
HybridSAL Relational Abstracter

Ashish Tiwari�

SRI International, Menlo Park, CA
ashish.tiwari@sri.com

Abstract. This paper describes the HybridSAL relational abstracter
– a tool for verifying continuous and hybrid dynamical systems. The
input to the tool is a model of a hybrid dynamical system and a safety
property. The output of the tool is a discrete state transition system
and a safety property. The correctness guarantee provided by the tool
is that if the output property holds for the output discrete system, then
the input property holds for the input hybrid system. The input is in
HybridSal input language and the output is in SAL syntax. The SAL
model can be verified using the SAL tool suite. This paper describes
the HybridSAL relational abstracter – the algorithms it implements, its
input, its strength and weaknesses, and its use for verification using the
SAL infinite bounded model checker and k-induction prover.

1 Introduction

A dynamical system (X,
a→) with state space X and transition relation

a→ ⊆ X×X

is a relational abstraction of another dynamical system (X,
c→) if the two systems

have the same state space and
c→ ⊆ a→. Since a relational abstraction contains all

the behaviors of the concrete system, it can be used to perform safety verification.
HybridSAL relational abstracter is a tool that computes a relational abstrac-

tion of a hybrid system as described by Sankaranarayanan and Tiwari [8]. A
hybrid system (X,→) is a dynamical system with
(a) state space X := Q × Y, where Q is a finite set and Y := R

n is the n-
dimensional real space, and
(b) transition relation →:=→cont ∪ →disc, where →disc is defined in the usual
way using guards and assignments, but →cont is defined by a system of ordinary
differential equation and a mode invariant. One of the key steps in defining the
(concrete) semantics of hybrid systems is relating a system of differential equa-
tion dy

dt = f(y) with mode invariant φ(y) to a binary relation over Rn, where y
is a n-dimensional vector of real-valued variables. Specifically, the semantics of
such a system of differential equations is defined as:

y0 →cont y1 if there is a t1 ∈ R
≥0 and a function F from [0, t1] to R

n s.t.

� Supported in part by DARPA under subcontract No. VA-DSR 21806-S4 under
prime contract No. FA8650-10-C-7075, and NSF grants CSR-0917398 and SHF:CSR-
1017483.

P. Madhusudan and S.A. Seshia (Eds.): CAV 2012, LNCS 7358, pp. 725–731, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

ashish.tiwari@sri.com

726 A. Tiwari

y0 = F (0),y1 = F (t1), and

∀t ∈ [0, t1] :

(
dF (t)

dt
= f(F (t)) ∧ φ(F (t))

)
(1)

The concrete semantics is defined using the “solution” F of the system of differ-
ential equations. As a result, it is difficult to directly work with it.

The relational abstraction of a hybrid system (X,
c→cont ∪ c→disc) is a discrete

state transition system (X,
a→) such that

a→ =
a→cont ∪ c→disc, where

c→cont ⊆
a→cont. In other words, the discrete transitions of the hybrid system are left
untouched by the relational abstraction, and only the transitions defined by
differential equations are abstracted.

The HybridSal relational abstracter tool computes such a relational abstrac-
tion for an input hybrid system. In this paper, we describe the tool, the core
algorithm implemented in the tool, and we also provide some examples.

2 Relational Abstraction of Linear Systems

Given a system of linear ordinary differential equation, dx
dt = Ax+b, we describe

the algorithm used to compute the abstract transition relation
a→ of the concrete

transition relation
c→ defined by the differential equations.

The algorithm is described in Figure 1. The input is a pair (A, b), where A is a
(n×n) matrix of rational numbers and b is a (n×1) vector of rational numbers.
The pair represents a system of differential equations dx

dt = Ax+ b. The output
is a formula φ over the variables x,x′ that represents the relational abstraction
of dx

dt = Ax + b. The key idea in the algorithm is to use the eigenstructure of
the matrix A to generate the relational abstraction.

The following proposition states the correctness of the algorithm.

Proposition 1. Given (A, b), let φ be the output of procedure linODEabs in
Figure 1. If →cont is the binary relation defining the semantics of dx

dt = Ax+ b
with mode invariant True (as defined in Equation 1), then →cont ⊆ φ.

By applying the above abstraction procedure on the dynamics of each mode of a
given hybrid system, the HybridSal relational abstracter constructs a relational
abstraction of a hybrid system. This abstract system is a purely discrete infinite
state space system that can be analyzed using infinite bounded model checking
(inf-BMC), k-induction, or abstract interpretation.

