
Joogie: Infeasible Code Detection for Java

Stephan Arlt1 and Martin Schäf2

1 Albert-Ludwigs-Universität Freiburg
2 United Nations University, IIST, Macau

Abstract. We present Joogie, a tool that detects infeasible code in
Java programs. Infeasible code is code that does not occur on feasi-
ble control-flow paths and thus has no feasible execution. Infeasible code
comprises many errors detected by static analysis in modern IDEs such as
guaranteed null-pointer dereference or unreachable code. Unlike existing
techniques, Joogie identifies infeasible code by proving that a particu-
lar statement cannot occur on a terminating execution using techniques
from static verification. Thus, Joogie is able to detect infeasible code
which is overlooked by existing tools. Joogie works fully automatically,
it does not require user-provided specifications and (almost) never pro-
duces false warnings.

1 Introduction

We present Joogie, a static analysis tool to detect infeasible code in Java pro-
grams. Infeasible code is code which does not occur on any feasible control-flow
paths and hence has no feasible execution. That is, infeasible code is either not
forward-reachable or not backward-reachable on a feasible execution. Common
examples of infeasible code are unreachable code, or guaranteed null-pointer
dereference.

Infeasible code tends to occur in a very early stage of development and should
be found at the latest during testing. An intrinsic property of infeasible code is
that it has no feasible execution. That is, a code fragment can be detected to be
infeasible without knowing its full context. Extending its context can only restrict
its feasible executions and thus an infeasible code fragment will remain infeasible
in any larger context. Hence, infeasible code lends itself to be detected by static
analysis: it can be detected for code fragments in isolation using relatively coarse
abstractions of the feasible executions, and with a very low rate of false warnings.

Infeasible code can, e.g., be detected using data-flow analysis tools such as
Findbugs [8] or the built-in static analysis of Eclipse which, among other things,
also detects infeasible code. We claim that, among all static analysis tools, those
detecting infeasible code are some of the most widely used. Programmers do
not suppress Eclipse-warning that an object is always null when dereferenced
or that a particular code fragment is unreachable. That is, improving infeasible
code detection can have a large impact in practice.

In contrast to existing tools that detect infeasible code, Joogie uses techniques
from static verification to prove the presence of infeasible code. This results in

P. Madhusudan and S.A. Seshia (Eds.): CAV 2012, LNCS 7358, pp. 767–773, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

768 S. Arlt and M. Schäf

a higher precision than pure syntactic analysis. Joogie first translates a given
program into the Boogie language [10] as described in Section 3. Then, a modified
version of the Boogie program verification system [1] is used to prove the presence
of infeasible code as described in Sect. 4. We show the ability of Joogie to detect
infeasible code which is not found using existing tools by applying our tool to
three real world applications in Sect. 5. Joogie works fully automatically, does
not require any user interaction, and is able to detect real errors while almost
never producing false warnings.

2 Joogie Overview

Program Boogie + Z3

Reporting

Soot Boogie Translator

Bytecode

Source code

Jimple
Boogie program

Infeasible Code

Joogie

Fig. 1. Overview of Joogie

Figure 1 gives an overview of Joogie.
Joogie takes a Java program as in-
put. Joogie splits the task of proving
the presence of infeasible code in two
steps. In a first step, the Java pro-
gram is translated into Boogie. Dur-
ing this translation, the type system
and memory model are replaced by
more abstract concepts which facil-
itate the use of existing verification
techniques. The details of this trans-
lation are described in Sect. 3. Note
that this translation is neither sound
nor complete. That is, some feasible executions might be lost which can result in
false warnings, and the translation may add feasible executions which can result
in false negatives.

In a second step, Joogie calls a modified version of the Boogie program verifier
to prove the presence of infeasible code in the Boogie program. The underlying
decision procedure is based on the weakest liberal precondition calculus and uses
a sound abstraction of the given Boogie program. Section 4 gives more details on
the used algorithms. For each infeasible statement in the Boogie program, Joogie
reconstructs the corresponding statement in the Java source code and returns an
error message. Joogie works fully automatically. Joogie does not require specifi-
cation statements, but in general it is possible to further annotate the generated
Boogie program to increase the detection rate or check for additional properties.

3 Bytecode Translation

Joogie translates Java to Boogie using the Java optimization framework Soot [11].
Soot translates the Java program into a 3-address intermediate representation of
the program’s bytecode, which significantly simplifies the translation to Boogie,
as only 15 different kinds of statements have to be considered.

One of the most vital parts of translating an object-oriented language into
an intermediate verification language is the used memory model. For a sound

Joogie: Infeasible Code Detection for Java 769

infeasible code detection it is sufficient to preserve all feasible executions of
the original program (contrary to partial correctness proofs, where all infeasible
executions have to preserved). Thus, Joogie can use a simple Burstall-Bornat-
style heap-as-array model (see e.g., [4, 10]). The heap is represented by a two-
dimensional array, where the first index refers to the address of an object in
the heap and the second index refers to the field that is to be accessed. Soot
ensures that references to objects are null by default. Assertions to guard the
heap access are introduced automatically by Joogie. For brevity of exposure, we
do not explain this model in detail. Similar approaches can be found, e.g., in
Spec# [2] or ESC/Java [5]. Note that using assertions is not sound, as the Java
program would throw an exception rather than terminate when the exception is
violated.

