
Systematic Evolution of WebML Models
by Coupled Transformations

Manuel Wimmer, Nathalie Moreno, and Antonio Vallecillo

Universidad de Málaga, Spain
{mw,moreno,av}@lcc.uma.es

Abstract. Model-driven Web Engineering is an effective approach for improv-
ing the development of Web applications by providing appropriate abstraction
mechanisms and different viewpoints. However, maintaining existing Web mod-
els still presents some significant research challenges. In particular, maintenance
and evolution tasks are based on fine-grained atomic changes, and there is no
automated reconciliation support for change propagation among viewpoints. In
this paper we present an approach based on coupled transformations to ease the
evolution of content models and the corresponding reconciliation of dependent
hypertext models. The approach is illustrated by using the well-known Extract-
Class refactoring for WebML models.

1 Introduction

Model-driven Web Engineering (MDWE) [13] is an effective approach to Web appli-
cation development that uses models, metamodels, and model transformation as key
elements of the development process. It incorporates a higher level of abstraction in
the specification of systems guided by the separation of concerns principle using view-
points that allows the (semi)-automated derivation of the final implementation code
from platform-independent multi-viewpoint specifications. In this sense, existing Web
engineering approaches such as WebML [1] and UWE [11] to name just a few (for a
survey, cf., [15]) match the MDWE principles.

Most MDWE approaches identify three key viewpoints for the design of Web appli-
cations: content, hypertext, and presentation. Although these viewpoints are separately
specified and developed, they are not completely independent. For instance, the hyper-
text models reference elements defined in content models, because they describe how
to navigate through the content model. Maintaining manually these references and the
consistency between the different viewpoints is a cumbersome task, for which there
is little automated support. Furthermore, the integration and synchronization of multi-
viewpoint systems is an open issue, not only in MDWE but also in other application
fields of model-driven engineering in general [7].

The maintenance and evolution of Web models in the majority of MDWE approaches
is currently hampered by two main shortcomings: (i) missing evolution support, since
changes are applied and identified at very low level of abstraction (basically as atomic
changes to the model elements such us additions, deletions, and updates); (ii) missing
reconciliation support, since the propagation of changes among viewpoints is currently

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 185–199, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



186 M. Wimmer, N. Moreno, and A. Vallecillo

difficult and cumbersome because the reconciliation is also achieved by manually ap-
plying atomic changes.

To tackle these shortcomings, we propose to manage the evolution of content mod-
els by using coarse-grained changes, which are specified as model transformations.
To reason about the impact of the coarse-grained content model changes, we specify
the changes by stating not only the structural transformation of content models, but
also the implications for their instances, i.e., the data of the Web application, by apply-
ing coupled model transformations [12] for the instance models. This approach allows
describing in a precise way the semantics of the coarse-grained changes—which is a
prerequisite for reasoning about the reconciliation of dependent hypertext models.

Based on the coarse-grained content model changes, we present a catalogue of rec-
onciliation patterns for hypertext models specified as coupled model transformations.
As an example, we present how hypertext models have to co-evolve when a content
model evolve by an ExtractClass refactoring. This catalogue of reconciliation patterns
is based on the core modeling elements of Web modeling languages, which have been
jointly developed in the MDWEnet initiative [14,18]. For demonstrating the proposed
approach, we use WebML as selected MDWE protagonist. Although the presented (cou-
pled) transformations are specific to WebML, the used modeling concepts are shared by
the majority of MDWE approaches. Thus, they results are not limited to WebML but
may be also transferred to other MDWE approaches. As a spin-off, during our investi-
gations we explored some limitations of WebML for which we propose two extensions.

This paper is structured as follows. Section 2 briefly outlines WebML and introduces
the running example used throughout the paper. Then, Section 3 presents our approach
and Section 4 describes the catalogue of reconciliation patterns for hypertext models
when ExtractClass refactorings have been applied on content model. Finally, Section 5
relates our work to similar approaches and Section 6 concludes.

2 Background: WebML By-Example

WebML describes Web applications with three viewpoints: content (data), hypertext
(navigation between pages), and presentation (look&feel). The content model is spec-
ified using an Entity-Relationship model (or, equivalently, a simplified UML class di-
agram), comprising classes, attributes, single inheritance, and binary relationships as
shown in the WebML metamodel (cf. Fig. 1). The front-end is specified using the hy-
pertext model, which is structured into pages.

