
An Axiomatic Memory Model

for POWER Multiprocessors

Sela Mador-Haim1, Luc Maranget2, Susmit Sarkar3, Kayvan Memarian3,
Jade Alglave4, Scott Owens3, Rajeev Alur1, Milo M.K. Martin1,

Peter Sewell3, and Derek Williams5

1 University of Pennsylvania
2 INRIA Rocquencourt-Paris
3 University of Cambridge

4 University of Oxford
5 IBM Austin

Abstract. The growing complexity of hardware optimizations employed
by multiprocessors leads to subtle distinctions among allowed and dis-
allowed behaviors, posing challenges in specifying their memory models
formally and accurately, and in understanding and analyzing the behav-
ior of concurrent software. This complexity is particularly evident in the
IBMR© Power ArchitectureR©, for which a faithful specification was pub-
lished only in 2011 using an operational style. In this paper we present
an equivalent axiomatic specification, which is more abstract and con-
cise. Although not officially sanctioned by the vendor, our results indicate
that this axiomatic specification provides a reasonable basis for reasoning
about current IBMR© POWERR© multiprocessors. We establish the equiva-
lence of the axiomatic and operational specifications using both manual
proof and extensive testing. To demonstrate that the constraint-based
style of axiomatic specification is more amenable to computer-aided ver-
ification, we develop a SAT-based tool for evaluating possible outcomes
of multi-threaded test programs, and we show that this tool is signifi-
cantly more efficient than a tool based on an operational specification.

1 Introduction

Modern multiprocessors employ aggressive hardware optimizations to provide
high performance and reduce energy consumption, which leads to subtle distinc-
tions between the allowed and disallowed observable behaviors of multithreaded
software. Reliable development and verification of multithreaded software (in-
cluding system libraries and optimizing compilers) and multicore hardware sys-
tems requires understanding these subtle distinctions, which in turn demands
accurate and formal models.

The IBM R© Power Architecture R©, which has highly relaxed and complex mem-
ory behavior, has proved to be particularly challenging in this respect. For ex-
ample, IBM R© POWER R© is non-store-atomic, allowing two writes to different
locations to be observed in different orders by different threads; these order vari-
ations are constrained by coherence, various dependencies among instructions,

P. Madhusudan and S.A. Seshia (Eds.): CAV 2012, LNCS 7358, pp. 495–512, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

496 S. Mador-Haim et al.

and several barrier instructions, which interact with each other in an intricate
way. The ARM architecture memory ordering is broadly similar.

Several previous attempts to define POWER memory consistency mod-
els [CSB93, SF95, Gha95, AAS03, AFI+09, AMSS10] did not capture these sub-
tleties correctly. A faithful specification for the current Power Architecture was
published only in 2011 [SSA+11] using an operational style: a non-deterministic
abstract machine with explicit out-of-order and speculative execution and an
abstract coherence-by-fiat storage subsystem. This specification was validated
both through extensive discussions with IBM staff and comprehensive testing
of the hardware. The operational specification has recently been extended to
support the POWER load-reserve/store-conditional instructions [SMO+12].

This paper presents an alternative memory model specification for POWER
using an axiomatic style, which is significantly more abstract and concise than
the previously published operational model and therefore better suited for some
formal analysis tools. One of the main challenges in specifying an axiomatic
model for POWER is identifying the right level of abstraction. Our goal was to
define a specification that is detailed enough to express POWER’s complexity,
capturing the distinctions between allowed and disallowed behaviors, yet abstract
enough to be concise and to enable understanding and analysis.

Our approach splits instruction instances into multiple abstract events and
defines a happens-before relation between these events using a set of constraints.
The specification presented here handles memory loads and stores; address,
data, and control dependencies; the isync instruction, and the lightweight and
heavyweight memory barrier instructions lwsync and sync. The specification does
not include load-reserve and store-conditional instructions, mixed-size accesses,
or the eieio memory barrier.

We show that this specification is equivalent to the existing POWER op-
erational specification (permitting the same set of allowed behaviors for any
concurrent POWER program) in two ways. First, we perform extensive testing
by checking that the models give the same allowed behaviors for a large suite
of tests; this uses tools derived automatically from the definitive mathemati-
cal statements of the two specifications, expressed in Lem [OBZNS11]. We also
check that the axiomatic specification is consistent with the experimentally ob-
served behavior of current IBM R© POWER6 R©/ IBM R© POWER7 R© hardware. We
then provide a manual proof of the equivalence of the operational and axiomatic
specifications, using executable mappings between abstract machine traces and
axiomatic candidate executions, both defined in Lem. We have checked their cor-
rectness empirically on a small number of tests, which was useful in developing
the proof.

