New Preimage Attacks against Reduced SHA-1

Simon Knellwolf ${ }^{1, \star}$ and Dmitry Khovratovich ${ }^{2}$
${ }^{1}$ ETH Zurich and FHNW, Switzerland
${ }^{2}$ Microsoft Research Redmond, USA

Abstract

This paper shows preimage attacks against reduced SHA-1 up to 57 steps. The best previous attack has been presented at CRYPTO 2009 and was for 48 steps finding a two-block preimage with incorrect padding at the cost of $2^{159.3}$ evaluations of the compression function. For the same variant our attacks find a one-block preimage at $2^{150.6}$ and a correctly padded two-block preimage at $2^{151.1}$ evaluations of the compression function. The improved results come out of a differential view on the meet-in-the-middle technique originally developed by Aoki and Sasaki. The new framework closely relates meet-in-the-middle attacks to differential cryptanalysis which turns out to be particularly useful for hash functions with linear message expansion and weak diffusion properties.

Keywords: SHA-1, preimage attack, differential meet-in-the-middle.

1 Introduction

Hash functions are an important cryptographic primitive that play a crucial role in numerous security protocols. They are supposed to satisfy at least three security requirements which are collision resistance, preimage resistance, and second preimage resistance. Here, "resistance" means the absence of any specific technique that allows to find collisions, preimages, or second preimages faster than a generic algorithm. If the hash output is n bits long, a generic algorithm requires $2^{n / 2}$ evaluations of the hash function for finding a collision, for preimages and second preimages 2^{n} evaluations are required in average.

In the past, collision resistance of hash functions had been studied much more intensively than preimage resistance. This can be attributed to differential cryptanalysis as a very powerful tool to accelerate the collision search [6]. No such tool was available for the preimage search and the few published attacks were based on ad hoc methods. Notable examples are the first attacks on GOST [13], MD4 [12], and reduced variants of SHA-0/1 [5]. The situation changed with the introduction of the meet-in-the-middle technique into hash function cryptanalysis. Originally, the technique was used for block ciphers, starting with Diffie and Hellman [8] showing that double encryption under two different keys does not double the security level, and later by Chaum and Evertse [7] for key recovery attacks on reduced DES.

[^0]Only recently, Aoki and Sasaki translated the approach to the hash function context. In a series of papers they developed and refined a framework that resulted in the first preimage attack on MD5 and the best results on reduced variants of SHA-1, the SHA-2 family, and similar hash functions [1-3, 16-19. Guo, Ling, Rechberger, and Wang [9] obtained improved results on MD4, SHA-2, and Tiger. A notable technical contribution has been made by Khovratovich, Rechberger, and Savelieva [10] with the formalization of the initial structure technique in terms of complete bipartite graphs (bicliques). The derived algorithms enhance meet-in-the-middle attacks using tools from differential cryptanalysis. Applications include key recovery attacks on AES [4] and preimage attacks on reduced variants of the SHA-3 finalist Skein and members of the SHA-2 family [10.

Most of the existing meet-in-the-middle framework has been developed for preimage attacks against hash functions with permutation based message expansions such as MD5. Even though the techniques have been generalized, notably in [3] to the linear message expansion of SHA-1, the original terminology did not translate suitably to these algorithms.

Technical Contribution of This Work. We carry on the simple and elegant differential view suggested by bicliques to other techniques such as partial matching, indirect partial matching, partial fixing, and probabilistic matching. Indeed, these techniques become quite natural from a differential perspective. Finding the attack parameters reveals to be equivalent to finding two sets of suitable related-key differentials. Finding high probability differentials is a well studied problem from collision attacks and insights can be reused. Two algorithms are proposed to find suitable attack parameters. They facilitate a systematic security evaluation while previous meet-in-the-middle attacks seem to heavily rely on elaborated by hand analysis and intuition. The framework applies particularly well to hash functions with linear message expansion, which is demonstrated by various new attacks against reduced variants of SHA-1.

SHA-1 and Improved Results. The SHA-1 hash function was specified in 1995 by the U.S. National Security Agency as a successor of SHA-0. No weakness has been found in the full SHA-1 until 2005, when Wang, Yin, and Yu presented astonishing collision attacks 21]. These attacks let the U.S. National Institute of Standards and Technology recommend the use of SHA-2 instead of SHA-1. However, SHA-1 is still widely used in practice and it is still believed preimage and second preimage resistant. De Cannière and Rechberger [5] presented the first dedicated preimage attack on reduced SHA-1. They could break 44 steps with a complexity of 2^{157} compression function evaluations using an approach that could not be extended so far. Aoki and Sasaki [3] presented an attack on 48 steps with a complexity of $2^{159.3}$ using the meet-in-the-middle technique, but their attack only finds messages without padding. Finding a correct padding makes the analysis more complicated and typically leads to higher attack complexities or to unpractically long messages. No progress has been made since 2009. Our results improve the existing results in several directions: variants with more steps can

Table 1. Preimage attacks against reduced SHA-1. If not stated otherwise, proper preimages with a correct padding are computed.

Steps	Complexity	\# Blocks	Reference	Remark
44	$2^{157.0}$	1	$[5]$	
48	$2^{156.9}$	1	$[3$	pseudo-preimage, no padding
48	$2^{159.3}$	2	$[3$	no padding
44	$2^{146.2}$	1	Section 3.2	no padding
48	$2^{150.6}$	1	$"$	$"$
56	$2^{157.9}$	1	$"$	$"$
57	$2^{158.7}$	1	$"$	$"$
48	$2^{149.2}$	1	Section [3.3	pseudo-preimage
59	$2^{156.8}$	1	$"$	$"$
60	$2^{157.5}$	1	$"$	$"$
48	$2^{151.1}$	2	Section 3.4	
56	$2^{158.1}$	2	$"$	
57	$2^{158.8}$	2	$"$	

be attacked, significantly lower complexities are obtained for previously attacked variants, and correctly padded (short!) messages can be computed. The results are summarized in Table 1 and illustrated in Fig. 4 at the end of the paper.