Pages are the basic interface containers: they can be structured in sub-pages and
comprise content units. A content unit is defined as a component that publishes some
content in a page; the published content can be extracted dynamically from the objects
specified in the content model or specified statically in the hypertext model (e.g., an
entry form consisting of multiple input fields). In addition to content units, WebML
provides operation units, defined as components for executing commands (mostly on
the database). Operation units, unlike content units, do not publish content and thus
are positioned outside pages. Components (content and operation units) may have input
and output parameters (e.g., the OID of the object to display or modify, etc.). Parameter
passing is expressed as a side effect of navigation (values are transported from source



Systematic Evolution of WebML Models by Coupled Transformations 187

Content

Hypertext

source

Linkparameter

passing : Bool

Link
transport: Bool

SrcElement TrgElement LinkableElement

target
1 1

links0..*

linkpars

0..*

to
1

Navigation

TrgElement

SelectorConditionSelector
cond

1..*

RelCondition AttCondition KeyCondition

Relationship Attribute Imported
Attribute

rel
1

att
0..1

impAtt
0..1

path : String

DataSelection

LinkableElement

Page

Hypertext
Model

pages0..*

EntryUnit

Field Attribute

SrcElement

Selector

ContentUnit
0..*
units DisplayUnit

DataUnit IndexUnit
0..*

fields

0..1
selector

0..*
attribute

LinkableElement

OperationUnit

Link

KOLink OKLink

Transaction
Unit

Entity
ManagementUnit

Relationship
ManagementUnit

Selector

Selector
Condition

TrgElement

Assignment

Attribute

RelationshipConnectUnit
CreateUnitClass

class
1

rel
1

att
1

selector

srctrg

units
0..*

Hypertext
Model

units
0..* assignments

0..*

ContentManagement

1

1

1

Content
Model

Class

Attribute

Relationship

Role1

Role2

relationships

0..*
classes

0..*

src

1

trg

1

attributes
0..*

src
1
trg
1

Instances

Instance
Model

Link Object Value

AttributeRelationship Class

links
0..*

values

0..*

att
1class

1
rel
1

src

1

1

trg

objects
0..*

Fig. 1. Excerpt of the WebML Metamodel

elements of link parameters to their targets): components are connected by links, which
have a threefold purpose: enabling the user’s navigation, supporting the passage of pa-
rameters, and triggering the execution of components. In particular, OK links and KO
links are output links of operations, respectively followed after execution success or
failure. How all these concepts are related to each other is illustrated in an excerpt of
the metamodel shown in Fig. 1.

Running example: The Agenda system. At the beginning, this Web application was
designed with the only goal of allowing users to maintain a simple list of contacts.
Following the WebML methodology, the content and hypertext models were designed
as shown in Fig. 2. Given the simplicity of our requirements, one class was enough to
store the contacts’ information and, based on it, the hypertext model was established,
comprising a DataUnit and an IndexUnit for retrieving information from the content



188 M. Wimmer, N. Moreno, and A. Vallecillo

Family
oid
familyName

Person
oid
firstName

1:10..*
Person2Family

Person
oid
firstName
familyName

AddClass Family
AddRel Person2Family
Delete Person.familyName
Add Family.familyName

Co
nt
en
t V2Changes

Hy
pe

rt
ex
t

V1

Person
Entry

PersonEntryPage

Person
<firstName := FName>
<familyName := LName>

Fname
LName

KO

OK

Create
Person poid

1

ShowPerson

ResultPage
ShowRelatives

[familyName:=
FamilyName]

Family
Name

[OID:=poid]

3

4
Person

show(firstName)
Person

show(firstName,
familyName) 2

Fig. 2. Running Example: Content Model Evolution and Impact on Hypertext Model

model as well a CreateUnit and an EntryUnit for inserting and storing information.
However, the content model was later revised to add, among other changes, the Family
class for grouping contacts based on their family ties. This meant to extract a class from
the Person class, and to move the attribute familyName from Person to the new class.

When describing the changes as refactorings, this high-level of abstraction is the
natural way in which modelers usually thinks and discuss about a system evolution.
However, when these changes are detected by any of the existing model difference
tools, what we obtain is a very large number of atomic changes that need to be applied
to the individual model elements (AddClass Family, AddRel Person2Family, Delete
Person.familyName, Add Family.familyName, etc.). Understanding and manipulating
atomic changes to propagate them from one view to the rest can become a complex and
brittle task. Just thinking about, e.g., the ExtractClass refactoring that we have previ-
ously mentioned. In order to guarantee that the hypertext model still works as before,
the modeler has to adjust several elements in the hypertext model (around 22 atomic
changes as we shall see later) for this small example because of four issues:

1. The CreateUnit has an assignment to the attribute familyName (cf. 1 in Fig. 2)
which is now no longer contained the class Person. In WebML, only attributes
contained by the class which is referenced by the CreateUnit can be used in as-
signments. Furthermore, the CreateUnit is only able to produce a Person instance,
but actually, also a Family instance is needed that is linked to the Person instance to
populate the same information in the database for the given inputs of the EntryUnit.

2. The DataUnit shows two attributes, namely firstname and familyname (cf. 2 in
Fig. 2). However, as mentioned before, the attribute familyName is no longer avail-
able in the class Person. As for CreateUnits, also DataUnits can only use attributes
which are directly contained by their referenced class.

3. The automatic transport link between the DataUnit and the IndexUnit comprises a
LinkParameter transferring the familyName value (cf. 3 in Fig. 2) from the source
unit to the target unit. However, this value is not accessible in the source unit.

4. A similar issue arises for the SelectorCondition of the IndexUnit which also ac-
cesses the moved attribute familyName.