Finally, we demonstrate that this abstract constraint-based specification is
useful for computer-aided verification. The testing described above shows that
it can be used to determine the outcomes of multi-threaded test programs more
efficiently than the operational model. This efficiency enables a tool to calculate
the allowed outcomes of 915 tests for which the current implementation of the
operational tool [SSA+11] does not terminate in reasonable time and space.

An Axiomatic Memory Model for POWER Multiprocessors 497

Test MP: Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

po
rf

po

rf

Test WRC+data+addr: Allowed

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: R[x]=0

rf
data

rf
addr

rf

Test PPOCA: Allowed

Thread 0

a: W[z]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: W[x]=1

e: R[x]=1

f: R[z]=0

sync
rf

ctrl

rf

addr

rf

Test IRIW+addrs: Allowed

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: R[y]=0

Thread 2

d: W[y]=1 e: R[y]=1

Thread 3

f: R[x]=0

rf
addr

rf
addr

rf rf

Test 2+2W+lwsyncs: Forbidden

Thread 0

a: W[x]=1

b: W[y]=2

c: W[y]=1

Thread 1

d: W[x]=2

lwsync lwsync

coco

Test Z6.3+lwsync+lwsync+addr: Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: W[y]=2

Thread 1

d: W[z]=1

e: R[z]=1

Thread 2

f: R[x]=0

lwsync
co

lwsync
rf

addr

rf

Fig. 1. Examples illustrating the POWER memory model

Further, the axiomatic specification lends itself to a SAT/SMT-solving approach:
a hand-coded translation of the axiomatic model using minisat [ES05] reduces
execution time for the full test suite radically, from 82 CPU-days to 3 hours.

The full definitions of our specifications, test suite, test results, and proof are
available in on-line supplementary material [Sup].

2 Background: The POWER Memory Model

This section highlights some of the subtleties of the POWER memory model,
and then overviews its abstract-machine semantics, referring to Sarkar et
al. [SSA+11, SMO+12] for a complete description.

2.1 Subtleties of the POWER Memory Model

Figure 1 shows example candidate executions for several concurrent litmus tests,
MP, WRC+data+addrs, etc. (each test is defined by its assembly source code
and its initial and final register and memory state, which select a particular
execution). For each, the diagram shows a graph with nodes for memory reads
or writes, each with a label (a, b, . . .), location (x, y, . . .), and value (0, 1, . . .).
The edges indicate program order (po), data dependencies from a read to a write
whose value was calculated based on the value read (data), address dependencies
from a read to a read or write whose address was calculated based on the
value read (addr), control dependencies from a read to instructions following
a conditional branch whose condition involved the value read (ctrl), and lwsync

498 S. Mador-Haim et al.

and sync barriers. The reads-from edges (rf) go from a write (or a dot indicating
the initial state) to any read that reads from this write or initial value. Coherence
(co) edges give, for each location, a total order over the writes to that location.
Register-only and branch instructions and are elided.

Relaxed memory behavior in POWER arises both from out-of-order and spec-
ulative execution within a hardware thread and from the ways in which writes
and barriers can be propagated from their originating thread to other threads.
For writes and reads to different addresses, absent any barriers or dependencies,
the behavior is unconstrained. The message-passing MP example illustrates this
behavior: the writes a and b might commit in either order, then propagate to
Thread 1 in either order, and reads c and d can be satisfied in either order. Any of
these effects can give rise to the given execution. To prevent them, a programmer
could add an lwsync or sync barrier between the writes (making their commit or-
der and their propagation order respect program order) and either add a barrier
between the reads or make the second read address-dependent on the first (per-
haps using the result of the first read xor’d with itself to form the address of the
second read, introducing an artificial dependency) thus ensuring that it cannot
be satisfied until the first read is satisfied. For example, test MP+lwsync+addr (a
variation of MP with a lwsync edge in one thread and an addr edge in the other)
is forbidden. A control dependency alone does not prevent reads being satisfied
speculatively; the analogous MP+lwsync+ctrl is allowed. But adding an isync
instruction after a control dependency does: MP+lwsync+ctrlisync is forbidden.

Dependencies have mostly local effects, as shown by the WRC+data+addr
variant of MP, where the facts that b reads from a, and that c is dependent on
b, are not sufficient to enforce ordering of a and c as far as Thread 2 is concerned.
To enforce that ordering, one has to replace the data dependency by an lwsync
or sync barrier. This example relies on the so-called cumulative property of the
barriers, which orders all writes that have propagated to the thread of the barrier
before all writes that occur later in program order, as far as any other thread is
concerned.

The independent-reads-of-independent-writes IRIW+addrs example shows
that writes to different addresses can be propagated to different threads (here
Threads 1 and 3) in different orders; POWER is not store-atomic, and thread-
local reorderings cannot explain all its behaviors. Inserting sync instructions be-
tween the load instructions on Thread 1 and Thread 3 will rule out this behavior.
Merely adding lwsyncs does not suffice.