Organization. Section 2 describes the new differential perspective on the meet-in-the-middle attack. Section 3 applies the framework to SHA-1 leading to various improved results. Section 4 briefly discusses a slight optimization of the generic brute-force search which can serve as a minimal benchmark for actual attacks. Section 5 summarizes and concludes the paper.

2 Meet-in-the-Middle: A Differential Framework

The compression function of SHA-1 and other dedicated hash functions can be seen as a block cipher used in Davies-Meyer mode, albeit with unusual key and block length. Let $F:\{0,1\}^{\kappa} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a block cipher with block length n and key length κ. Finding a preimage for an n-bit target value H is the problem of finding M such that $H=F(M$, IV $)+$ IV, where IV is an initial vector. In the following, $P=$ IV and $C=H-\mathrm{IV}$. Then, finding a preimage is equivalent to finding a right key for the plaintext/ciphertext pair (P, C). A generic algorithm tests 2^{n} random messages such that one preimage is expected to be found ($\kappa>n$ is assumed).

2.1 Differential View on the Meet-in-the-Middle Technique

We now describe our new interpretation of the meet-in-the-middle technique. First, F is divided into two parts, $F=F_{2} \circ F_{1}$. Then, from a differential point of view, the attacker tries to find two linear spaces $D_{1}, D_{2} \subset\{0,1\}^{\kappa}$ as follows:

- $D_{1} \cap D_{2}=\{0\}$.
- For each $\delta_{1} \in D_{1}$ there is a $\Delta_{1} \in\{0,1\}^{n}$ such that

$$
\begin{equation*}
\operatorname{Pr}\left[\Delta_{1}=F_{1}(M, P) \oplus F_{1}\left(M \oplus \delta_{1}, P\right)\right]=1 \tag{1}
\end{equation*}
$$

for uniformly chosen M, that is, $\left(\delta_{1}, 0\right) \rightarrow \Delta_{1}$ is a related-key differential for F_{1} with probability 1.

- For each $\delta_{2} \in D_{2}$ there is a $\Delta_{2} \in\{0,1\}^{n}$ such that

$$
\begin{equation*}
\operatorname{Pr}\left[\Delta_{2}=F_{2}^{-1}(M, C) \oplus F_{2}^{-1}\left(M \oplus \delta_{2}, C\right)\right]=1 \tag{2}
\end{equation*}
$$

for uniformly chosen M, that is, $\left(\delta_{2}, 0\right) \rightarrow \Delta_{2}$ is a related-key differential for F_{2}^{-1} with probability 1.

The first condition makes sure that the search space can be partitioned into affine sets of the form $M \oplus D_{1} \oplus D_{2}$. If D_{1} and D_{2} both have dimension d these sets contain $2^{2 d}$ different messages. Each such set can be searched for a preimage by computing 2^{d} times F_{1} and 2^{d} times F_{2}^{-1} using Algorithm 1 The algorithm computes two lists L_{1} and L_{2}. A match between the two lists identifies a preimage. The case $d=1$ is illustrated by Fig. 1 .

The second and the third condition make sure that the algorithm always answers correctly. Using (11) and (2) it follows that $L_{1}\left[\delta_{2}\right]=L_{2}\left[\delta_{1}\right]$ (in the last loop of Algorithm (1) is equivalent to $F_{1}\left(M \oplus \delta_{1} \oplus \delta_{2}, P\right)=F_{2}^{-1}\left(M \oplus \delta_{1} \oplus \delta_{2}, C\right)$, which is true if and only if $M \oplus \delta_{1} \oplus \delta_{2}$ is a preimage.

```
Algorithm 1. Testing \(M \oplus D_{1} \oplus D_{2}\) for a preimage
Input: \(D_{1}, D_{2} \subset\{0,1\}^{\kappa}, M \in\{0,1\}^{\kappa}\)
Output: A preimage if one is contained in \(M \oplus D_{1} \oplus D_{2}\).
    for all \(\delta_{2} \in D_{2}\) do
        Compute \(L_{1}\left[\delta_{2}\right]=F_{1}\left(M \oplus \delta_{2}, P\right) \oplus \Delta_{2}\).
    end for
    for all \(\delta_{1} \in D_{1}\) do
        Compute \(L_{2}\left[\delta_{1}\right]=F_{2}^{-1}\left(M \oplus \delta_{1}, C\right) \oplus \Delta_{1}\).
    end for
    for all \(\left(\delta_{1}, \delta_{2}\right) \in D_{1} \times D_{2}\) do
        if \(L_{1}\left[\delta_{2}\right]=L_{2}\left[\delta_{1}\right]\) then
            return \(M \oplus \delta_{1} \oplus \delta_{2}\)
        end if
    end for
    return No preimage in \(M \oplus D_{1} \oplus D_{2}\)
```

Complexity Analysis. Algorithm 1 has to be repeated $2^{n-2 d}$ times in order to test 2^{n} messages. If we denote by Γ_{1} and Γ_{2} the cost of one evaluation of F_{1} and F_{2}, respectively, this results in a total complexity of $2^{n-2 d}\left(2^{d} \Gamma_{1}+2^{d} \Gamma_{2}\right)=2^{n-d} \Gamma$, where Γ is the cost of F. Depending on the implementation, memory is required to store the list L_{1} and/or L_{2}. Both lists have length 2^{d} and entries of about $n+d$ bits.