We make two important remarks here. First, the relational abstraction con-
structed by procedure linODEabs is a Boolean combination of linear and nonlinear
expressions. By default, HybridSal generates conservative linear approximations
of these nonlinear relational invariants. HybridSal generates the (more precise)
nonlinear abstraction (as described in Figure 1) when invoked using an appro-
priate command line flag. Note that most inf-BMC tools can only handle linear
constraints. However, there is significant research effort going on into extending
SMT solvers to handle nonlinear expressions. HybridSal relational abstracter and
SAL inf-BMC have been used to create benchmarks for linear and nonlinear SMT
solvers.

HybridSAL Relational Abstracter 727

linODEabs(A, b): Input: a pair (A, b), where A ∈ R
n×n, b ∈ R

n×1.
Output: a formula φ over the variables x,x′

1. identify all variables x1, . . . , xk s.t. dxi
dt

= bi where bi ∈ R ∀i
let E be {x′

i−xi

bi
| i = 1, . . . , k}

2. partition the variables x into y and z s.t. dx
dt

= Ax+ b can be rewritten as

[
dy
dt
dz
dt

]
=

[
A1 A2

0 0

] [
y
z

]
+

[
b1
b2

]

where A1 ∈ R
n1×n1 , A2 ∈ R

n1×n2 , b1 ∈ R
n1×1, b2 ∈ R

n2×1, and n = n1 + n2

3. set φ to be True
4. let c be a real left eigenvector of matrix A1 and let λ be the corresponding real

eigenvalue, that is, cTA1 = λcT

5. if λ == 0 ∧ cTA2 == 0: set E := E ∪ { cT (y′−y)

cT b1
}; else: E := E

6. if λ �= 0: define vector d and real number e as: dT = cTA2/λ and e = (cT b1 +
dTb2)/λ
let p(x) denote the expression cTy+dTz+ e and let p(x′) denote cTy′+dTz′ + e
if λ > 0: set φ := φ∧ [(p(x′) ≤ p(x) < 0)∨(p(x′) ≥ p(x) > 0)∨(p(x′) = p(x) = 0)]
if λ < 0: set φ := φ∧ [(p(x) ≤ p(x′) < 0)∨(p(x) ≥ p(x′) > 0)∨(p(x′) = p(x) = 0)]

7. if there are more than one eigenvectors corresponding to the eigenvalue λ, then
update φ or E by generalizing the above

8. repeat Steps (4)–(7) for each pair (c, λ) of left eigenvalue and eigenvector of A1

9. let c+ ıd be a complex left eigenvector of A1 corresponding to eigenvalue α+ ıβ
10. using simple linear equation solving as above, find c1, d1, e1 and e2 s.t. if p1

denotes cTy + c1
Tz + e1 and if p2 denotes dTy + c2

Tz + e2 then

d

dt
(p1) = αp1 − βp2

d

dt
(p2) = βp1 + αp2

let p′1 and p′2 denote the primed versions of p1, p2
11. if α ≤ 0: set φ := φ ∧ (p21 + p22 ≥ p′1

2
+ p′2

2
)

if α ≥ 0: set φ := φ ∧ (p21 + p22 ≤ p′1
2
+ p′2

2
)

12. repeat Steps (9)–(11) for every complex eigenvalue eigenvector pair
13. set φ := φ ∧∧

e1,e2∈E e1 = e2; return φ

Fig. 1. Algorithm implemented in HybridSal relational abstracter for computing rela-
tional abstractions of linear ordinary differential equations

Second, Procedure linODEabs can be extended to generate even more precise
nonlinear relational abstractions of linear systems. Let p1, p2, . . . , pk be k (linear
and nonlinear) expressions found by Procedure linODEabs that satisfy the equa-
tion dpi

dt = λipi. Suppose further that there is some λ0 s.t. for each i λi = niλ0

for some integer ni. Then, we can extend φ by adding the following relation to
it:

pi(x
′)njpj(x)

ni = pj(x
′)nipi(x)

nj (2)

However, since pi’s are linear or quadratic expressions, the above relations will
be highly nonlinear unless ni’s are small. So, they are not currently generated

728 A. Tiwari

by the relational abstracter. It is left for future work to see if good and useful
linear approximations of these highly nonlinear relations can be obtained.

3 The HybridSal Relational Abstracter

The HybridSal relational abstracter tool, including the sources, documentation
and examples, is freely available for download [10].