Systematic Evolution of WebML Models by Coupled Transformations 189

THypertext
Model V0

Hypertext
Model V1

TContent
Model V0

Content
Model V1

T
Instance
Model V0

Instance
Model V1

«depends_on» «depends_on»

«depends_on» «depends_on»«is_coupled»

«is_coupled»

Fig. 3. Coupled Transformations for Web Model Evolution at a Glance

3 Transformations for Web Model Evolution: An Overview

In WebML, the content model is the cornerstone around which all other views are artic-
ulated. This fact is not a particular feature of WebML, but shared by most modeling ap-
proaches for data-intensive Web applications. So, given its importance, we have focused
our research on the evolution of Web application models when evolution is triggered by
the content model.

Fig. 3 illustrates our proposed approach for the systematic evolution of Web mod-
els when coarse-grained content model changes are applied. While the upper area of
this figure is concerned with the reconciliation of the changed content model and the
initial hypertext model, the lower area is dealing with the co-evolution of the content
model and its instances. So to speak, we have initiator changes on the content mod-
els expressed as model transformations, and reconciliation changes for the instance
models and hypertext models expressed as coupled model transformations [12], which
are transformations that involve multiple software artefacts, such that changes in one
artefact trigger co-changes in other artefacts.

3.1 Coarse-Grained Content Model Changes as Transformations

A transformation describing a coarse-grained change is much more than a set of atomic
changes. In fact, its definition includes pre- and post-conditions which have to be ful-
filled for an appropriate application. A natural way of implementing coarse-grained
changes is by means of in-place transformations. As a matter of fact, the term in-place
transformations stands for transformations rewriting a model, as opposed to producing
a model from scratch which is done by out-place transformations.

In-place transformations can be described in many ways. Rule-based descriptions
are elegant and easy to understand. Such descriptions have declarative model rewriting
rules as their primitive building blocks. A rule consists of a Left Hand Side (LHS)
pattern that is matched against a model. If a match is found, this pattern is updated,
in the model, based on what is specified in the Right Hand Side (RHS) of the rule.
Additionally, Negative Application Condition (NAC) patterns may be used, specifying
which patterns should not be found in the model (match for non-existence) for applying
the rule.

Coarse-grained changes such as refactorings are implemented by specifying its pre-
and post-conditions as well as the actions that have to be executed for applying the



190 M. Wimmer, N. Moreno, and A. Vallecillo

(a) Graph Transformation for ExtractClass (base:Class, toBeMoved:Attribute)
LHS RHS

base:Class

toBeMoved:Attribute
atts

base:Class extracted:Class

toBeMoved:Attribute

atts

r1:Relationship
name = base.name +“2“
+ extracted.name

ro1:Role1 ro2:Role2

name = userInput()

LHS RHS

(b) Instance co evolution for ExtractClass

base:Class

base:Object

v1:Value

toBeMoved:Attribute

extracted:Class

r1:Relationship

base:Class

base:Object

v1:Value

toBeMoved:Attribute

extracted:Class

r1:Relationship

extracted:Object

l1:Link

src

trg

src trg

minCard = … minCard = …

class

values

att

atts

trgsrc

atts

att

classclass

src trg

src trg

values

rel

Fig. 4. Formalization of ExtractClass Refactoring

change. Most of them need also some input parameters that should be properly instanti-
ated by the user. Let us go back to our example. The corresponding graph transformation
rule for the refactoring ExtractClass is depicted in Fig. 4(a). Thereby, the LHS of the
rule represents the pre-condition of the operation and the post-condition is specified in
the RHS whereas actions that are going to carry out are implicitly defined in both sides.
More precisely, the execution of a transformation rule produces the following effects:
(i) all elements that only reside in the LHS are deleted; (ii) all elements that only exist
in the RHS are added, and (iii) all elements that reside in both sides are preserved. To
mark that an element in the RHS is equivalent to an element in the LHS, both elements
must have the same identifier. Note that the ExtractClass refactoring requires that a
class and an attribute are given as input by the user.

The graph transformation rules that describe the content model changes may be cou-
pled with other rules which take care of the reconciliation of the existing instances for
the content model (cf. Fig. 3). This coupling is a crucial aspect, because the semantics
of the content model changes are described by the corresponding changes on the in-
stances. For example, moving an attribute from one class to the other can have several
meanings, depending on the intended behaviour on the instances: either the attribute is
supposed to be deleted and then created (and therefore the values for the old attribute
are lost, and the newly created attribute gets fresh values), or the attribute is supposed
to be moved (and hence the values of the attribute should not be deleted but reused for
the newly introduced attribute).



Systematic Evolution of WebML Models by Coupled Transformations 191

3.2 Instance Reconciliation as Coupled Transformations

If instances of content models are again considered as models, transformations can be
applied for their reconciliations. To represent instance models on a conceptual level,
we reuse UML object diagrams for modeling objects (instances of classes), values (in-
stances of attributes), and links (instances of relationships). Thus, we have included in
the WebML metamodel a package for modeling instance models (Fig. 1).