Fig. 1. Illustration of the meet-in-the-middle attack: A match between the lists L_{1} and L_{2} identifies a preimage. Here, the D_{1} and D_{2} only have dimension 1 which allows to test four messages at the cost of two. In general, $2^{2 d}$ messages are tested at the cost of 2^{d}, where d is the dimension of D_{1} and D_{2}.

Remark. Using non-zero output differences Δ_{1} and Δ_{2} corresponds to the idea of indirect matching, introduced in [1], which is a rather advanced matching technique in the Aoki-Sasaki framework. From a differential point of view it appears quite natural.

2.2 Using Probabilistic and Truncated Differentials

Advanced matching techniques such as partial matching [2], indirect partial matching [1], partial fixing [1, and variants of probabilistic matching [10, 20, have a straightforward interpretation in terms of differentials. The conditions on the related-key differentials $\left(\delta_{i}, 0\right) \rightarrow \Delta_{i}$ are relaxed. Instead of differentials with probability 1 on the full state, probabilistic differentials with truncated output differences can be considered. Truncated differentials go back to Knudsen [11].

For a truncation mask $T \in\{0,1\}^{n}$ we denote by $=_{T}$ equality on those bits of T which are 1 , that is, $A={ }_{T} B$ if and only if $A \wedge T=B \wedge T$, where \wedge is denotes bitwise AND. Instead of (1) and (2), the following probabilities should be high (but can be smaller than 1):

$$
\begin{align*}
& p_{1}=\operatorname{Pr}\left[\Delta_{1}={ }_{T} F_{1}(M, P) \oplus F_{1}\left(M \oplus \delta_{1}, P\right)\right], \tag{3}\\
& p_{2}=\operatorname{Pr}\left[\Delta_{2}={ }_{T} F_{2}^{-1}(M, C) \oplus F_{2}^{-1}\left(M \oplus \delta_{2}, C\right)\right] . \tag{4}
\end{align*}
$$

The only thing that has to be changed in Algorithm 1 is in the last loop, where $=$ has to be replaced with $=_{T}$. However, the answer of the algorithm is not always correct when using probabilistic and/or truncated differentials which has consequences on the complexity of the attack.

Complexity Analysis. Testing a message $M \oplus \delta_{1} \oplus \delta_{2}$ by the modified variant of Algorithm 1 is best formulated as a hypothesis test with null hypothesis

$$
H_{0}: M \oplus \delta_{1} \oplus \delta_{2} \text { is a preimage. }
$$

H_{0} is rejected if $F_{1}\left(M \oplus \delta_{2}, P\right) \oplus \Delta_{2} \neq T F_{2}^{-1}\left(M \oplus \delta_{1}, C\right) \oplus \Delta_{1} . H_{0}$ is falsely rejected with probability $\alpha=1-p_{1} p_{2}$ (type I error probability). On the other hand, if H_{0} is false, we fail to reject it with probability $\beta=1 / r$ (type II error probability), where r is the Hamming weight of T. As a consequence, returned messages are only candidate preimages which have to be retested and the total number of tested messages has to be increased. If $\bar{\alpha}$ is the average type I error probability over all $\left(\delta_{1}, \delta_{2}\right) \in D_{1} \times D_{2}, 2^{n} /(1-\bar{\alpha})$ messages have to be tested in order to compensate a fraction of $\bar{\alpha}$ preimages that is falsely rejected. This results in a total complexity of

$$
\left(2^{n-d} \Gamma+2^{n-r} \Gamma_{r e}\right) /(1-\bar{\alpha})
$$

where $\Gamma_{r e}$ is the cost of retesting a candidate preimage.

2.3 Splice and Cut

The splice and cut technique has been first used in [2]. The idea is to start the computations at an intermediate state, connecting the last and the first step via the feed-forward of the Davies-Meyer mode. The technique is fully compatible with our differential framework. Formally, the computation of F is cut into $F=F_{2} \circ F_{1}$ and, for a given target value H, a new function F^{\prime} is defined by $F^{\prime}(M, V)=F_{1}\left(M, H-F_{2}(M, V)\right)$. Then, the meet-in-the-middle technique is used to find M such that $F^{\prime}(M, V)=V$ for some V. This is equivalent to $F\left(M, H-F_{2}(M, V)\right)+H-F_{2}(M, V)=H$, that is, M is a pseudo-preimage. Typically, the pseudo-preimage attack is then generically transformed into a preimage attack as described in [14, Fact 9.99].

2.4 Bicliques

In [19] the initial structure technique has been introduced as an extension to splice and cut. In [10], the technique is formalized in terms of bicliques. The idea is to start the computations not from a single state, but from a precomputed structure of states that covers several rounds. Formally, the computation of F is divided into three parts, $F=F_{3} \circ F_{2} \circ F_{1}$, and bicliques are constructed for one of them, say for F_{3}. A biclique for F_{3} is a tuple $\left\{M, D_{1}, D_{2}, Q_{1}, Q_{2}\right\}$ where M is a message, the D_{i} are linear difference spaces of dimension d, and the Q_{i} are lists of 2^{d} states $Q_{i}[\delta]$, for $\delta \in D_{i}$, such that for all $\left(\delta_{1}, \delta_{2}\right) \in D_{1} \times D_{2}$: $Q_{2}\left[\delta_{2}\right]=F_{3}\left(M \oplus \delta_{1} \oplus \delta_{2}, Q_{1}\left[\delta_{1}\right]\right)$. With such a biclique, the set $M \oplus D_{1} \oplus D_{2}$ can be searched for candidate pseudo-preimages by testing $F_{1}\left(M \oplus \delta_{2}, H-Q_{2}\left[\delta_{2}\right]\right) \oplus$ $\Delta_{2}={ }_{T} F_{2}^{-1}\left(M \oplus \delta_{1}, Q_{1}\left[\delta_{1}\right]\right) \oplus \Delta_{1}$. This requires only 2^{d} computations of F_{1} and 2^{d} computations of F_{2}. If the amortized cost of constructing many bicliques is negligible, the number of attacked rounds is increased by the rounds of F_{3} without actually increasing the total complexity of the attack.

