systems [7] for an appropriate
NP language. See the full version of this paper for further detailed discussions.

Prior work. Here we give a table summarizing the state of the art in tolerating
continual leakage and tampering attacks; specific attacks we consider are split-
state attacks (abbreviated as “SS”), attacks on physical bits (abbreviated as
“bits”), attacks on small blocks (abbreviated as “blocks”), and attacks by any
polynomial-sized circuits (abbreviated as “any”).

Type of Type of Local Known results about
leakage tampering coins continual attacks
None Any No Signature and decryption in the CRS model [16]
Any None No Trivially impossible
Bits Any No Impossible [28]
Any None Yes Signature and encryption in the plain model [5,8,27,26]
None Bits Yes All functionalities in the plain model [13]
None SS Yes All functionalities in the RO model [13]
None Blocks Yes All functionalities in the plain model [6]
Any Any Yes Signature and encryption in the CRS model [23]

SS SS No All functionalities in the CRS model [This work]

We remark that all the results referenced above apply to attacks on the mem-
ory of the device, rather than its computation (with one exception). The ex-
ception [26] is the work that constructed the first encryption and signature
schemes that can leak more than logarithmic number of bits during their up-
date procedure (but cannot be tampered with). Thus, all these works assume
computation to be somewhat secure. In this work, for simplicity, we also assume
that computation is secure, and remark that there is a line of work on pro-
tecting computation from leakage or tampering [21,29,20,12,31,10,15,17,22,14].
This is orthogonal to the study of protecting memory leakage and tampering.
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In particular, we can combine our work with that of Goldwasser and Roth-
blum [17], or Juma and Vahlis [22] to obtain a construction where computation
is protected as well; however, this comes at a cost of needing fresh local random-
ness. All known cryptographic constructions that allow an adversary to issue
leakage queries while the computation is going on rely on fresh local random-
ness.

A decryption device produced by our compiler will have stronger leakage
resilience properties than most previous work [5,27,26,23] on leakage resilient
encryption: it will tolerate after-the-fact leakage defined by Halevi and Lin [19];
since this will be guaranteed on a continual basis, our results solve a problem
left explicitly open by Halevi and Lin.

Our building block: non-malleable codes. We use non-malleable codes, defined
by Dziembowski et al. [13], as our building block.

Let Enc be an encoding procedure and Dec be the corresponding decoding
procedure. Consider the following tampering experiment [13]: (1) A string s is
encoded yielding a codeword c = Enc(s). (2) The codeword c is mauled by some
function f to some c∗ = f(c). (3) The resulting codeword is decoded, resulting
in s∗ = Dec(c∗). (Enc,Dec) constitutes a non-malleable code if tampering with
c can produce only two possible outcomes: (1) f leaves c unchanged; (2) the
decoded string s∗ is unrelated to the original string s. Intuitively, this means
that one cannot learn anything about the original string s by tampering with
the codeword c.

It is clear [13] that, without any restrictions on f , this notion of security
is unattainable. For example, f could, on input c, decode it to s, and then
compute s∗ = s+ 1 and then output Enc(s∗). Such an f demonstrates that no
(Enc,Dec) can satisfy this definition. However, for restricted classes of functions,
this definition can be instantiated.

Dziembowski et al. constructed non-malleable codes with respect to bit-wise
tampering functions in the plain model, and with respect to split-state tam-
pering functions in the random oracle model. They also show a compiler that
uses non-malleable codes to secure any functionality against tampering attacks.
In this paper, we improve their result in four ways: first, we construct a non-
malleable code with respect to split-state tampering, in the CRS model (which
is a significant improvement over the RO model). Second, our code has an ad-
ditional property: it is leakage resilient. Third, we prove that plugging in a
leakage-resilient non-malleable code in the Dziembowski et al. compiler secures
any functionality against both tampering and leakage attacks. Fourth, we de-
randomize the compiled construction such that it no longer requires a trusted
source of randomness for updates.