Considering again the ExtractClass refactoring, expressing the effect at the instance
level, a coupled transformation is needed. Fig. 4(b) shows the effect on the instance
model as a transformation rule. For each object of the base class (which stands for an
arbitrary class on which an ExtractClass refactoring has been applied), an additional
object of the extracted class is created and linked to the base object. Finally, the value
of the moved attribute is shifted from the base object to the extracted object.

The benefits of having a conceptual representation of the instance level evolution is
twofold. First, the intend of the refactoring is concisely represented by stating the effects
on the instances, thus we have the basis for reasoning on the impact of the change
on the hypertext level. Second, the conceptual representation may be used to derive
platform specific reconciliation rules, e.g., SQL-based migration rules for relational
data, automatically.

3.3 Hypertext Reconciliation as Coupled Transformations

It is likely that reconciliations in the hypertext models are necessary when the un-
derlaying content model has been changed. In this sense, the hypertext model has to
be reconciled to guarantee interaction requirements supported by the system before
evolution.

Some effects that content model evolution implies on the hypertext model may be
easily inferred by looking at broken correspondence links between hypertext and con-
tent model. Let us consider the ExtractClass refactoring. In the hypertext, all Units that
reference the moved attribute (for applying any CRUD operation on it) need to be split
into two in order to consider the new container of the attribute, i.e., the Family class.
To preserve the system’s initial navigation structure and behavior, added elements on
the hypertext model must be properly linked by using suitable navigation links. In next
section, we will explain in detail how coupled transformations are used to reconcile
hypertext models with evolved content models.

4 Co-evolution Patterns for WebML Hypertext Models

When propagating changes from content models to hypertext models, equivalence prop-
erties have to be preserved for the initial hypertext model (H) and the revised version
(H ′) such that the observable behavior of the Web application is equivalent between H
and H ′ from a user point of view. In particular, we have derived three equivalence prop-
erties which are directly related to the three core behavioral element types of hypertext
model, namely ContentUnit, OperationUnit, and Link shown in Figure 1:



192 M. Wimmer, N. Moreno, and A. Vallecillo

– Amount of information per page. The content units located in a page should
display in total the same amount of information in H and H ′, i.e., the same attribute
values have to be shown on the page before and after evolution for given input
values.

– Effects on the database. Having a set of input values for a operation unit in H
should have the same effect as having these input values for the corresponding
sequence of operation units in H ′. This means, when a operation unit in H is
executed on the initial content model and the data is subsequently migrated to the
new content model, it should lead to the same result as executing the corresponding
sequence of operation units in H on the new content model.

– Navigation paths. If a node b is reachable from node a in H then node b has to be
reachable from node a in H ′ with the same parameter values transported.

In the following, we present co-evolution patterns for reconciling hypertext models af-
ter a ExtractClass refactoring has been executed in the associated content model. The
co-evolution patterns are described by recapturing the issue that has to be resolved in
the hypertext model, the reconciliation strategy, and the corresponding graph transfor-
mation rule.

4.1 Rule 1: CreateUnit Reconciliation

Issue: A CreateUnit refers to a Class in the content model on which the ExtractClass
refactoring has been executed. As a result, the moved attribute may be used in an
assignment of the CreateUnit; a situation which does not represent a valid model
structure in WebML. Furthermore, to preserve the operational semantics of the hy-
pertext model, not only an instance of the base class has to be created, but also an
instance of the extracted class linked to the instance of the base class is needed.

Reconciliation Strategy: In addition to the already existing CreateUnit for instanti-
ating the base class, an additional CreateUnit for instantiating the extracted class
and a ConnectUnit for linking instances of the base class and of the extracted class
have to be introduced. Furthermore, to guarantee the same behavior as before the
evolution, a TransactionUnit has to be introduced which contains all three opera-
tion units. This ensures that only when all three units are successfully executed, the
complete information is populated in the database —which corresponds to behavior
of the initial hypertext model where one CreateUnit is responsible for populating
the complete information at once. Furthermore, the assignment of the attribute that
has been moved to the extracted class has to be moved to the new CreateUnit.

Transformation Rule: The transformation rule1 for co-evolving the hypertext models
based on the mentioned adaptation strategy is illustrated in Fig. 5. The newly in-
troduced elements in the hypertext model are shown in green background color.
The content model elements are shown in gray background color. As is illustrated,
additional OperationUnits connected by OKLinks are introduced to simulate the
behavior of the single CreateUnit in the initial version. The KOLink is moved from
the CreateUnit to the TransactionUnit which ensures if one single unit fails, the tar-
get of the KOLink is shown to the user. Finally, also the source of the initial OKLink
is relinked to the last unit of the transaction.