2.5 Special Case: Linear Message Expansion

The differential view is particularly useful if the underlying block cipher F uses a linear key expansion and relatively small round keys. In the following, suppose
that F performs N rounds and that the key expansion can be described by N linear maps $\varphi_{i}:\{0,1\}^{\kappa} \rightarrow\{0,1\}^{w}$, for $0 \leq i<N$, where w is the size of the round keys and $\varphi_{i}(K)$ is the i-th round key derived from K.

Differences as Kernel Elements. If D_{1} lies in the kernel of φ_{i} no differences are introduced at round i. For some $k>0$, the attacker can choose D_{1} as a subspace of $\bigcap_{i=0}^{k-1} \operatorname{ker}\left(\varphi_{i}\right)$. This makes that no differences are introduced in the first k rounds. Similar, D_{2} can be chosen as a subspace of $\bigcap_{i=N-k}^{N-1} \operatorname{ker}\left(\varphi_{i}\right)$. Then, $2 k$ rounds can be attacked without advanced matching techniques. By a careful choice of D_{1} and D_{2} the attack extends to more rounds by using probabilistic and truncated differentials. The kernels can be computed by linear algebra or, as in the case of SHA-1, by using the message expansion in forward and backward direction.

Remark. In [3] kernels of message expansion have been used already. The kernel elements have not been interpreted as differences, but a sophisticated linear transformation matrix has been used to derive a "chunk separation" and "neutral words". To make this possible, the condition has been imposed that kernel elements for the two chunks must not have overlapping non-zero words. From a differential point of view it is clear that only $D_{1} \cap D_{2}=\{0\}$ is required which gives us more freedom in the choice of the attack parameters.

3 Application to SHA-1

We now apply the attack framework to SHA-1, which leads to various new results. Different types of "preimages" will be obtained:

One-block preimages. We first compute one-block preimages without padding up to 57 steps. These attacks are comparable to those by Aoki and Sasaki in [3] which find two-block preimages without padding up to 48 steps. Then, we show how to obtain correctly padded one-block preimages up to 52 steps.
One-block pseudo-preimages. A pseudo-preimage is a "preimage" that uses an incorrect IV. The additional freedom degree allows to use bicliques and the splice and cut technique. This results in pseudo-preimage attacks up to 60 steps. A careful choice of the biclique position avoids additional restrictions from the padding rule such that all our attacks allow to put a correct padding to the pseudo-preimage.
Two-block preimages. Combining the above techniques enables us to compute two-block preimages with a correct padding almost as efficiently as one-block preimages without padding. As a result, we obtain preimage attacks up to 57 steps finding correctly padded two-block preimages.

Before describing the attacks, a short description of SHA-1 is given.

3.1 Description of SHA-1

The hash function SHA-1 was designed by the U.S. National Security Agency and is specified in [15]. The construction follows the Merkle-Damgård principle with a block cipher based compression function in Davies-Meyer mode. A message is padded to a length which is a multiple of 512 bits. This is done by appending a 1 , a variable number of 0 s , and the length in bits as a 64 -bit integer. After the padding, the message is split into 512 -bit blocks $M=\left(M^{0}, \ldots, M^{L-1}\right)$ which are iteratively processed according to

$$
H^{0}=\mathrm{IV}, \quad H^{l+1}=F\left(M^{l}, H^{l}\right)+H^{l}, \quad 0 \leq l<L
$$

The chaining values H^{l} consist of five 32 -bit words. The last chaining value is the output of the hash function.

The function F can be considered as a block cipher with key length $\kappa=512$ and block length $n=160$. The computation of $F\left(M^{l}, H^{l}\right)$ has two parts: First, the message block of 16 words, denoted by $M^{l}=\left(M_{0}, \ldots, M_{15}\right)$, is expanded to an extended message of 80 words, denoted by $W=\left(W_{0}, \ldots, W_{79}\right)$:

$$
\begin{align*}
& W_{i}=M_{i}, \quad 0 \leq i \leq 15 \\
& W_{i}=\left(W_{i-3} \oplus W_{i-8} \oplus W_{i-14} \oplus W_{i-16}\right) \lll 1, \quad 16 \leq i<80 . \tag{5}
\end{align*}
$$

Second, the chaining value H^{l} is loaded into the registers (A, B, C, D, E) and updated through 80 steps according to Fig. 2. At each step, an expanded message

Fig. 2. The step transformation of SHA-1
word W_{i}, a bitwise boolean function f_{i}, and a constant K_{i} are used. The final content of the registers is the output of F.

3.2 One-Block Preimages

Given H, we want to find M such that $H=F(M$, IV $)+$ IV. The attacks work as described in Section 2 using probabilistic and truncated differentials, but not using bicliques and the splice and cut technique.

Finding Suitable Attack Parameters. An attack on N steps requires the following parameters: a separation $F=F_{2} \circ F_{1}$ into n_{1} and $n_{2}=N-n_{1}$ steps, two linear spaces $D_{1}, D_{2} \subset\{0,1\}^{\kappa}$ of dimension d, output differences Δ_{1} (resp. Δ_{2}) for all differences $\delta_{1} \in D_{1}$ (resp. $\delta_{2} \in D_{2}$), and a truncation mask $T \in\{0,1\}^{n}$ of Hamming weight r. The message expansion of SHA-1 is linear and we can use the techniques from Section 2.5. For $0 \leq k<16$, the kernel of any k consecutive steps has dimension $(16-k) \cdot 32$. Thus, an attack on $2 \cdot 15=30$ steps is possible without advanced matching techniques. When attacking more steps, $\left(n_{1}-15\right):\left(n_{2}-15\right) \approx 1: 3$ turned out to be a good ratio, because the diffusion is weaker in the backward direction than in the forward direction.