The input to the tool is a file containing a specification of a hybrid system
and safety properties. The HybridSal language naturally extends the SAL lan-
guage by providing syntax for specifying ordinary differential equations. SAL is a
guarded command language for specifying discrete state transition systems and
supports modular specifications using synchronous and asynchronous composi-
tion operators. The reader is referred to [7] for details. HybridSal inherits all the
language features of SAL. Additionally, HybridSal allows differential equations
to appear in the model as follows: if x is a real-valued variable, a differential
equation dx

dt = e can be written by assigning e to the dummy identifier xdot.
Assuming two variables x, y, the syntax is as follows:

guard(x,y) AND guard2(x,x’,y,y’) --> xdot’ = e1; ydot’ = e2

This represents the system of differential equations dx
dt = e1, dydt = e2 with mode

invariant guard(x, y). The semantics of this guarded transition is the binary rela-
tion defined in Equation 1 conjuncted with the binary relation guard2 (x, x′, y, y′).
The semantics of all other constructs in HybridSal match exactly the semantics
of their counterparts in SAL.

Figure 2 contains sketches of two examples of hybrid systems modeled in
HybridSal. The example in Figure 2(left) defines a module SimpleHS with two
real-valued variables x, y. Its dynamics are defined by dx

dt = −y+x, dy
dt = −y−x

with mode invariant y ≥ 0, and by a discrete transition with guard y ≤ 0. The
HybridSal file SimpleEx.hsal also defines two safety properties. The latter one
says that x is always non-negative. This model is analyzed by abstracting it

bin/hsal2hasal examples/SimpleEx.hsal

to create a relational abstraction in a SAL file named examples/SimpleEx.sal,
and then (bounded) model checking the SAL file

sal-inf-bmc -i -d 1 SimpleEx helper

sal-inf-bmc -i -d 1 -l helper SimpleEx correct

The above commands prove the safety property using k-induction: first we prove
a lemma, named helper, using 1-induction and then use the lemma to prove the
main theorem named correct.

The example in Figure 2(right) shows the sketch of a model of the train-gate-
controller example in HybridSal. All continuous dynamics are moved into one
module (named timeElapse). The train, gate and controllermodules define
the state machines and are pure SAL modules. The observer module is also a
pure SAL module and its job is to enforce synchronization between modules on
events. The final system is a complex composition of the base modules.

The above two examples, as well as, several other simple examples are provided
in the HybridSal distribution to help users understand the syntax and working

HybridSAL Relational Abstracter 729

SimpleEx: CONTEXT = BEGIN

SimpleHS: MODULE = BEGIN

LOCAL x,y: REAL

INITIALIZATION

x = 1; y IN {z:REAL| z <= 2}
TRANSITION

[y >= 0 AND y’ >= 0 -->

xdot’ = -y + x ;

ydot’ = -y - x

[] y <= 0 --> x’ = 1; y’ = 2]
END;

helper: LEMMA SimpleHS |-

G(0.9239*x >= 0.3827*y);

correct : THEOREM

SimpleHS |- G(x >= 0);

END

TGC: CONTEXT = BEGIN

Mode: TYPE = {s1, s2, s3, s4};
timeElapse: MODULE = BEGIN

variable declarations

INITIALIZATION x = 0; y = 0; z = 0

TRANSITION

[mode invariants -->

--> xdot’ = 1; ydot’ = 1; zdot’ = 1]
END;

train: MODULE = . . .
gate: MODULE = . . .
controller: MODULE = . . .
observer: MODULE = . . .
system: MODULE = (observer || (train []

gate [] controller [] timeElapse));

correct: THEOREM system |- G (...) ;

END

Fig. 2. Modeling hybrid systems in HybridSal: A few examples

of the relational abstracter. A notable (nontrivial) example in the distribution is
a hybrid model of an automobile’s automatic transmission from [2]. Users have
to separately download and install SAL model checkers if they wish to analyze
the output SAL files using k-induction or infinite BMC.

The HybridSal relational abstracter constructs abstractions compositionally;
i.e., it works on each mode (each system of differential equations) separately. It
just performs some simple linear algebraic manipulations and is therefore very
fast. The bottleneck step in our tool chain is the inf-BMC and k-induction step,
which is orders of magnitude slower than the abstraction step (Table 1).