1 LinkParameters and SelectorConditions are not shown due to space limitations.



Systematic Evolution of WebML Models by Coupled Transformations 193

cr1:CreateUnit

l1:OKLink

le1:Linkable

Element

base:Class

r1:Relationship

extracted:Class moved:Attribute

a1:Assignment

l2:KOLink

cr1:CreateUnit

l1:OKLink

le1:Linkable

Element

base:Class

r1:Relationship

extracted:Class moved:Attribute

a1:Assignment

l2:KOLink t1:TransactionUnit

cr1:CreateUnit

l3:OKLink

co1:ConnectUnit

l4:OKLink

src trg
atts

class

assignment

att

links to
links

src trg

atts
class

assignment

att

to

links

linkslinks
to

links
tounits

units units

class

rel

LHS

RHS

Fig. 5. Co-evolution pattern for CreateUnits affected by ExtractClass refactorings

du1:DisplayUnit

d1:DisplayUnit d2:DataUnitl1:Link s:Selector

c:RelConditionp1:LinkPar

atts

links

linkpars

source target

to selector

cond

base:Class

r1:Relationship

extracted:Class a1:Attribute

src trg
atts

class

atts

base:Class

r1:Relationship

extracted:Class a1:Attribute

src trg
attsclass

class

rel

Fig. 6. Co-evolution pattern for DisplayUnits effected by ExtractClass refactorings

4.2 Rule 2: DisplayUnit Reconciliation

Issue: A DisplayUnit refers to a Class in the content model which has been effected
by the ExtractClass refactoring and displays the attribute which has been moved to
the extracted class. As for CreateUnits, a DisplayUnit can only refer to attributes
which are directly contained by the referenced class.

Reconciliation Strategy: In order to display the value of the moved attribute, a Data-
Unit has to be introduced which is able to display the attribute, i.e., which refers to
the extracted class. This means, also an additional TransportLink has to be created
to navigate the relationship from the base class to the extracted class to find the
appropriate instance which contains the value to display. The DataUnit shows the
moved attribute and is included in the page containing the initial DisplayUnit.

Transformation Rule: The transformation rule for this strategy is shown in Fig. 6.



194 M. Wimmer, N. Moreno, and A. Vallecillo

d1:DisplayUnit l1:Link
p1:LinkPar

le1:LinkabelElement
links

to

linkpars

d1:DisplayUnit l1:Link

p1:LinkPar

le1:LinkabelElement

source

links to

linkpars

l3:Link
s1:SelectorUnitl2:Link

rc1:RelConditionp2:LinkPar

links
links

to

linkpars

source

target

to

cond

base:Class

r1:Relationship

extracted:Class a1:Attribute

src trg
atts

class source

base:Class

r1:Relationship

extracted:Class a1:Attribute

src trg
atts

class

rel

class

Fig. 7. Co-evolution pattern for Source Elements of LinkParameters effected by ExtractClass
refactorings

4.3 Rule 3: LinkParameter.source Reconciliation

Issue: A Link may use an Attribute as a source element for a LinkParameter which is
no longer accessible for the source of the Link, because it has been moved to the
extracted class. Again, the same constraint applies that units cannot access elements
outside their referenced classes.

Reconciliation Strategy: In order to transfer the necessary input for the target of the
Link, a work-around using a so-called SelectorUnit is required. A SelectorUnit is
used to access the attribute and transports the value of the attribute to the target of
the Link, however, the processing of a SelectorUnit does not effect the user interface
of the Web application. This additional unit is needed, because the initial source unit
of the link is not able to access the moved attribute. But it is possible to access the
extracted class by using the relationship between the base class and the extracted
class, but it is not possible to access its features directly. Thus, the access of the
moved attribute is delegated to the SelectorUnit which receives the extracted class
instance from which it retrieves the requested attribute value.

Transformation Rule: The transformation rule for reconciling source elements of link
parameter which are no longer accessible is shown in Fig. 7.

4.4 Rule 4: LinkParameter.target Reconciliation

Issue: A moved Attribute is used as a target element of a LinkParameter which is no
longer accessible for the target of the Link, because it has been moved to the ex-
tracted class (inverse case to Rule 3). This case is typically concerned with AttCon-
ditions of Selectors, which act as target elements for LinkParameters.

Reconciliation Strategy: In order to the use again the target element for the LinkPa-
rameter, the AttCondition has to point to a so-called ImportedAttribute instead of
normal Attribute. By using ImportedAttributes it is possible to access information



Systematic Evolution of WebML Models by Coupled Transformations 195

d1:DisplayUnit

base:Class

r1:Relationship

extracted:Class a1:Attribute

s1:Selector ac1:AttCondition

path = r1.name +
“.“ + a1.name

src trg
atts

class

att

condselector

d1:DisplayUnit s1:Selector ac1:AttCondition
condselector

LHS

RHS

base:Class

r1:Relationship

extracted:Class a1:Attribute

src trg
atts

class

ia1:Imported

AttributeimpAtt

Fig. 8. Co-evolution pattern for Target Elements of LinkParameters effected by ExtractClass
refactorings

outside the referred class. Thus, we employ this concept to access the moved At-
tribute by following the relationship from the base class to the extracted class.

Transformation Rule: As can be seen in Fig. 8, the link from the AttCondition to the
moved Attribute is substituted by a link to an ImportedAttribute. In particular, the
path to the moved attribute is calculated by concatenating the relationship name
(r1.name) followed by the point operator (used to access the features of the target
class) and the name of the moved attribute (a1.name).