Our main tool for finding attack parameters are two algorithms which allow to experimentally evaluate candidate configurations. Given n_{1}, n_{2}, D_{1}, and D_{2}, the output differences are computed by linearization: $\Delta_{1}=\bar{F}_{1}\left(\delta_{1}, 0\right)$ and $\Delta_{2}=$ $\bar{F}_{2}^{-1}\left(\delta_{2}, 0\right)$, where \bar{F}_{1} and \bar{F}_{2} are obtained from F_{1} and F_{2} by replacing all non-linear Boolean functions f_{i} by $(X, Y, Z) \mapsto X \oplus Y \oplus Z$, replacing + by \oplus, and setting the constants to zero. Then, Algorithm 2 is used to determine a truncation mask T based on a ranking of bitwise difference probabilities, and finally, Algorithm 3 estimates the corresponding type I error probability $\bar{\alpha}$. The expected attack complexity is computed as in Section 2.2 with $\Gamma_{r e}=(N-30) / N$ (the first 15 and the last 15 steps don't have to be recomputed when retesting a candidate preimage).

There is a trade-off between d and $\bar{\alpha}$. While this trade-off is hard to analyze by hand, it can be readily explored by our experimental approach. Note that Algorithm 2 always returns a mask of weight $r=d$. We did not find significantly better attacks for different choices of r. Table 2 summarizes the results for different N. The results have been found by extensive experiments using $Q=2^{16}$ in both algorithms. The full attack parameters for $N=57$ are given below, for the other attacks they are given in an extended version of this paper.

```
Algorithm 2. Find truncation mask \(T\) for matching
Input: \(D_{1}, D_{2} \subset\{0,1\}^{\kappa}\)
Output: A truncation mask \(T \in\{0,1\}^{n}\) of Hamming weight \(d\).
    \(c=\) an array of \(n\) counters set to 0
    for \(q=1\) to \(Q\) do
        Choose \(M \in\{0,1\}^{\kappa}\) at random
        \(C \leftarrow F(M, \mathrm{IV})\)
        Choose \(\left(\delta_{1}, \delta_{2}\right) \in D_{1} \times D_{2}\) at random
        \(\nabla \leftarrow F_{1}\left(M \oplus \delta_{1}, \mathrm{IV}\right) \oplus \Delta_{1} \oplus F_{2}^{-1}\left(M \oplus \delta_{2}, C\right) \oplus \Delta_{2}\)
        for \(i=0\) to \(n-1\) do
            if the \(i\)-th bit of \(\nabla\) is 1 then
                \(c[i] \leftarrow c[i]+1\)
            end if
        end for
    end for
    Set those \(d\) bits of \(T\) to 1 which have the lowest counters.
```

```
Algorithm 3. Estimate type I error probability
Input: \(D_{1}, D_{2} \subset\{0,1\}^{\kappa}, T \in\{0,1\}^{n}\)
Output: Average type I error probability \(\bar{\alpha}\).
    \(c=\) a counter set to 0
    for \(q=1\) to \(Q\) do
        Choose \(M \in\{0,1\}^{\kappa}\) at random
        \(C \leftarrow F(M, \mathrm{IV})\)
        Choose \(\left(\delta_{1}, \delta_{2}\right) \in D_{1} \times D_{2}\) at random
        \(\nabla \leftarrow F_{1}\left(M \oplus \delta_{1}\right.\), IV \() \oplus \Delta_{1} \oplus F_{2}^{-1}\left(M \oplus \delta_{2}, C\right) \oplus \Delta_{2}\)
        if \(\nabla \not{ }_{T} 0^{n}\) then
            \(c \leftarrow c+1 / /\) a false rejection of \(H_{0}\)
        end if
    end for
    return \(c / Q\)
```

Dealing with the Padding. If M is required to have correct padding, the least significant bit of M_{13} must be $1, M_{14}=0$, and $M_{15}=447$ (assuming a message length of 447 bits). The differences in D_{1} and D_{2} must be zero on the corresponding bits. This imposes 65 bit conditions which restrict our choice of D_{1} and D_{2}. In general, D_{1} and D_{2} can have only 13 steps without differences (instead of 15). Experiments show that we loose about 5 steps. One step can be attributed to the fact that differences in D_{2} tend to have higher Hamming weight.
Attack Parameters for $N=57$ (one-block, no padding). The best result was obtained for $n_{1}=21, n_{2}=36$, and $d=3$, using the subspaces D_{1} and D_{2} and the truncation mask T given below.

Basis of D_{1} :
0x00000000 0x00000010

0x00000000 0x00000020

0x00000000 0x00000040

Basis of D_{2} :
0x80000000 0x80000000 0x80000000 0x00000000 0x00000000 0x40000000 0x00000000 0xA0000000 0x80000000 0xA0000000 0x00000000 0x80000000 0x00000000 0xC0000000 0x00000000 0x80000000

0x00000001 0x00000001 0x00000001 0x00000000 0x00000000 0x80000000 0x00000000 0x40000001 0x00000001 0x40000001 0x00000000 0x00000001 0x00000000 0x80000001 0x00000000 0x00000001

0x00000002 0x00000002 0x00000002 0x00000000 0x00000000 0x00000001 0x00000000 0x80000002 0x00000002 0x80000002 0x00000000 0x00000002 0x00000000 0x00000003 0x00000000 0x00000002

Truncation mask T (leftmost word is register A):

0x00000007 0x00000000 0x00000000 0x00000000 0x00000000

The average type I error probability is estimated as $\bar{\alpha}=0.541$ by Algorithm [3 which results in an expected attack complexity of $2^{158.68}$ evaluations of the compression function.