Returning to thread-local reordering, the PPOCA variant of MP shows a
subtlety: writes are not performed speculatively as far as other threads are
concerned, but here d, e, and f can be locally performed speculatively, before c
has been satisfied, making this execution allowed.

The two final examples illustrate the interplay between the coherence order
and barriers. In test Z6.3+lwsync+lwsync+addr (blw-w-006 in [SSA+11]), even
though c is coherence-ordered after b (and so cannot be seen before b by any
thread), the lwsync on Thread 1 does not force a to propagate to Thread 2
before d is (in the terminology of the architecture, the coherence edge does not

An Axiomatic Memory Model for POWER Multiprocessors 499

bring b into the Group A of the Thread 1 lwsync). This test outcome is therefore
allowed. On the other hand, some combinations of barriers and coherence orders
are forbidden. In 2+2W+lwsyncs, for example, there is a cycle among the writes
of coherence and lwsync edges; such an execution is forbidden.

2.2 The Operational Specification

The operational specification of Sarkar et al. [SSA+11, SMO+12] accounts for all
these behaviors (and further subtleties that we do not describe here) with an ab-
stract machine consisting of a set of threads composed with a storage subsystem,
communicating by exchanging messages for write requests, read requests, read
responses, barrier requests, and barrier acknowledgments (for sync). Threads are
modeled with explicit out-of-order and speculative execution: the state of each
thread consists of a tree of in-flight and committed instructions with information
about the state of each instruction (read values, register values etc.) and a set
of unacknowledged syncs. The thread model can perform various types of tran-
sitions. Roughly speaking (without detailing all the transition preconditions), a
thread can:

– Fetch an instruction, including speculative fetches past a branch.
– Satisfy a read by reading values from the storage subsystem or by forwarding

a value from an in-flight write. Reads can be performed speculatively, out-
of-order, and (before they are committed) can be restarted if necessary.

– Perform an internal computation and write registers.
– Commit an instruction (sending write and barrier requests to the storage

subsystem).

The state of the storage subsystem consists of a set of (1) writes that have been
committed by a thread, (2) for each thread, a list of the writes and barriers
propagated to that thread, (3) the current constraint on the coherence graph
as a partial order between writes to the same location, with an identified linear
prefix for each location of those that have reached coherence point, and (4) a set
of unacknowledged syncs. The storage subsystem can:

– Accept a barrier or write request and update its state accordingly.
– Respond to a read request.
– Perform a partial coherence commit, non-deterministically adding to the

coherence graph an edge between two as-yet-unrelated writes to the same
location.

– Mark that a write reached a coherence point, an internal transition after
which the coherence predecessors of the write are linearly ordered and fixed.

– Propagate a write or a barrier to a thread, if all the writes and barriers that
are required to propagate before it have been propagated to this thread.
A write can only be propagated if it is coherence-after all writes that were
propagated to a thread, but the abstract machine does not require all writes
that are coherence-before it have been propagated, thus it allows some writes,
which might never be propagated to some of the threads, to be skipped.

– Send a sync acknowledgment to the issuing thread, when that sync has been
propagated to all other threads.

500 S. Mador-Haim et al.

3 The Axiomatic Specification

This section introduces our new specification of the POWER memory model
in an axiomatic style. We begin by defining the semantics of a multithreaded
program as a set of axiomatic candidate executions. We then give an overview of
the axiomatic specification, which defines whether a given axiomatic candidate
execution is consistent with the model, show how the examples in Section 2 are
explained using this model, and finally provide the formal specification of the
model.

3.1 Axiomatic Candidate Executions

We adopt a two-step semantics, as is usual in axiomatic memory models, that
largely separates the instruction execution semantics from the memory model
semantics by handling each individually.

We begin with a multithreaded POWER program, or litmus test, in which
each thread consists of a sequence of instructions. Such a program may non-
deterministically display many different behaviors. For example: reads may read
from different writes, conditional branches may be taken or not taken, and
different threads may write to the same address in a different order. During the
execution of a program, any given static instruction may be iterated multiple
times (for example, due to looping). We refer to such an instance of the dynamic
execution of an instruction as an instruction instance.

To account for the differing ways a given litmus test can execute, we define the
semantics of a multithreaded program as set of axiomatic candidate executions.
Informally, an axiomatic candidate execution consists of (1) a set of axiomatic
instruction instances, which are instruction instances annotated with additional
information as described below, and (2) a set of relations among these axiomatic
instruction instances (in what follows, we will refer to instruction instances or
axiomatic instruction instances for load and store instructions as reads and
writes, respectively). An axiomatic candidate execution represents a conceivable
execution of the program and accounts for the effects of a choice of branch
direction for each branch instruction in the program, a possible coherence order
choice, and a reads-from mapping showing which write a given read reads from.