4.5 Application to the Running Example

When applying the presented coupled transformation rules exhaustively (i.e., the model
is rewritten until no further match can be found) on the running example, we end up
with a hypertext model illustrated in Fig. 9. In particular, when the rules are applied in
the order they are presented, the initial hypertext model is rewritten from left to right.
First, the CreateUnit is rewritten by Rule 1 into a TransactionUnit covering the three
OperationUnits. Second, the ShowPerson DataUnit is split by Rule 2 into two DataU-
nits, one visualizing the firstName attribute value and the other the familyName attribute
value of the created person. Third, Rule 3 substitutes the Link between the ShowPer-
son DataUnit and the IndexUnit by one Link activating a SelectorUnit for retrieving
the family instance for the transferred person instance, followed by another Link which
is transferring the familyName attribute value from the SelectorUnit to the IndexUnit.
Finally, the AttCondition of the IndexUnit is rewritten from a “standard” attribute to an
ImportedAttribute (cf. Person2Family.familyName) by Rule 4.

4.6 Critical Discussion

The reconciled hypertext model allows to work with the new content model version in
an equivalent way as the initial hypertext model worked with the initial content model
w.r.t. the three stated properties in the beginning of this section. However, there are
also some minor differences concerning the structure of the Web pages. Because it
is not possible to use the notion of ImportedAttributes for showing attributes residing
outside the classes referenced by DisplayUnits, some additional DisplayUnits have to
be introduced in the hypertext model. This has an effect on the presentation models



196 M. Wimmer, N. Moreno, and A. Vallecillo

Person
Entry

PersonEntryPage Fname
Lname+

KO

OK

Person
<firstName := Fname>

Create
Person

Family
<familyName := LName>

Create
Family

OK

<Person2Family>
<Person.oid = poid>
<Family.oid = foid>

OK

ResultPage

ShowFamily
Lname

poid

foid

poid

foid=
Person2Family.oid

[OID:=foid]

[Person2Family.
familyName:=
FamilyName]

Family
Name

GetFamily

[OID:=foid]
?

ShowPerson

Person
show(firstName)

ShowRelatives

Family

[OID:=poid]

Person
show(firstName)

Family
show(familyName)

Fig. 9. Reconciled Hypertext Model of the Running Example

of the Web applications, and thus, on the user interfaces. For example, automated test
may fail to access some information which is now visualized in a different place on the
corresponding Web site.

As a consequence, the ResultPage in the reconciled hypertext model (cf. Fig. 9) is
more verbose than the initial version because ImportedAttributes are not possible either
for source elements of LinkParameters or for the shown attributes of DisplayUnits.
Other Web modeling languages such as UWE [11] allow for ImportedAttributes for
DisplayUnits by using some kind of expression language, similar to the one in WebML
for defining ImportedAttributes for SelectorConditions.

When we assume that we have an enhanced modeling support in WebML, i.e., Im-
portedAttributes are also possible for DisplayUnits as well as for source elements of
LinkParameters, the ResultPage would be expressible in a more concise manner fol-
lowing the initial page structure as shown in Fig. 10. Instead of using four units in the
reconciled hypertext model, only two units—as in the initial hypertext model—are suf-
ficient to work with the new content model version. Thus, the same structure of the
Web page is guaranteed which also allows to reuse the presentation model of the initial
hypertext version also for the reconciled version.

In addition, having this enhanced modeling support also leads to less complex co-
evolution patterns. In particular, Rule 2 and Rule 3 only have to substitute the links
from the hypertext model elements to the moved attribute with an ImportedAttribute.
Therefore, we propose the WebML metamodel to have also the possibility to use Im-
portedAttributes for DisplayUnits and for source elements of LinkParameters. By this
not only the reconciliation rules and the resulting reconciled hypertext models are sim-
pler, but also modeling Web applications in WebML from scratch may be enhanced by
having such modeling support.

4.7 Implementation

We have implemented the presented approach by defining WebML models in the Eclipse
Modeling Framework (EMF). For representing WebML models in EMF, we have de-
veloped an Ecore-based WebML metamodel. This opens the door for using transfor-
mation approaches available for EMF-based models. We selected the Eclipse Modeling



Systematic Evolution of WebML Models by Coupled Transformations 197

ResultPage

ShowFamily

foid=
Person2Family.oid

[OID:=foid]

[Person2Family.
familyName:=
FamilyName]

Family
Name

GetFamily

[OID:=foid]
?