Our continual tampering and leakage model. We consider the same tampering
and leakage attacks as those of Liu and Lysyanskaya[28] and Kalai et al. [23],
which generalized the model of tampering-only [16,13] and leakage-only [5,8,27,26]
attacks. (However, in this attack model we achieve stronger security, as discussed
above.)
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Let M be the memory of the device under attack. We view time as divided
into discrete time periods, or rounds. In each round, the adversary A makes a
leakage query g or a tampering query f ; as a result, A obtains g(M) or modifies
the memory: M := f(M). In this work, we consider both g, f to be split-state
functions. We consider a simulation-based definition of security against such
attacks.

Our approach. Let G(s, x) be the functionality we want to secure, where s is
some secret state and x is the user input. Our compiler takes the leakage-resilient
non-malleable code and G as input, outputs G′(Enc(s), x), where G′ gets an
encoded version of the state s, emulates G(s, x) and re-encodes the new state
at the end of each round. Then we will argue that even if the adversary can
get partial information or tamper with the encoded state in every round, the
compiled construction is still secure.

2 Our Model

Definition 1. Define the following three function classes Gt,Fhalf ,Ghalf
t1,t2 :

– Let t ∈ N. By Gt we denote the set of poly-sized circuits with output length
t.

– Let Fhalf denote the set of functions of the following form: f : {0, 1}2m →
{0, 1}2m ∈ Fhalf if there exist two poly-sized circuits f1, f2 : {0, 1}m →
{0, 1}m, such that for all x, y ∈ {0, 1}m, f(x, y) = f1(x) ◦ f2(y).

– Let t1, t2 ∈ N, and Ghalf
t1,t2 be the set of all poly-sized leakage functions that

leak independently on each half of their inputs, t1 bits on the first half and
t2 bits on the second half.
We further denote Ghalf

t1,all
as the case where g1(x) leaks t1 bits, and g2(y) can

leak all its input y.

Next, let us define an adversary’s access to a functionality under tampering and
leakage attacks. In addition to queries to the functionality itself (called Execute
queries) an attacker has two more operations: he can cause the memory of the
device to get tampered according to some function f , or he can learn some
function g of the memory. Formally:

Definition 2 (Interactive Functionality Subject to Tampering and Leak-
age Attacks). Let 〈G, s〉 be an interactive stateful system consisting of a public
(perhaps randomized) functionality G : {0, 1}u × {0, 1}k → {0, 1}v × {0, 1}k and
a secret initial state s ∈ {0, 1}k. We consider the following ways of interacting
with the system:

– Execute(x): For x ∈ {0, 1}u, the system will compute (y, snew) ← G(s, x),
privately update state to snew, and output y.

– Tamper(f): the state s is replaced by f(s).
– Leak(g): the adversary can obtain the information g(s).
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Next, we define a compiler that compiles a functionality 〈G, s〉 into a hardware
implementation 〈G′, s′〉 that can withstand leakage and tampering attacks. A
compiler will consist of two algorithms, one for compiling the circuit for G into
another circuit, G′; the other algorithm is for compiling the memory, s, into s′.
This compiler will be correct, that is to say, the resulting circuit and memory
will provide input/output functionality identical to the original circuit; it will
also be tamper- and leakage-resilient in the following strong sense: there exists
a simulator that, with oracle access to the original 〈G, s〉, will simulate the be-
havior of 〈G′, s′〉 under tampering and leakage attacks. The following definitions
formalize this:

Definition 3. Let CRS be an algorithm that generates a common reference string,
on input the security parameter 1k. The algorithms (CircuitCompile,
MemCompile) constitute a correct and efficiency-preserving compiler in theCRS(1k)
model if for all Σ ∈ CRS(1k), for any Execute query x, 〈G′, s′〉’s answer is dis-
tributed identically to 〈G, s〉’s answer, where G′ = CircuitCompile(Σ,G) and s′ ∈
MemCompile(Σ, s); moreover, CircuitCompile and MemCompile run in polynomial
time and output G′ and s′ of size polynomial in the original circuit G and secret s.

Note that this definition of the compiler ensures that the compiled functionality
G′ inherits all the security properties of the original functionality G. Also the
compiler defined here works separately on the functionality G and on the secret
s, which means that it can be combined with another compiler that strengthens
G′ is some other way (for example, it can be combined with the compiler of
Goldwasser and Rothblum [17]). This definition allows for both randomized and
deterministic G′; as we discussed in the introduction, in general a deterministic
circuit is more desirable.

