

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 444–447, 2012.
© Springer-Verlag Berlin Heidelberg 2012

GeForMTjs: A JavaScript Library Based on a Domain
Specific Language for Multi-touch Gestures

Dietrich Kammer, Dana Henkens, and Rainer Groh

Fakultät Informatik
Professur Mediengestaltung

Technische Universität Dresden
01062 Dresden

dietrich.kammer@tu-dresden.de, dana.henkens@googlemail.com

Abstract. This paper presents GeForMTjs, a library which features an abstract
way of representing multi-touch gestures. A domain specific language for mul-
ti-touch gestures, Gesture Formalization for Multi-touch (GeForMT), is adapted
to the needs of web development. Web standards are addressed and mouse input
is incorporated as well. A short overview of related work shows that a formal
abstraction of multi-touch gestures is missing in the web context. A brief exam-
ple illustrates the seven processing steps of the library.

Keywords: Gestures, Multi-touch, CSS, JavaScript, Web standards.

1 Introduction

Multi-touch interaction is currently almost ubiquitous with web browsers on mobile
devices. Although a set of standard navigational gestures are used throughout these
browsers, a great potential for more complex gestural interaction remains to be re-
searched. The web events working group of the W3C is currently developing a stan-
dard to integrate multi-touch and pen input in web sites. The official recommendation
is due in August 2012 [1]. However, few of the currently available web libraries assist
the programmer in the definition of application specific multi-touch gestures.

This paper contributes an implementation of a domain specific language (DSL) for
multi-touch gestures in JavaScript. It is more powerful than relying on fixed gesture
events or raw touch data. The short, concise, and self-explanatory syntax is graspable
for both developers and designers. Providing gesture definition and recognition in a
library should help web programmers to design and test novel interaction concepts.

2 Related Work

Most web applications on mobile devices use standard gestures and seek to emulate
native multi-touch concepts available on each platform. Examples are jQuery Mobile
[2], the Dojo-plugin dojox.mobile [3], and Sencha Touch [4]. WKTouch [5] focuses
object manipulation, where gestures and actions are implicitly assigned to objects.
Jester [6] provides a library of common standard gestures. Representations of gestures
on a higher abstraction level are investigated by researchers such as Kin et al. [7],

 A JavaScript Library Based on a Domain Specific Language for Multi-touch Gestures 445

Khandkar and Maurer [8], and Kammer et al. [9]. Currently, these approaches are not
available on the web. Libraries such as Moousture [10] are rather limited in express-
ing complex multi-touch gestures. A greater freedom and ease to design gestures can
result in better and more powerful multi-touch interfaces in the future.

Fig. 1. Library components and processing steps of GeForMTjs

3 Gesture Library GeForMTjs

GeForMTjs relies on web standards to make touch data available in the web browser.
Seven components are responsible for registering and processing gestures (see Fig. 1).

Step 1: The Gesture Formalization for Multi-touch (GeForMT) by [9] provides a
DSL for multi-touch gestures defined by a context-free grammar. GeForMT features
atomic gestures, which describe the form or path of a gesture and operators to de-
scribe the temporal progression of gesture strokes. Complex gestures are defined by
combining atomic gestures. A GeForMT expression is validated by the Parser and
split into syntactical units. PEG.js is used to generate a concrete parser implementa-
tion (http://pegjs.majda.cz/, last access: 05/09/2012), which is based on the parsing
expression grammar formalism [11].

Step 2: The Selector Engine checks selectors contained in the gesture description
for focus definition and returns corresponding nodes of the DOM tree. For the con-
crete implementation, Sizzle (http://sizzlejs.com/, last access: 05/09/2012) is used.

Step 3: The Observation module registers mouse and touch events for these ele-
ments. Mouse events are emulated as single touch gestures by dispatching appropriate
touch events (cp. [12, 13]). To detect gesture input on content or structure elements
(e.g. div) as well as on underlying parent elements of the DOM tree (e.g. html), the
bubbling strategy of events is adopted. The programmer can define a contiguity inter-
val to allow the specification of gestures that require the user to lift all fingers from
the multi-touch display, e.g. a double-tap.

Step 4: The Template Builder converts formal parameters of the parsed expressions
into a computable data structure containing ordered coordinates.

Step 5: Results of Parser and Transformation are stored in the Gesture Model.
Step 6: Based on these templates, Gesture Recognition is performed. Wobbrock et

al.’s $1-Recognizer [14] has a good balance between recognition rate, memory

PARSER

Generated by
PEG.js

Based on
$1 Recognizer

Sizzle

SELECTOR
ENGINE

OBSERVATION TEMPLATE-
BUILDER

GESTURE-
MODEL

GESTURE-
RECOGNITION

VISUAL-
FEEDBACK

Example: LINE_E(div#id)

LINE

gesture Gesture

ObjectModel

ComplexGesture

AtomicGesture

Template

E

#id

html

head body

h1 div

„Text“

„Überschrift“

div#id
touchstart
touchmove
...
mousedown
mousemove
...