ShowPerson

Person
show(firstName)

ShowRelatives

[OID:=poid]

Person
show(firstName)

Family
show(familyName)

Family

ResultPage

[Person2Family.
familyName:=
FamilyName]

ShowPerson

Person
show(firstName)

ShowRelatives

[OID:=poid]

Person
show(firstName,
Person2Family.
familyName)

FamilyName=
Person2Family.familyName

Fig. 10. Possible improvements of the ResultPage using ImportedAttributes for DisplayUnits and
Source Elements of LinkParameters

Operation (EMO) project (http://www.modelversioning.org/emf-modeling-operations)
which is a dedicated transformation framework for implementing and executing model
refactorings. Based on EMO, we have implemented the transformations for the content
models as well as the coupled transformations for the instance models and the hyper-
text models. EMO allows also the interactive execution of the transformations by pre-
selecting model elements in the modeling editor. The execution engine of EMO
completes the bindings of the model elements in case only a partial pre-binding for the
transformation rule has been provided by the user. Finally, EMO also allows for user
input during transformation execution, e.g., to give the name for the extracted class.

5 Related Work

With respect to the contribution of this paper, namely evolution and reconciliation sup-
port for Web models, we identify two main lines of related work: (i) model refactoring
and (ii) multi-viewpoint model synchronization.

Model Refactorings. Compared to refactorings established in the field of object-
orientation modeling [16,20], only some initial proposals for Web models exist. Most
notable is the work of Cabot and Gómez [2] in which a catalogue of refactorings for
improving the navigation between pages has been documented. The presented refactor-
ings are defined on a high-level of abstraction considering links, pages, and navigation
paths so they can be translated to any Web modeling methodology as we do. However,
their approach only covers one single viewpoint and does not consider the change im-
pact on dependent viewpoints. Mitigating this shortcoming, the work in [8] focuses on
the navigation and presentation viewpoints and how they must co-evolve for propagat-
ing changes in a consistent way. In particular, they make an OOHDM dependent, fine-
grained characterization of different kinds of refactorings. They combine also atomic
changes to achieve more complex transformations. In contrast, our approach considers
the co-evolution problem between content models and hypertext models.

Model Synchronization. A large number of approaches in other disciplines address
the problem of multi-viewpoint synchronization [3,5,6,7,9,10,19]. All these approaches



198 M. Wimmer, N. Moreno, and A. Vallecillo

have in common that they consider only atomic changes when reconciling models to
satisfy again given modeling language constraints. However, when structuring changes
to composite ones, more appropriate reconciled models may be found. For Web appli-
cations, instance migration support for evolving databases is presented in [17], but the
impact on the hypertext level is not discussed. Cicchetti et al. [4] propose evolution
support for Web models going beyond instance migration. The approach uses state-
based model comparison to compute the differences between two content model ver-
sions based on fine-grained atomic changes, such as adding and removing elements or
modifying some of their values. Two coarse-grained change operators are considered in
their work: merge/split of classes. The approach is described in detail for the beContent
Web modeling language which does not employ an explicit hypertext layer, and briefly
discussed for WebML, for which only the reconciliation of hypertext models in case of
deletions of content model elements is discussed. Our work is orthogonal in the sense
that coarse-grained changes are considered for reconciling WebML hypertext models.

6 Conclusions and Future Work
In this paper we have presented coarse-grained content model changes formalized as
model transformations, which are propagated to dependent viewpoints using coupled
transformations. The approach has been demonstrated by the ExtractClass refactoring
example in the particular context of WebML.

Since the reconciliation strategies are defined for the core of WebML, which is also
shared by other Web modeling languages, the results should be transferable to other
Web modeling languages. In particular, we have abstracted the patterns as much as pos-
sible, e.g., by using generalized classes of the metamodel such as LinkableElement or
DisplayUnit which usually have equivalent concepts in other Web modeling languages.
By this, the transformations are not specific to the presented example, but are reusable
for others. However, there are language concepts which may require their own recon-
ciliation patterns which are not presented in the paper. For instance, if a DeletionUnit
refers to a class which has been subject to the ExtractClass refactoring, an analogous
reconciliation pattern is necessary as for the CreateUnit to ensure that the instances of
the base class and the extracted class are deleted.

As future work we plan to extend the presented catalogue of reconciliation patterns,
and identify/resolve possible conflicts between them based on graph transformation
theory, in particular, using critical pairs analysis. Furthermore, our patterns aim to pre-
serve the consistency and observable behavior of the system by fulfilling a set of equiva-
lence properties before and after co-evolution models happen. However, coarse-grained
changes can be translated to the hypertext viewpoint in different ways, i.e., producing
different models where some of them are more efficient than others. In this sense, we
want to improve our proposal to determine the most optimal pattern in each case by ex-
ploring quality properties such as usability and accessibility of hypertext models. Finally,
we want to investigate a hybrid reconciliation approach by using in the first phase the pre-
sented approach for coarse-grained changes and in the second phase a constraint-based
approach for atomic changes which could not be composed into coarse-grained changes.

Acknowledgements. This work has been partially funded by the Austrian Science Fund
(FWF) under grant J 3159-N23, and by Spanish Research Project TIN2011-23795.