Remark 1. Recall that G, and therefore G′, are modeled as stateful functionali-
ties. By convention, running Execute(ε) will cause them to update their states.

As defined above, in the face of the adversary’s Execute queries, the compiled G′

behaves identically to the original G. Next, we want to formalize the important
property that whatever the adversary can learn from the compiled functionality
G′ using Execute, Tamper and Leak queries, can be learned just from the Execute
queries of the original functionality G.

We want the real experiment where the adversary interacts with the com-
piled functionality 〈G′, s′〉 and issues Execute, Tamper and Leak queries, to be
indistinguishable from an experiment in which a simulator Sim only has black-
box access to the original functionality G with the secret state s (i.e. 〈G, s〉).
More precisely, in every round, Sim will get some tampering function f or leak-
age function g from A and then respond to them. In the end, the adversary
halts and outputs its view. The simulator then may (potentially) output this
view. Whatever view Sim outputs needs to be indistinguishable from the view
A obtained in the real experiment. This captures the fact that the adversary’s
tampering and leakage attacks in the real experiment can be simulated by only
accessing the functionality in a black-box way. Thus, these additional physical
attacks do not give the adversary any additional power.
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Definition 4 (Security Against F Tampering and G Leakage). A com-
piler (CircuitCompile,MemCompile) yields an F-G resilient hardened functional-
ity in the CRS model if there exists a simulator Sim such that for every efficient
functionality G ∈ PPT with k-bit state, and non-uniform PPT adversary A, and
any state s ∈ {0, 1}k, the output of the following real experiment is indistinguish-
able from that of the following ideal experiment:

Real Experiment Real(A, s): Let Σ ← CRS(1k) be a common reference string
given to all parties. Let G′ ← CircuitCompile(Σ,G), s′ ← MemCompile(Σ, s).
The adversary A(Σ) interacts with the compiled functionality 〈G′, s′〉 for arbi-
trarily many rounds where in each round:

– A runs Execute(x) for some x ∈ {0, 1}u, and receives the output y.
– A runs Tamper(f) for some f ∈ F , and then the encoded state is replaced

with f(s′).
– A runs Leak(g), and receives some � = g(s′) for some g ∈ G, where s′ is the

current state. Then the system updates its memory by running Execute(ε),
which will update the memory with a re-encoded version of the current state.

Let viewA = (stateA, x1, y1, �1, x2, y2, �2, . . . , ) denote the adversary’s view where
xi’s are the execute input queries, yi’s are their corresponding outputs, �i’s are
the leakage at each round i. In the end, the experiment outputs (Σ, viewA).

Ideal Experiment Ideal(Sim,A, s): Sim first sets up a common reference string

Σ, and SimA(Σ),〈G,s〉 outputs (Σ, viewSim) = (Σ, (stateSim, x1, y1, �1, x2, y2,
�2, . . . )), where (xi, yi, �i) is the input/output/leakage tuple simulated by Sim
with oracle access to A, 〈G, s〉.
Note that we require that, in the real experiment, after each leakage query the
device updates its memory. This is necessary, because otherwise the adversary
could just keep issuing Leak query on the same memory content and, over time,
could learn the memory bit by bit.

Also, note that, following Dziembowski et al. [13] we require that each exper-
iment faithfully record all the Execute queries. This is a way to capture the idea
that the simulator cannot make more queries than the adversary; as a result, an
adversary in the real experiment (where he can tamper with the secret and get
side information about it) learns the same amount about the secret as the simu-
lator who makes the same queries (but does NOT get the additional tampering
and leakage ability) in the ideal experiment.

3 Leakage Resilient Non-malleable Codes

In this section, we present the definition of leakage resilient non-malleable codes
(LR-NM codes), and our construction. We also extend the definition of Dziem-
bowski et al. [13] in two directions: we define a coding scheme in the CRS model,
and we consider leakage resilience of a scheme. Also, our construction achieves the
stronger version of non-malleability, so we present this version. For the normal
non-malleability and the comparison, we refer curious readers to the paper [13].
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Definition 5 (Coding Scheme in the Common Reference String Model).
Let k be the security parameter, and Init(1k) be an efficient randomized al-
gorithm that outputs a common reference string (CRS) Σ ∈ {0, 1}poly(k). We
say C = (Init, Enc,Dec) is a coding scheme in the CRS model if for every k,
(Enc(1k, Σ, ·),Dec(1k, Σ, ·)) is a (k, n(k)) coding scheme for some polynomial
n(k): i.e. for each s ∈ {0, 1}k, Σ,
Pr[Dec(Σ, Enc(Σ, s)) = s] = 1. For simplicity, we will omit the security param-
eter.