Table 2. One-block preimages: N is the number of attacked steps, n_{1} and n_{2} the number of steps computed by F_{1} and F_{2}, respectively, d the dimension of D_{1} and D_{2}, and $\bar{\alpha}$ the average type I error probability for the filtering of candidate preimages

N	n_{1}	n_{2}	d	$\bar{\alpha}$	Complexity	Remark
44	17	27	15	0.428	$2^{146.21}$	no padding
48	18	30	11	0.552	$2^{150.62}$	
49	18	31	10	0.593	$2^{151.78}$	
50	18	32	10	0.811	$2^{152.89}$	
51	18	33	9	0.842	$2^{154.16}$	
52	20	32	7	0.631	$2^{154.95}$	
53	20	33	6	0.577	$2^{155.76}$	
54	20	34	5	0.547	$2^{156.67}$	
55	21	34	5	0.699	$2^{157.27}$	
56	21	35	4	0.620	$2^{157.94}$	
57	21	36	3	0.541	$2^{158.68}$	
44	16	28	10	0.546	$2^{151.54}$	with padding
48	17	31	7	0.484	$2^{154.41}$	
50	18	32	5	0.598	$2^{156.80}$	
51	18	33	4	0.590	$2^{157.78}$	
52	18	34	4	0.738	$2^{158.44}$	

3.3 One-Block Pseudo-preimages

Given H, we want to find M and H^{\prime} such that $H=F\left(M, H^{\prime}\right)+H^{\prime}$. The freedom of choosing H^{\prime} allows us to use bicliques and the splice and cut technique.

We separate F into three parts as shown in Fig. 3. The bicliques are constructed for F_{3} computing the steps $27-n_{3}$ to 26 (n_{3} steps). F_{1} computes the steps 27 to $26+n_{1}$ (n_{1} steps) and F_{2} computes the steps $27+n_{1}$ to $N-1$ and 0 to $26-n_{3}$ (n_{2} steps) using the splice and cut technique. With this choice, the elements of the kernel of the steps 27 to 41 (15 steps) and the elements of the kernel of the steps $11-n_{3}$ to $26-n_{3}(15$ steps) automatically satisfy the padding conditions if $0 \leq n_{3} \leq 11$.

Except for the bicliques, finding attack parameters is very similar to the case of one-block preimages. The bicliques for all attacks have been found by simple

Fig. 3. Separation of F for pseudo-preimage attacks. Bicliques are constructed for F_{3}.
trial and error search and because they are shorter than 16 steps, many bicliques can be generated from a single one by just modifying some message words outside the biclique. As a result, the amortized cost to construct bicliques is negligible and the complexity computes as $2^{n-d}\left(\Gamma_{1}+\Gamma_{2}\right)+2^{n-d} \Gamma_{r e}$, where $\Gamma_{1}+\Gamma_{2}=$ $\left(n_{1}+n_{2}\right) / N$ and $\Gamma_{r e}=\left(N-n_{3}-30\right) / N$. Table 3 summarizes the results and the full parameters are given for $N=57$.

Attack Parameters for $N=57$ (pseudo-preimage, with padding). The best result was obtained for $n_{1}=18, n_{2}=33, n_{3}=6$, and $d=7$, using the subspaces D_{1} and D_{2} and the truncation mask T given below. A sample biclique is specified by $Q_{1}[0]$ and a message M. The remaining states of the biclique can be computed by using the defining property of bicliques given in Section 2.4. Note that M has a correct padding which is preserved by the differences in D_{1} and D_{2}.

Basis of D_{1} :
0x00020000 0x00020000 0x00010000 0x00000000 0x00020000 0x00020000 0x00010000 0x00000000 0x00000000 0x00020000 0x00030000 0x00000000 0x00020000 0x00020000 0x00000000 0x00000000

0x00040000 0x00040000 0x00020000 0x00000000 0x00040000 0x00040000 0x00020000 0x00000000 0x00000000 0x00040000 0x00060000 0x00000000 0x00040000 0x00040000 0x00000000 0x00000000

0x00080000 0x00080000 0x00040000 0x00000000 0x00080000 0x00080000 0x00040000 0x00000000 0x00000000 0x00080000 0x000C0000 0x00000000 0x00080000 0x00080000 0x00000000 0x00000000

0x00100000 0x00100000 0x00080000 0x00000000 0x00100000 0x00100000 0x00080000 0x00000000 0x00000000 0x00100000 0x00180000 0x00000000 0x00100000 0x00100000 0x00000000 0x00000000

0x00200000 0x00200000 0x00100000 0x00000000 0x00200000 0x00200000 0x00100000 0x00000000 0x00000000 0x00200000 0x00300000 0x00000000 0x00200000 0x00200000 0x00000000 0x00000000

0x00400000 0x00400000 0x00200000 0x00000000 0x00400000 0x00400000 0x00200000 0x00000000 0x00000000 0x00400000 0x00600000 0x00000000 0x00400000 0x00400000 0x00000000 0x00000000

0x00800000 0x00800000 0x00400000 0x00000000 0x00800000 0x00800000 0x00400000 0x00000000 0x00000000 0x00800000 0x00C00000 0x00000000 0x00800000 0x00800000 0x00000000 0x00000000