Systematic Evolution of WebML Models by Coupled Transformations 199

References

1. Acerbis, R., Bongio, A., Brambilla, M., Butti, S., Ceri, S., Fraternali, P.: Web Applications
Design and Development with WebML and WebRatio 5.0. In: Paige, R.F., Meyer, B. (eds.)
TOOLS EUROPE 2008. LNBIP, vol. 11, pp. 392–411. Springer, Heidelberg (2008)

2. Cabot, J., Ceballos, J., Gómez, C.: On the Quality of Navigation Models with Content-
Modification Operations. In: Baresi, L., Fraternali, P., Houben, G.-J. (eds.) ICWE 2007.
LNCS, vol. 4607, pp. 59–73. Springer, Heidelberg (2007)

3. Cicchetti, A., Ruscio, D.D.: Decoupling Web Application Concerns through Weaving Oper-
ations. Science of Computer Programming 70(1), 62–86 (2008)

4. Cicchetti, A., Ruscio, D.D., Iovino, L., Pierantonio, A.: Managing the Evolution of Data-
Intensive Web Applications by Model-Driven Techniques. In: SoSym, pp. 1–31 (2012)

5. Diskin, Z., Xiong, Y., Czarnecki, K.: Specifying Overlaps of Heterogeneous Models for
Global Consistency Checking. In: Dingel, J., Solberg, A. (eds.) MODELS 2010. LNCS,
vol. 6627, pp. 165–179. Springer, Heidelberg (2011)

6. Eramo, R., Pierantonio, A., Romero, J.R., Vallecillo, A.: Change Management in Multi-
Viewpoint Systems using ASP. In: WODPEC 2008. IEEE (2008)

7. Finkelstein, A., Gabbay, D.M., Hunter, A., Kramer, J., Nuseibeh, B.: Inconsistency Handling
in Multi-perspective Specifications. In: Sommerville, I., Paul, M. (eds.) ESEC 1993. LNCS,
vol. 717, pp. 84–99. Springer, Heidelberg (1993)

8. Garrido, A., Rossi, G., Distante, D.: Model Refactoring in Web Applications. In: 9th Inter-
national Workshop on Web Site Evolution, pp. 89–96. IEEE (2007)

9. Grundy, J., Hosking, J., Mugridge, W.B.: Inconsistency Management for Multiple-view Soft-
ware Development Environments. IEEE Trans. Softw. Eng. 24(11), 960–981 (1998)

10. Hofmann, M., Pierce, B.C., Wagner, D.: Symmetric lenses. In: POPL 2011, pp. 371–384.
ACM (2011)

11. Koch, N., Knapp, A., Zhang, G., Baumeister, H.: UML-Based Web Engineering: An Ap-
proach Based on Standards. In: Web Engineering: Modelling and Implementing Web Appli-
cations. Human-Computer Interaction Series, vol. 12, ch. 7, pp. 157–191. Springer (2008)

12. Lämmel, R.: Coupled Software Transformations (Extended Abstract). In: First International
Workshop on Software Evolution Transformations (2004)

13. Moreno, N., Romero, J.R., Vallecillo, A.: An Overview Of Model-Driven Web Engineering
and the MDA. In: Web Engineering: Modelling and Implementing Web Applications, ch.12,
pp. 353–382. Springer (2008)

14. Moreno, N., Vallecillo, A.: Towards Interoperable Web Engineering Methods. JASIST 59(7),
1073–1092 (2008)

15. Schwinger, W., et al.: A Survey on Web Modeling Approaches for Ubiquitous Web Applica-
tions. IJWIS 4(3), 234–305 (2008)

16. Sunyé, G., Pollet, D., Le Traon, Y., Jézéquel, J.-M.: Refactoring UML Models. In: Gogolla,
M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 134–148. Springer, Heidelberg (2001)

17. Vermolen, S.D., Wachsmuth, G., Visser, E.: Generating Database Migrations for Evolving
Web Applications. In: GPCE 2011, pp. 83–92. ACM (2011)

18. Wimmer, M., Schauerhuber, A., Schwinger, W., Kargl, H.: On the Integration of Web Mod-
eling Languages. In: MDWE 2007. CEUR Workshop Proceedings, vol. 261 (2007)

19. Xiong, Y., Liu, D., Hu, Z., Zhao, H., Takeichi, M., Mei, H.: Towards Automatic Model Syn-
chronization from Model Transformations. In: Proc. of ASE 2007, pp. 164–173. ACM (2007)

20. Zhang, J., Lin, Y., Gray, J.: Generic and Domain-Specific Model Refactoring using a Model
Transformation Engine. In: Model-driven Software Development—Research and Practice in
Software Engineering, pp. 199–217. Springer (2005)


	Systematic Evolution of WebML Modelsby Coupled Transformations
	Introduction
	Background: WebML By-Example
	Transformations for Web Model Evolution: An Overview
	Coarse-Grained Content Model Changes as Transformations
	Instance Reconciliation as Coupled Transformations
	Hypertext Reconciliation as Coupled Transformations

	Co-evolution Patterns for WebML Hypertext Models
	Rule 1: CreateUnit Reconciliation
	Rule 2: DisplayUnit Reconciliation
	Rule 3: LinkParameter.source Reconciliation
	Rule 4: LinkParameter.target Reconciliation
	Application to the Running Example
	Critical Discussion
	Implementation

	Related Work
	Conclusions and Future Work
	References