Now we define the two properties of coding schemes: non-malleability and leak-
age resilience. We extend the definition of the strong non-malleability by Dziem-
bowski et al. [13] to the CRS model.

Definition 6 (Strong Non-malleability in the CRS Model). Let F be
some family of functions. For each function f ∈ F , and s ∈ {0, 1}k, define the
tampering experiment in the common reference string model. For any CRS Σ,
we define

Tamperf,Σs
def
=

{
c ← Enc(Σ, s), c̃ = fΣ(c), s̃ = Dec(Σ, c̃)

Output : same∗ if c̃ = c, and s̃ otherwise.

}
,

where the randomness of this experiment comes from the randomness of the
encoding and decoding algorithms.

We say the coding scheme (Init, Enc,Dec) is strong non-malleable if we have

{(Σ,Tamperf,Σs0 )}k∈N ≈ {(Σ,Tamperf,Σs1 )}k∈N where Σ ← Init(1k), any s0, s1 ∈
{0, 1}k, and f ∈ F , and ≈ can refer to statistical or computational indistin-
guishability.

Definition 7 (Leakage Resilience). Let G be some family of functions. A
coding scheme (Init, Enc,Dec) is leakage resilient with respect to G if for every
function g ∈ G, every two states s0, s1 ∈ {0, 1}k, and every efficient adversary
A, we have Pr[A(Σ, g(Σ, Enc(Σ, sb)) = b] ≤ 1/2 + ngl(k), where b is a random
bit, and Σ ← Init(1k).
How do we realize this definition? Consider a technique reminiscent of non-
malleable encryption [11,32]: set M1 = sk, M2 = (pk, ŝ = Encryptpk(s), π) where
π is a proof of consistency (i.e. it proves that there exists a secret key correspond-
ing to pk and that ŝ can be decrypted using this secret key). Does this work?
If the underlying proof system is malleable, then it could be possible to modify
both parts at the same time, so that the attacker could obtain an encoding of
a string that is related to the original s. So we require that the proof system
be non-malleable; specifically we use the notion of robust NIZK given by de
Santis et al. [7], in which, informally, the adversary can only output new proofs
for which he knows the corresponding witnesses, even when given black-box ac-
cess to a simulator that produces simulated proofs on demand; there exists an
extractor that can extract these witnesses.

Now let us try to give a high-level proof of security. Given a public key pk, and
a ciphertext c, it is the reduction’s job to determine whether c is an encryption
of s0 or s1, with the help of the adversary that distinguishes Tamperfs0 and

Tamperfs1 . A natural way for the reduction is to pretend that M1 = sk, and put
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the public key pk and the ciphertext ŝ = c with a simulated proof intoM2, setting
M2 = (pk, ŝ, πSim). Then the reduction simulates Tamperfs . Clearly, irrespective
of f1 the reduction can compute f2(M2) = (pk′, ŝ′, πSim), and intuitively, the
non-malleability of the proof assures that the adversary can only generate valid
(pk′, ŝ′) if he knows sk′ and s′. So at first glance, the outcome of the tampering
experiment (i.e. the decoding of the tampered codeword) should be s′, which
can be simulated by the reduction. Thus, the reduction can use A to distinguish
the two different experiments.

However, there are several subtle missing links in the above argument. The
reduction above does not use any property of f1, which might cause a problem.
Suppose f1(sk) = sk′, then the decoding of the tampered codeword is really s′,
so the reduction above simulates the tampering experiment faithfully. However,
if not, then the decoding should be ⊥ instead. Thus, the reduction crucially

needs one bit of information: sk′ ?
= f1(sk). If the reduction could get leakage

f1(sk) directly, then it could compute this bit. However, the length of f1(sk) is
the same as that of sk itself, and therefore no leakage-resilient cryptosystem can
tolerate this much leakage.