Integers, Chars, and Bytes are represented using the Boogie built-in type for
unbounded natural numbers. Using an unbounded representation for bounded
variables is an unsound abstraction. Hence, Joogie uses uninterpreted functions
for arithmetic operators, which can be redefined using axioms if a sound han-
dling of primitive types is needed. However, unless the programmer deliberately
makes use of Java’s overflow and underflow handling, this is a feasible abstraction
and, so far, we did not encounter false warnings resulting from this unsound-
ness. String variables are treated like any other object. Doubles and floats are
treated in a similar way as objects. They are represented as arbitrary values
and operators on them are represented as uninterpreted functions. This abstrac-
tion is coarse and certainly leaves room for improvements, but it is sound and
efficient for our purpose of detecting infeasible code. Arrays are represented as
one-dimensional unbounded arrays of an appropriate type. The size of an ar-
ray is stored outside the bounds of the original array. Array-bounds checks are
modeled using assertion statements, which is unsound for the general case, as
out-of-bounds exceptions might be handled in the code. However, this can be
changed easily depending on the user’s preferences.

Exceptions are modeled as multiple return parameters of a method. If an ex-
ception is thrown, the corresponding return parameter is assigned to the instance
of the exception, and the method returns, or, if possible, jumps to an adequate
catch block. After each method call, conditional choices are added to redirect
the control-flow if an exception has been thrown by the called method.

In general, this translation is not sound as it does not consider aliasing of
method parameters and global variables. This unsoundness could be eliminated
by, e.g., modeling the aliasing explicitly which would increase the complexity of
the translated program significantly. However, our experiments show that this
simplification does not introduce false warnings.

4 Infeasible Code Detection

We check for the existence of infeasible code in the Boogie program using the
algorithms described in [7] and [3]. These algorithms are implemented as an
extension to the Boogie program verification system. For each control location

770 S. Arlt and M. Schäf

in a program P , we introduce a statement assigning an auxiliary reachability
variable ri to the constant 1, where i ranges over the number of all program
statements. This allows us to check the existence of an execution that passes
this location, by checking if any terminating execution starting in an initial state
where ri = 0 terminates in a state where it is still 0. If this is the case, then
no terminating execution passes the assignment ri := 1 and hence no execution
passes the considered statement. This check is automated by augmenting the
program P with reachability variables, computing a formula representation of
the weakest-liberal precondition of this program, and then using a SMT solver
(here: Z3) that checks if (ri = 0) |= wlp(P, ri = 0) holds (a similar concept is
used in [6]).

To compute a formula representation of wlp, we first eliminate the loops in
our program P using the abstract loop unwinding from [7]. A loop is replaced by
three unwindings. The first and the last unwinding represent the first and the
last iteration of the loop, respectively. To every entrance and exit of the middle
unwinding, we add non-deterministic assignments to all variables modified inside
the loop body. This abstract unwinding represents all other unwindings. Note
that, for copied locations, we do not create fresh ri variables, and thus, the
abstraction does not remove feasible executions from the program (proof in [7]).

Joogie does not do any inter-procedural analysis. Any procedure call is re-
placed by a non-deterministic assignment to all variables that might be modified
by this procedure. Still, this is a sound abstraction.

For the resulting loop-free program, we compute a formula representation of
the weakest-liberal precondition using standard techniques which are already
provided by Boogie. The algorithm to detect infeasible code in Boogie programs
is sound w.r.t. infeasible code detection under two preconditions: procedure pa-
rameters do not alias, and the program is single-threaded. The first one can be
lifted by adding switch cases. For multithreading, we do not have a sound so-
lution yet. If a statement is only executed on interleaved executions, it will be
reported as infeasible. That is, in general Joogie is not sound. We evaluate its
feasibility in the experiments in the next section.

5 Experiments

Joogie, all experimental data, and additional results can be found on the web-
site1. We apply Joogie on 3 real-world Java applications, TerpWord 4.0, Rachota
2.4, and FreeMind 0.9, to check the performance of Joogie, whether it can find
infeasible code, and whether it does produce false warnings . We also apply Joo-
gie on Joogie itself. All experiments are executed several times on a standard
notebook (Dual Core 1.6 GHz, 2 GB RAM, 5400 rpm HDD). Note that infeasible
code should be detected at the latest during testing, and it should not occur in
any stable release of a program. That is, we expect to find hardly any or even
no infeasible code. For a detailed evaluation including reports on detection rate,
experiments with seeded infeasible code are needed. Table 1 shows the summary

1 http://code.google.com/p/joogie/

http://code.google.com/p/joogie/

Joogie: Infeasible Code Detection for Java 771

of our experiments, and Figure 2 gives a more detailed view on the computation
time per method.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

Ti
m

e
(s

ec
on

ds
)

Method size (# bytecode instructions)

Fig. 2. Computation time of Joogie per Java method

Table 1. Results of applying Joogie to the test applications

Program LOC # checked methods # found bugs # false warnings Time (min)