Basis of D_{2} :
0x00000000 0x80000000 0x00000000 0x80000000 0x00000000 0x80000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000001 0x00000000 0x00000001 0x00000000 0x00000001 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000002 0x00000000 0x00000002 0x00000000 0x00000002 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000004 0x00000000 0x00000004 0x00000000 0x00000004 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000008 0x00000000 0x00000008 0x00000000 0x00000008 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000010 0x00000000 0x00000010 0x00000000 0x00000010 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000020 0x00000000 0x00000020 0x00000000 0x00000020 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

Truncation mask T (leftmost word is register A):
0x00000003 0x00000000 0x80000003 0x00000003 0x00000000
$Q_{1}[0]$ for sample biclique:
$0 x 1 c 2652 f e 0 x 53 e b 4 c 0 a 0 x 57 e 9168 f 0 x f 65 b 3 a 560 x 7 c 428 e 01$
M for sample biclique:
0xce369809 0x3ea1797b 0x1ab39a0d 0x96d1d5e0 0x7a550f31 0xad4da4dd 0x0f72712f 0x17d8a5e8 0xdad6d21d 0x3b0faf80 0x7cc259ff 0xb27a9d25 0x22a02a94 0x88bbfd35 0x00000000 0x000003bf

The average type I error probability is estimated as $\bar{\alpha}=0.676$ which results in an expected attack complexity of $2^{154.96}$ evaluations of the compression function.

3.4 Two-Block Preimages

Given H, we want to find $M=\left(M^{0}, M^{1}\right)$ with a correct padding and such that $H=F\left(M^{1}, H^{1}\right)+H^{1}$, where $H^{1}=F\left(M^{0}\right.$, IV $)+$ IV $)$. The problem can be separated into two steps:

1. Find M^{1} such that $H=F\left(H^{1}, M^{1}\right)+H^{1}$ for some H^{1} and such that M^{1} has a correct padding (a "one-block pseudo-preimage with padding").

Table 3. One-block pseudo-preimages: N is the number of attacked steps, n_{1} and n_{2} the number of steps computed by F_{1} and F_{2}, respectively, n_{3} is the length of the bicliques, d the dimension of D_{1} and D_{2}, and $\bar{\alpha}$ the average type I error probability for the filtering of the candidate preimages

N	n_{1}	n_{2}	n_{3}	d	$\bar{\alpha}$	Complexity	Remark
48	17	29	2	12	0.447	$2^{149.22}$	pseudo-preimage, with padding
49	18	29	2	11	0.398	$2^{150.12}$	
50	18	30	2	10	0.404	$2^{151.15}$	
51	16	31	4	9	0.381	$2^{152.02}$	
52	17	31	4	8	0.332	$2^{152.93}$	
53	17	30	6	7	0.128	$2^{153.46}$	
54	17	31	6	8	0.569	$2^{153.50}$	
55	17	31	7	6	0.208	$2^{154.60}$	
56	18	32	6	8	0.765	$2^{154.41}$	
57	18	33	6	7	0.675	$2^{154.96}$	
58	20	31	7	5	0.478	$2^{156.25}$	
59	18	35	6	5	0.626	$2^{156.78}$	
60	19	35	6	4	0.524	$2^{157.45}$	

2. For the H^{1} obtained in the first step, find M_{0} such that $H^{1}=F\left(M^{0}\right.$, IV $)+$ IV (a "one-block preimage without padding").

The two steps can be solved using the attacks from Section 3.2 and 3.3, respectively. The total complexity is the sum of both steps, which is dominated by the second step (computing the first block). As an example, for $N=48$ we can compute a correctly padded two-block preimage with complexity $2^{150.62}+2^{149.22}=$ $2^{151.08}$. For $N=57$ the complexity is $2^{158.79}$.

For $N \geq 58$ we lack a method to compute the first block faster than bruteforce and we would have to use the generic method from [14, Fact 9.99] to convert a pseudo-preimage attack into a preimage attack. In fact, this is the procedure of most meet-in-the-middle preimage attacks. A pseudo-preimage attack with complexity 2^{m} can be converted to a preimage attack with complexity $2^{1+(m+n) / 2}$. In our case, the resulting speed-up is less than a factor two for all results with $N \geq 58$ given in Table 3 ,

4 Accelerated Brute-Force Search

In this last section we briefly describe a generic optimization of the brute-force search which comes out of the meet-in-the-middle approach. It applies to any number of rounds, but the speed-up is very small. The idea is to not recompute parts of F if they are identical for several messages. This has been previously applied to MD5 [2] and HAVAL-5 [17], and the same idea underlies "matching with precomputation" used for key recovery attacks on AES [4].

Suppose that F can be separated into three parts, $F=F_{2} \circ F_{3} \circ F_{1}$, such that D_{1} and D_{2} can be found as in Section 2.1 for F_{1} and F_{2}, but with zero
output differences. Then, Algorithm 4 can be used to test a set $M \oplus D_{1} \oplus D_{2}$. The additional cost compared to Algorithm 1 comes from the $2^{2 d}$ computations of F_{3} in the last loop. Testing 2^{n} messages has complexity $2^{n-d}\left(\Gamma_{1}+\Gamma_{2}\right)+2^{n} \Gamma_{3}$. Thus, for reasonably large d, the complexity of brute-force search is essentially reduced to 2^{n} evaluations of F_{3} instead of 2^{n} evaluations of F.

```
Algorithm 4. Accelerated brute-force search
Input: \(D_{1}, D_{2} \subset\{0,1\}^{\kappa}, M \in\{0,1\}^{\kappa}\)
Output: A preimage if one is contained in \(M \oplus D_{1} \oplus D_{2}\).
    for all \(\delta_{2} \in D_{2}\) do
        Compute \(L_{1}\left[\delta_{2}\right]=F_{1}\left(M \oplus \delta_{2}, P\right)\).
    end for
    for all \(\delta_{1} \in D_{1}\) do
        Compute \(L_{2}\left[\delta_{1}\right]=F_{2}^{-1}\left(M \oplus \delta_{1}, C\right)\).
    end for
    for all \(\left(\delta_{1}, \delta_{2}\right) \in D_{1} \times D_{2}\) do
        if \(F_{3}\left(M \oplus \delta_{1} \oplus \delta_{2}, L_{1}\left[\delta_{2}\right]\right)=L_{2}\left[\delta_{1}\right]\) then
            return \(M \oplus \delta_{1} \oplus \delta_{2}\)
        end if
    end for
    return No preimage in \(M \oplus D_{1} \oplus D_{2}\)
```