Our novel observation here is that actually a small amount of leaked informa-
tion about the secret key sk is sufficient for the reduction to tell the two cases
apart. Let h be a hash function that maps input strings to strings of length �.
Then, to check whether f1(sk) = sk′, it is very likely (assuming proper collision-
resistance properties of h) sufficient to check if h(f1(sk)) = h(sk′). So if given a
cryptosystem that can tolerate � bits of leakage, we can build a reduction that
asks that h(f1(sk)) be leaked, and this (in addition to a few other technicalities
that we do not highlight here) enables us to show that the above construction
is non-malleable.

Besides non-malleability, the above code is also leakage-resilient in the sense
that getting partial information about a codeword does not reveal any infor-
mation about the encoded string. Intuitively, this is because the NIZK proof
hides the witness, i.e. the message, and partial leakage of the secret key does
not reveal anything about the message, either. Thus, this construction achieves
non-malleability and leakage resilience at the same time.

The Construction. Let t be a polynomial, E = (KeyGen,Encrypt,Decrypt) be an
encryption scheme that is semantically secure against one-time leakage Gt, and
Π = (�,P ,V ,S) be a robust NIZK proof system (we defer the formal definitions
to the full version of this paper). The encryption scheme and robust NIZK need to
have some additional properties, and we briefly summarize them here: (1) given
a secret key sk, one can efficiently derive it corresponding public key pk; (2) given
a key pair (pk, sk), it is infeasible to find another valid (pk, sk′) where sk �= sk′;
(3) different statements of the proof system must have different proofs. In the
full version of this paper, we give formal definitions of these additional properties
and show that simple modifications of leakage-resilient crypto systems and robust
NIZK proof systems satisfy them. We define a coding scheme (Init, Enc,Dec)
in Figure 1.
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The coding scheme:

– Init(1k): sample a CRS: Σ ← {0, 1}�(k).
– Enc(Σ, s): on input s ∈ {0, 1}k, sample (pk, sk) ← KeyGen(1k). Let L be the

following language, and W be its natural witness relation:

L
def
=

{
(pk, m̂) : ∃w = (sk,m) s.t.

(pk, sk) forms a key pair for E and
m = Decryptsk(m̂).

}

Compute π ← P((pk, ŝ), (sk, s, r), Σ), an NIZK proof of the statement that
(pk, ŝ) ∈ L. Output the encoding c = (sk; pk, ŝ = Encryptpk(s), π).

– Dec(Σ, c): If (1) V((pk, ŝ), π,Σ) accepts and (2) (pk, sk) form a valid key pair,
output Decryptsk(ŝ). Otherwise, output ⊥.

Fig. 1. The coding scheme

Let n = n(k) be the polynomial that is equal to the length of sk ◦ pk ◦ ŝ ◦ π.
Without loss of generality, we assume that n is even, and |sk| = n/2, and |pk◦ ŝ◦
π| = n/2 (these properties can be easily guaranteed by padding the shorter side
with 0’s). Thus, a split-state device where n(k)-bit memory M is partitioned
into M1 and M2 could store sk in M1 and (pk, ŝ, π) in M2.

Remark 2. Note that the decoding algorithm Dec is deterministic if the verifier
V and the decryption algorithm Decrypt are both deterministic; as almost all
known instantiations are. In the rest of the paper, we will assume that the
decoding algorithm is deterministic.

Then we are able to achieve the following theorem:

Theorem 1. Let t : N → N be some non-decreasing polynomial, and Gt,
Fhalf ,Ghalf

t,all be as defined above. Suppose the encryption scheme E is semantically
secure against one-time leakage Gt; the system Π is a robust NIZK as stated
above; and Hk : {hz : {0, 1}poly(k) → {0, 1}k}z∈{0,1}k is a family of universal
one-way hash functions.

Then the coding scheme is strong non-malleable (Def 6) with respect to Fhalf,
and leakage resilient (Def 7) with respect to Ghalf

t,all.

Proof (Sketch). The proof contains two parts: showing that the code is non-
malleable and that it is leakage resilient. The second part is easy so we only give
the intuition. First let us look at M2 = (pk, ŝ, π). Since π is a NIZK proof, it
reveals no information about the witness (sk, s). For the memory M1 = sk, since
the encryption scheme is leakage resilient, getting partial information about sk
does not hurt the semantic security. Thus, for any g ∈ Ghalf

t,all, g(M1,M2) hides
the original input string. We omit the formal details of the reduction, since they
are straightforward.