E

N

S

W
1 N

1 2 3 4 5 6 7

446 D. Kammer, D. Henkens, and R. Groh

Fig. 2. Sample web page using GeForMTjs

requirements, and tolerance and is suitable for a JavaScript implementation. A key ad-
vantage is the minimal effort used for feature extraction at runtime. Wobbrock et al.’s
algorithm is adapted according to the specification of GeForMT including sequentially
and simultaneously performed gesture paths, as well as gestures that are continuously
recognized. In these cases, the steps of classification are processed in repetition.

Step 7: Visual feedback is provided and application specific event handlers are
called for recognized gestures on their corresponding DOM elements. Gestures
strokes and contacts are visualized on two separate overlaying canvas elements,
which are excluded from event processing. Sequential gesture paths are considered in
the feedback visualization as well. The gesture expression illustrated in Fig. 1 defines
a line drawn to the east on a div element. The definition is embedded in JavaScript
code and is registered with the API of GeForMTjs as follows:

GeForMT.addGesture ({

 identifier: "swipe", // unique identifier

 expr: "LINE_E(div#id)", // GeForMT expression

 online: true, // continuous/discrete recognition

 handler: function(e) { … } // gesture specific event handler

});

GeForMTjs can be seen in action in a test environment1 demonstrating example ges-
ture sets and a sample web page2 (see Fig. 2), which substitutes access keys with
stroke shortcuts to access menu entries. Browser functions can be accessed by ges-
tures as well, for example browsing through the history or bookmarks. If a gesture
cannot be recognized, a short information is displayed as a layer on top of the website,
which indicates how to access the help page.

4 Conclusions and Future Work

The library presented in this paper is based on a DSL for multi-touch gestures. It
complies with web standards to reap the benefits of platform-independent, web-based

1 http://vi-c.de/geformtjs/testbench/
2 http://vi-c.de/geformtjs/sample/

(a) (b)

 A JavaScript Library Based on a Domain Specific Language for Multi-touch Gestures 447

development. GeForMTjs supports different interaction techniques by generalizing
mouse, touch, and pen input. Extensions like the browser plugin npTUIOClient and
MagicTouch [12] working with the TUIO protocol [15] are considered as well for
more hardware independence. However, further performance tests and web browser
compliance must be tested and ensured. An important issue is the visualization of
feedback and feed-forward, which reveals available gestures in an application. Anoth-
er interesting possibility is the combination of GeForMT with a UI library. Combin-
ing GeForMT with other DSLs or adding extensions might make it feasible to address
other modalities such as speech, spatial gestures, or video processing.

References

1. Brubeck, M., Moon, S., Schepers, D.: Touch Events version 1,
http://www.w3.org/TR/touch-events/ (last access: September 05, 2012)

2. jQuery: jQuery Mobile, http://jquerymobile.com/
(last access: September 05, 2012)

3. Dojo: Dojo Mobile, http://dojotoolkit.org/features/mobile
(last access: September 05, 2012)

4. Sencha: Mobile JavaScript Framework for HTML5 Web App Development | Sencha
Touch, http://www.sencha.com/products/touch
(last access: September 05, 2012)

5. Gibson, A.: WKTouch, https://github.com/alexgibson/WKTouch
(last access: September 05, 2012)

6. Seaward, S.: Jester, https://github.com/plainview/Jester
(last access: September 05, 2012)

7. Kin, K., Hartmann, B., DeRose, T., Agrawala, M.: Proton: Multitouch Gestures as Regular
Expressions. ACM, Austin (to appear, 2012)

8. Khandkar, S., Maurer, F.: A Domain Specific Language to Define Gestures for
Multi-Touch Applications. In: Rossi, M., Tolvanen, J.-P., Sprinkle, J., Und Kelly, S (hrsg.)
Proceedings of the 10th Workshop on Domain-Specific Modeling (DSM 2010), Aalto
University School of Economics, B-120, Aalto-Print (2010)

9. Kammer, D., Wojdziak, J., Keck, M., Groh, R., Taranko, S.: Towards a formalization of
multi-touch gestures. In: ACM International Conference on Interactive Tabletops and Sur-
faces. S.49–S.58. ACM, New York (2010)

10. Sibt-e-Hassan, Z.: Moousture, http://maxpert.github.com/moousture/ (last
access: September 05, 2012)

11. Ford, B.: Parsing expression grammars. In: Proceedings of the 31st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pp. S.111–122. ACM
Press (2004)

12. Smus, B.: MagicTouch, https://github.com/borismus/MagicTouch
(last access: September 05, 2012)

13. Carstensen, B.: Phantom Limb | Vodori Blog,
http://www.vodori.com/blog/phantom-limb.html

14. Wobbrock, J.O., Wilson, A.D., Li, Y.: Gestures without libraries, toolkits or training: a $1 re-
cognizer for user interface prototypes. In: Proceedings of the 20th Annual ACM Symposium
on User Interface Software and Technology, pp. S.159–S.168. ACM, New York (2007)

15. Kaltenbrunner, M., Bovermann, T., Bencina, R., Costanza, E.: TUIO: A Protocol for Ta-
ble-Top Tangible User Interfaces. In: Gehalten auf der 6th International Workshop on Ges-
ture in Human-Computer Interaction and Simulation, Vannes, France Mai 18 (2005)

	GeForMTjs: A JavaScript Library Based on a Domain Specific Language for Multi-touch Gestures
	Introduction
	Related Work
	Gesture Library GeForMTjs
	Conclusions and Future Work
	References