Fig. 4. Preimage attacks against reduced SHA-1: Illustration of the new results and comparison to accelerated brute-force search

Application to SHA-1. The speed-up factor is about $N /(N-30)$ for a variant with N steps. Slight improvements are possible by using probabilistic and truncated differentials for F_{2}^{-1}. For the full SHA-1, a speed-up factor of about two can be obtained. Such an optimization might not be considered as an attack, but it provides a minimal benchmark for actual attacks. Figure 4 compares our results to this benchmark.

5 Summary and Conclusion

We proposed a differential view on the meet-in-the-middle framework originally introduced by Aoki and Sasaki. Advanced matching techniques such as partial matching, indirect partial matching, partial fixing, and probabilistic matching appear very natural from this perspective. For block cipher based hash functions in Davies-Meyer mode, the principal attack parameters are two sets of suitable related-key differentials. Tools are proposed that facilitate a systematic search for these sets.

Applied to SHA-1, our framework leads to significantly better preimage attacks up to 57 out of 80 steps. The results are illustrated in Fig. 4 and compared to the best previous attack as well as to accelerated brute-force search. The improvements essentially come from a more systematic use of probabilistic matching. It is remarkable that we do not rely on the generic conversion of pseudo-preimage attacks into preimage attacks. This allows us to obtain speedup factors that would be hard to achieve with the generic conversion.

Application of the framework to the SHA-2 family seems more complicated, namely due to the non-linear message expansion. Nevertheless, it is expected that the differential perspective on meet-in-the-middle attacks leads to improved results on other primitives as well.

Acknowledgements. We thank Christian Rechberger for interesting discussions on preimage attacks and SHA-1. This work was partially supported by the Hasler Foundation www.haslerfoundation.ch under project number 08065.

References

1. Aoki, K., Guo, J., Matusiewicz, K., Sasaki, Y., Wang, L.: Preimages for StepReduced SHA-2. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 578-597. Springer, Heidelberg (2009)
2. Aoki, K., Sasaki, Y.: Preimage Attacks on One-Block MD4, 63-Step MD5 and More. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 103-119. Springer, Heidelberg (2009)
3. Aoki, K., Sasaki, Y.: Meet-in-the-Middle Preimage Attacks Against Reduced SHA0 and SHA-1. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 70-89. Springer, Heidelberg (2009)
4. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique Cryptanalysis of the Full AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 344-371. Springer, Heidelberg (2011)
5. De Cannière, C., Rechberger, C.: Preimages for Reduced SHA-0 and SHA-1. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 179-202. Springer, Heidelberg (2008)
6. Chabaud, F., Joux, A.: Differential Collisions in SHA-0. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 56-71. Springer, Heidelberg (1998)
7. Chaum, D., Evertse, J.-H.: Cryptanalysis of DES with a Reduced Number of Rounds: Sequences of Linear Factors in Block Ciphers. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 192-211. Springer, Heidelberg (1986)
8. Diffie, W., Hellman, M.: Special Feature Exhaustive Cryptanalysis of the NBS Data Encryption Standard. Computer 10, 74-84 (1977)
9. Guo, J., Ling, S., Rechberger, C., Wang, H.: Advanced Meet-in-the-Middle Preimage Attacks: First Results on Full Tiger, and Improved Results on MD4 and SHA-2. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 56-75. Springer, Heidelberg (2010)
10. Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for Preimages: Attacks on Skein-512 and the SHA-2 Family. In: Canteaut, A. (ed.) FSE 2012. LNCS. Springer (to appear, 2012)
11. Knudsen, L.R.: Truncated and Higher Order Differentials. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 196-211. Springer, Heidelberg (1995)
12. Leurent, G.: MD4 is Not One-Way. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 412-428. Springer, Heidelberg (2008)
13. Mendel, F., Pramstaller, N., Rechberger, C., Kontak, M., Szmidt, J.: Cryptanalysis of the GOST Hash Function. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 162-178. Springer, Heidelberg (2008)
14. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press (1996)
15. National Institute of Standards and Technology: FIPS 180-3: Secure Hash Standard (2008), http://www.itl.nist.gov/fipspubs/
16. Sasaki, Y., Aoki, K.: A Preimage Attack for 52-Step HAS-160. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 302-317. Springer, Heidelberg (2009)
17. Sasaki, Y., Aoki, K.: Preimage Attacks on 3, 4, and 5-Pass HAVAL. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 253-271. Springer, Heidelberg (2008)
18. Sasaki, Y., Aoki, K.: Preimage Attacks on Step-Reduced MD5. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107, pp. 282-296. Springer, Heidelberg (2008)
19. Sasaki, Y., Aoki, K.: Finding Preimages in Full MD5 Faster Than Exhaustive Search. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 134-152. Springer, Heidelberg (2009)
20. Wang, L., Sasaki, Y.: Finding Preimages of Tiger Up to 23 Steps. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 116-133. Springer, Heidelberg (2010)
21. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17-36. Springer, Heidelberg (2005)

[^0]: * Most of this work was done during an internship at Microsoft Research Redmond.