Now we focus on the proof of non-malleability. In particular, we need to
argue that for any s0, s1 ∈ {0, 1}k, and f ∈ Fhalf , we have (Σ,Tamperf,Σs0 )

≈c (Σ,Tamperf,Σs1 ) where Σ ← Init(1k). We show this by contradiction: suppose
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there exist f = (f1, f2) ∈ Fhalf , s0, s1, some ε = 1/poly(k), and a distinguisher

D such that Pr[D(Σ,Tamperf,Σs0 ) = 1]− Pr[D(Σ,Tamperf,Σs1 ) = 1] > ε, then we
are going to construct a reduction that breaks the encryption scheme E .

The reduction will work as discussed in the overview. Before describing it,
we first make an observation: D still distinguishes the two cases of the Tamper
experiments even if we change all the real proofs to the simulated ones. More
formally, let (Σ, τ) ← S1(1

k), and define Tamperf,Σ,τ
s be the same game as

Tamperf,Σs except proofs in the encoding algorithm Enc(Σ, ·) are computed by
the simulator S2(·, Σ, τ) instead of the real prover. We denote this distribution

as Tamperf∗s . We claim that D also distinguishes Tamperf∗s0 from Tamperf∗s1 .
Suppose not, i.e. D, who distinguishes Tamperf,Σs0 from Tamperf,Σs1 does not

distinguish Tamperf∗s0 from Tamperf∗s1 . Then one can use D, f, s0, s1 to distinguish
real proofs and simulated ones using standard proof techniques. This violates the
multi-theorem zero-knowledge property of the NIZK system Π . Thus, we have:

Pr[D(Σ,Tamperf∗s0 ) = 1]− Pr[D(Σ,Tamperf∗s1 ) = 1] > ε/2.
In the following, we are going to define a reduction Red to break the leakage

resilient encryption scheme E . The reduction Red consists of an adversary A =
(A1, A2, A3) and a distinguisher D′ defined below.

The reduction (with the partA) plays the leakage-resilience game LEb(E , A, k,F)
with the challenger, and with the help of the distinguisher D and the tamper-
ing function f = (f1, f2). Informally speaking of the game, the adversary first
sends a leakage function in g ∈ F (using A1), and the challenger replies g(sk).
Then A2 chooses two messages m0,m1, and the challenger encrypts either of
them, and sends a challenge ciphertext. Finally, A3 determines which message
the challenge was generated from. We defer the formal definition of the game to
the full version of this paper. Now we describe the reduction:

– First A1 samples z ∈ {0, 1}t−1 (this means A1 samples a universal one-way
hash function hz ← Ht−1), and sets up a simulated CRS with a correspond-
ing trapdoor (Σ, τ) ← S(1k).

– A1 sets g : {0, 1}n/2 → {0, 1}t to be the following function, and sends this

leakage query to the challenger: g(sk) =

{
0t if f1(sk) = sk,

1 ◦ hz(f1(sk)) otherwise.
This leakage value tells A1 if the tampering function f1 alters sk.

– A2 chooses m0,m1 to be s0, and s1 respectively. Then the challenger sam-
ples (pk, sk) and sets m̂ = Encryptpk(mb) to be the ciphertext, and sends
pk, g(sk), m̂ to the adversary.

– Then A3 computes the simulated proof π = S2(pk, m̂, Σ, τ), and sets (pk′,
m̂′, π′) = f2(pk, m̂, π). Then A3 computes a bit b using one of the algorithms
in figure 2, depending on the outcome of g(sk).

– Finally, A3 outputs d, which is the output of the game LEb(E , A, k,Fhalf).