TerpWord 6842 965 4 2 2.95

Rachota 13750 1835 1 0 49.13

FreeMind 40922 8008 12 1 64.41

Joogie 5433 781 0 0 1.37

Observations. Joogie is able to detect infeasible code in the stable releases of 3
applications. Some of it is simple unreachable code, some of it is code that will
cause a run time error when reached. Examples of detected infeasible code are
given on the Joogie website. We did encounter two false warnings in TerpWord:
one is due to a bug when parsing the Java program, the other one is a statement
that is only reachable due to interleaving. Joogie does not deal with interleaving.
The other sources of unsoundness of the translation from Java to Boogie wrt.
infeasible code detection did not cause any false warnings. In Rachota we found
one bug. In FreeMind, we found 12 bugs but also 1 false positive due to bugs in
Joogie which we could not fix until the deadline.

Figure 2 shows, the average computation time per method is way below one
second for most methods. As Joogie is meant to be used incrementally on recently
modified program fragments similar to, e.g., the static analysis in Eclipse, the
computation time can be tolerated. Larger or more complex methods can be
split in smaller parts which are analyzed in isolation.

6 Conclusion

Joogie is useful: it does not require any user interaction, it is fully automatic, it
detects errors, and it does almost never produce false warning. The experiments

772 S. Arlt and M. Schäf

show that Joogie can be applied to real programs and that it does find infeasi-
ble code, even in sufficiently tested code. Our long term goal is to make Joogie
efficient enough to run in the background while the programmer is typing. Until
then, there is still much room for improvements. The complexity of the gen-
erated Boogie program can be further optimized by sharing variables between
independent program fragments, techniques from verification could be used to
infer invariants, or more efficient ways to represent the heap could be applied.

By using Boogie as an intermediate representation, Joogie can be easily ex-
tended by other researchers. E.g., the translation from Java to Boogie could be
modified to identify different classes of errors, or specification statements could
be added to further increase the detection rate.

We observe that it is not always trivial to understand why code is infeasible.
In contrast to, e.g., run-time errors, where a trace counterexample is sufficient
to explain why the error occurs, infeasible code can be witnessed by this way. In
our future work we will explore techniques like e.g., BugAssist [9] that can be
used to explain infeasible control-flow.

Acknowledgements. This work is supported by the projects ARV and COLAB
funded by Macau Science and Technology Development Fund.

References

1. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., M. Leino, K.R.: Boogie:
A Modular Reusable Verifier for Object-Oriented Programs. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111,
pp. 364–387. Springer, Heidelberg (2006)

2. Barnett, M., DeLine, R., Fähndrich, M., Jacobs, B., Leino, K.R.M., Schulte,
W., Venter, H.: The Spec# Programming System: Challenges and Directions.
In: Meyer, B., Woodcock, J. (eds.) VSTTE 2005. LNCS, vol. 4171, pp. 144–152.
Springer, Heidelberg (2008)

3. Bertolini, C., Schäf, M., Schweitzer, P.: Infeasible Code Detection. In: Joshi,
R., Müller, P., Podelski, A. (eds.) VSTTE 2012. LNCS, vol. 7152, pp. 310–325.
Springer, Heidelberg (2012)

4. Bornat, R.: Proving Pointer Programs in Hoare Logic. In: Backhouse, R., Oliveira,
J.N. (eds.) MPC 2000. LNCS, vol. 1837, pp. 102–126. Springer, Heidelberg (2000)

5. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for Java. SIGPLAN Not. 37, 234–245 (2002)

6. Godefroid, P., Lahiri, S.K., Rubio-González, C.: Statically Validating Must Sum-
maries for Incremental Compositional Dynamic Test Generation. In: Yahav, E.
(ed.) SAS 2011. LNCS, vol. 6887, pp. 112–128. Springer, Heidelberg (2011)

7. Hoenicke, J., Leino, K.R.M., Podelski, A., Schäf, M., Wies, T.: Doomed program
points. Form. Methods Syst. Des. 37, 171–199 (2010)

8. Hovemeyer, D., Pugh, W.: Finding bugs is easy. In: Companion to OOPSLA 2004,
pp. 132–136. ACM, New York (2004)

Joogie: Infeasible Code Detection for Java 773

9. Jose, M., Majumdar, R.: Bug-Assist: Assisting Fault Localization in ANSI-C Pro-
grams. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
504–509. Springer, Heidelberg (2011)

10. Leino, K.R.M., Rümmer, P.: A Polymorphic Intermediate Verification Language:
Design and Logical Encoding. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010.
LNCS, vol. 6015, pp. 312–327. Springer, Heidelberg (2010)

11. Vallée-Rai, R., Hendren, L., Sundaresan, V., Lam, P., Gagnon, E., Co, P.: Soot -
a Java Optimization Framework. In: CASCON 1999, pp. 125–135 (1999)

	Joogie: Infeasible Code Detection for Java
	Introduction
	Joogie Overview
	Bytecode Translation
	Infeasible Code Detection
	Experiments
	Conclusion
	References