4 Related Work and Conclusion

The HybridSal relational abstracter is a tool for verifying hybrid systems. The
other common tools for hybrid system verification consist of (a) tools that iter-
atively compute an overapproximation of the reachable states [5], (b) tools that
directly search for correctness certificates (such as inductive invariants or Lya-
punov function) [9], or (c) tools that compute an abstraction and then analyze
the abstraction [6,1,3]. Our relational abstraction tool falls in category (c), but
unlike all other abstraction tools, it does not abstract the state space, but ab-
stracts only the transition relation. In [8] we had defined relational abstractions
and proposed many different techniques (not all completely automated at that
time) to construct the relational abstraction.

The key benefit of relational abstraction is that it cleanly separates reasoning
on continuous dynamics (where we use control theory or systems theory) and
reasoning on discrete state transition systems (where we use formal methods.)
The former is used for constructing high quality relational abstractions and the
latter is used for verifying the abstract system.

730 A. Tiwari

Table 1. Performance on the 27 navigation benchmarks [4]: The HybridSal models, on
purpose, enumerate all modes explicitly so that it becomes clear that the time (RA) for
constructing relational abstraction grows linearly with the number of modes (modes).
Inf-bmc starts to time out (TO) at 5 minutes at depth (d) 20 for examples with ≥ 25
modes. Ideally, one wants to perform inf-bmc with depth equal to number of modes.
N100 means inf-bmc returned after 100 seconds with no counter-examples and C160
means inf-bmc returned after 160 seconds with a counter-example.

nav 1-5 6 7-8 9 10-11 12 13-15 16-18 19-21 22-24 25-27

modes 9 9 16 16 25 25 42 81 144 225 400
RA 2 2 3 3 5 5 9 20 40 80 180
d=4 N0 N0 N1 N1 N1 C1 N1 N2 N4 N6 N20
d=8 N1 C2 C100 C5 C10 C15 N20 N10 N25 N10 N60
d=12 N5 C3 TO C18 C20 C50 C150 N10 TO N40 T0
d=16 N40 C10 TO C50 C50 C180 TO* 240* TO TO TO
d=20 N100 C80 TO C160 C80 TO TO TO TO TO TO

We note that our tool is the first relational abstracter for hybrid systems and is
under active development. We hope to enhance the tool by improving precision of
the abstraction using mode invariants and other techniques, providing alternative
to inf-bmc, and handling nonlinear differential equations.

References

1. Alur, R., Dang, T., Ivančić, F.: Counter-Example Guided Predicate Abstraction of
Hybrid Systems. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619,
pp. 208–223. Springer, Heidelberg (2003)

2. Chutinan, A., Butts, K.R.: SmartVehicle baseline report: Dynamic analysis of hy-
brid system models for design validation. Ford Motor Co., Tech. report, Open
Experimental Platform for DARPA MoBIES, Contract F33615-00-C-1698 (2002)

3. Clarke, E., Fehnker, A., Han, Z., Krogh, B.H., Stursberg, O., Theobald, M.: Ver-
ification of Hybrid Systems Based on Counterexample-Guided Abstraction Re-
finement. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp.
192–207. Springer, Heidelberg (2003)

4. Fehnker, A., Ivančić, F.: Benchmarks for Hybrid Systems Verification. In: Alur, R.,
Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 326–341. Springer, Heidel-
berg (2004)

5. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable Verification of Hybrid Systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395.
Springer, Heidelberg (2011)

6. Hybridsal: Modeling and abstracting hybrid systems,
http://www.csl.sri.com/users/tiwari/HybridSalDoc.ps

7. The SAL intermediate language, Computer Science Laboratory, SRI International,
Menlo Park, CA (2003), http://sal.csl.sri.com/

http://www.csl.sri.com/users/tiwari/HybridSalDoc.ps
http://sal.csl.sri.com/

HybridSAL Relational Abstracter 731

8. Sankaranarayanan, S., Tiwari, A.: Relational Abstractions for Continuous and
Hybrid Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 686–702. Springer, Heidelberg (2011)

9. Sturm, T., Tiwari, A.: Verification and synthesis using real quantifier elimination.
In: ISSAC 2011, pp. 329–336 (2011)

10. Tiwari, A.: Hybridsal relational abstracter,
http://www.csl.sri.com/~tiwari/relational-abstraction/

http://www.csl.sri.com/~tiwari/relational-abstraction/

	HybridSAL Relational Abstracter
	Introduction
	Relational Abstraction of Linear Systems
	The HybridSal Relational Abstracter
	Related Work and Conclusion
	References