Define the distinguisher D′ on input d outputs D(Σ, d). Then we need to show
that A,D′ break the scheme E by the following lemma. In particular, we will
show that the above A’s strategy simulates the distributions Tamperf∗sb , so that
the distinguisher D’s advantage can be used by D′ to break E .
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If g(sk) = 0t:
1. pk′ �= pk, set d = ⊥.
2. Else (pk′ = pk),

(a) if (m̂′, π′) = (m̂, π), set d = same∗.
(b) if m̂′ �= m̂, π′ = π, set d = ⊥.
(c) else (π′ �= π), check whether

V((pk′, m̂′), π′, Σ) accepts.
i. If no, set d = ⊥.
ii. If yes, use the extractor Ext

to compute (sk′′,m′′) ←
Ext(Σ, τ, x′ = (pk′, m̂′), π′),
where the list Q =
((pk, m̂), π). If the extrac-
tion fails, then set d = ⊥;
otherwise d = m′′.

Else if g(sk) = 1 ◦ hz(f1(sk))
def
= 1 ◦

hint :
1. if π′ = π, then set d = ⊥.
2. else, check if V(pk′, π′, crs) veri-

fies, if not set d = ⊥. Else, com-
pute (sk′′,m′′) ← Ext(Σ, τ, x′ =
(pk′, m̂′), π′), where the list Q =
((pk, m̂), π). If the extraction
fails, then set d = ⊥; otherwise
consider the following two cases:
(a) If hz(sk

′′) �= hint , then set
d = ⊥.

(b) Else, set d = m′′.

Fig. 2. The two cases for the reduction

To analyze the reduction, we are going to establish the following claim. We
defer the formal proof to the full version of this paper.

Claim. Given the above A and D′, we have

Pr[D′(LE0(E , A, k,Fhalf)) = 1]− Pr[D′(LE1(E , A, k,Fhalf)) = 1] > ε/2− ngl(k).

4 Our Compilers

In this section, we present two compilers that use our LR-NM code to secure
any functionality G from split-state tampering and leakage attacks. The first
compiler, as an intermediate result, outputs a compiled functionality G′ that
has access to fresh random coins. The second one outputs a deterministic func-
tionality by derandomizing G′ using a pseudorandom generator.

Randomized Implementation. Let G(s, x) be an interactive functionality with
a k-bit state s that we want to protect, and let C = (Init, Enc,Dec) be the
LR-NM coding scheme we constructed in the previous section. Our compiler
works as follows: first it generates the common parameters Σ ← Init(1k). Then
MemCompile(Σ, s) outputs an encoding of s, (M1,M2) ← Enc(Σ, s);
and CircuitCompile(G, C, Σ) outputs a randomized functionality G′ such that
〈G′, Enc(Σ, s)〉 works in the following way: on user input x, first G′ decodes the
memory using the decoding algorithm Dec. If the outcome is ⊥, then G′ will
always output ⊥ (equivalently, self-destruct); otherwise it obtains s. Then G′

computes (snew, y) ← G(s, x) and outputs y. Finally G′ re-encodes its memory:
(M1,M2) ← Enc(Σ, snew). There are two places where G′ uses fresh randomness:
the functionality G itself and the re-encoding step.
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We denote this randomized hardware implementation of the compiler as

Hardwarerand(C, G)
def
= 〈G′, Enc(s)〉. Obviously the compiler is correct, i.e. the

implementation’s input/output behavior is the same as that of the original func-
tionality. Then we are able to achieve the following theorem:

Theorem 2. Let t : N → N be some non-decreasing polynomial, and Gt,Fhalf ,
Ghalf
t,all be as defined above.
Suppose we are given a cryptosystem E = (KeyGen,Encrypt,Decrypt) that is

semantically secure against one-time leakage Gt; a robust NIZK Π = (�,P ,V ,S);
and Hk : {hz : {0, 1}poly(k) → {0, 1}k}z∈{0,1}k , a family of universal one-way
hash functions. Then the randomized hardware implementation presented above
is secure against Fhalf tampering and Ghalf

t,all leakage.

Let us explain our proof approach. In the previous section, we have shown that
the coding scheme is leakage-resilient and non-malleable. This intuitively means
that one-time attacks on the hardware implementation Hardwarerand(C, G) are
useless. Therefore, what we need to show is that these two types of attacks are
still useless even when the adversary has launched a continuous attack.

Recall that, by definition, to prove tamper and leakage resilience, we need
to exhibit a simulator that simulates the adversary’s view of interaction with
Hardwarerand(C, G) based solely on black-box access to 〈G, s〉. The simulator
computes M1 and M2 almost correctly, except it uses s0 = 0k instead of the
correct s (which, of course, it cannot know). The technically involved part of the
proof is to show that the resulting simulation is indistinguishable from the real
view; this is done via a hybrid argument in which an adversary that detects that,
in round i, the secret changed from s0 to the real secret s, can be used to break
the LR-NM code, since this adversary will be able to distinguish Tamperf,Σs0

from Tamperf,Σs or break the leakage resilience of the code. In doing this hybrid
argument, care must be taken: by the time we even get to round i, the adversary
may have overwritten the state of the device; also, there are several different
ways in which the security may be broken and our reduction relies on a careful
case analysis to rule out each way. The formal proof appears in the full version
of this paper.

Deterministic Implementation. In the previous section, we showed that the hard-
ware implementation Hardwarerand with the LR-NM code is leakage- tampering-
resilient. In this section, we show how to construct a deterministic implementation
by derandomizing the construction. Our main observation is that, since the coding
scheme also hides its input string (like an encryption scheme), we can store an en-
coding of a random seed, and then use a pseudorandom generator to obtain more
(pseudo) random bits. Since this seed is protected, the output of the PRG will be
pseudorandom, and can be used to update the encoding and the seed. Thus, we
have pseudorandom strings for an arbitrary (polynomially bounded) number of
rounds. The intuition is straitforward yet the reduction is subtle: we need to be
careful to avoid a circular argument in which we rely on the fact that the seed is
hidden in order to show that it is hidden.

To get a deterministic implementation for any given functionality G(·, ·), we
use the coding scheme C = (Init, Enc,Dec) defined in the previous section, and
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a pseudorandom generator g : {0, 1}k → {0, 1}k+2�, where � will be defined
later. Let s ∈ {0, 1}k be the secret state of G(·, ·), and seed ∈ {0, 1}k be a
random k-bit string that will serve as a seed for the PRG. Now we define the
compiler. The compiler first generates the common parameters Σ ← Init(1k).
Then on input s ∈ {0, 1}k, MemCompile(s) first samples a random seed seed ∈
{0, 1}k and outputs (M1,M2) ← Enc(Σ, s◦seed) where ◦ denotes concatenation.

CircuitCompile(G) outputs a deterministic implementation Hardwaredet(C, G)
def
=

〈G∗,Σ,Enc,Dec, Enc(Σ, s ◦ r)〉 that works as follows:

G∗ on input x does the followings:

– Decode Enc(Σ, s ◦ seed) to obtain s ◦ seed. Recall that Dec is deterministic.
– Compute seed′ ◦ r1 ◦ r2 ← g(seed), where seed′ ∈ {0, 1}k, r1, r2 ∈ {0, 1}�.
– Calculate (snew, y) ← G(s, x) (using the string r1 as a random tape if G is random-

ized), then outputs y, and updates the state to be snew.
– Calculate the encoding of s′ ◦ seed′ using the string r2 as a random tape. Then it

stores the new encoding Enc(Σ, snew ◦ seed′).

Fig. 3. The deterministic implementation

In this implementation Hardwaredet, we only use truly random coins when
initializing the device, and then we update it deterministically afterwards. Let
us show that the implementation Hardwaredet(C, G) is also secure against Fhalf

tampering and Ghalf
t,all leakage. We achieve the following theorem.

Theorem 3. Let t : N → N be some non-decreasing polynomial, and Gt,Fhalf ,
Ghalf
t,all be as defined in the previous section.
Suppose we are given a crypto system E = (KeyGen,Encrypt,Decrypt) that is

semantically secure against one-time leakage Gt; a robust NIZK Π = (�,P ,V ,S);
and Hk : {hz : {0, 1}poly(k) → {0, 1}k}z∈{0,1}k , a family of universal one-way
hash functions. Then the deterministic hardware implementation presented above
is secure against Fhalf tampering and Ghalf

t,all leakage.

Combining the above theorem and the Naor-Segev Leakage-resilient encryption
scheme [30], we are obtain the following corollary.

Corollary 1. Under the decisional Diffie-Hellman assumption and the existence
of robust NIZK, for any polynomial t(·), there exists a coding scheme with the
deterministic hardware implementation presented above that is secure against
Fhalf tampering and Ghalf

t,all leakage.

The formal proof appears in the full version of this paper.
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