An axiomatic instruction instance is an instruction instance of the program
annotated with a thread id and some additional information based on instruction
type. Axiomatic instruction instances are defined only for reads, writes, memory
barriers (sync, lwsync, isync), and branches. Reads are annotated with the con-
crete value read from memory, while writes are annotated with the value written
to memory. Barriers and branches have no additional information. Other instruc-
tions may affect dependency relationships in the axiomatic candidate execution,
but are otherwise ignored by the model.

An axiomatic candidate execution consists of a set of axiomatic instruc-
tion instances, and the following relations between those axiomatic instruction
instances:

An Axiomatic Memory Model for POWER Multiprocessors 501

– A program order relation po, providing a total order between axiomatic
instruction instances in each thread.

– A reads-from relation rf , relating writes to reads to the same address.
– A coherence relation co, providing, for each address, a strict total order

between all writes to that address.

– A data dependency relation from reads to those writes whose value depends
on the value read.

– An address dependency relation from reads to those reads or writes whose
address depends on the value read.

– A control dependency relation from each read to all writes following a con-
ditional branch that depends on the value read.

For each candidate execution of a given program, the following conditions must
hold: (1) for each thread, the sequence of instruction instances ordered by po
agrees with the local thread semantics of that program, when running alone with
the same read values; (2) for each read and write related by rf , the read reads
the value written by the write; and (3) if a read is not associated with any write
in rf , it reads the initial value.

As an example, consider the test MP+lwsync+ctrl, a variation of MP with an
lwsync and a control dependency. The POWER program for this test is listed
below:

Thread 0 Thread 1

(a) li r1,1 (f) lwz r1,0(r2)

(b) stw r1,0(r2) (g) cmpw r1,r1

(c) lwsync (h) beq LC00

(d) li r3,1 LC00:

(e) stw r3,0(r4) (i) lwz r3,0(r4)

Instruction instances are not defined for register-only instructions. Therefore,
there are no instances of instructions a, d and g in this example. The conditional
branch h in the program may be either taken or not taken, but in this case
it jumps to i, so in both cases the axiomatic candidate execution contains a
single instance for each of the instructions: {b,c,e,f,h,i}. The program order
po in all candidate executions of this program is the transitive closure of the
set {(b,c),(c,e),(f,h),(h,i)} and the control dependency is {(f,i)}. The
coherence order co is empty in this example because each write writes to a
different address. Each of the two reads in Thread 1 may either read from the
matching write in Thread 0 or from the initial value. Hence, there are four
possible rf relations, and four axiomatic candidate executions.

3.2 Overview of the Specification

The axiomatic specification defines whether a given axiomatic candidate exe-
cution is consistent or not. This section provides an overview of our axiomatic
POWER memory specification (formally described in Section 3.4).

502 S. Mador-Haim et al.

For each axiomatic candidate execution, we construct a set of events that
are associated with the axiomatic instruction instances, together with several
relations over those events. These events and relations (as described below)
capture the subtleties of the POWER memory model, including speculative out-
of-order execution and non-atomic stores. The events and relations determine
whether an axiomatic candidate execution is consistent. In more detail:

Uniprocessor Correctness Condition. The relations rf and co must not
violate uniprocessor execution order, in the following sense: a read is allowed
to read a local write only if that write precedes the read in program order,
that write is the most recent (w.r.t. program order) write to that address in
that thread, and there is no program-order-intervening read that reads from a
different write (from another thread). Based on rf and co, we define fr as the
relation from any read to all writes which are coherence-after the write that the
read reads from. We define the communication relation comm as the union of
rf , fr and co. The uniprocessor condition requires that the transitive closure of
comm does not contain any edge which goes against program order.

Local Reordering. The effects of out-of-order and speculative execution in
POWER are observable, as shown by the MP variations in Fig. 1 (including
PPOCA). Reads can be satisfied speculatively and speculative writes can be for-
warded to local reads, although not to other threads. The specification captures
this by defining satisfy read events, initiate write events, and commit events for
both reads and writes: a read is satisfied when it binds its value, and committed
when it cannot be restarted and that value is fixed; a write is initiated when its ad-
dress and value can be (perhaps speculatively) calculated and it can be propagated
to thread-local reads and committed when it can propagate to other threads.

Non-atomic Stores. Writes in POWER need not be propagated to all other
processors in an atomic fashion, as illustrated by WRC+data+addr (the write
to x propagates to Thread 1 before propagating to Thread 2). As in the op-
erational model (and previous axiomatic models [Int02, YGLS03]) to capture
this behavior, we split each write into multiple propagation events. In our model
each thread other than its own has a propagation event, whereas in the oper-
ational model some write propagations can be superseded by coherence-later
propagations. A write propagating to a thread makes it eligible to be read by
that thread.

Barriers and Non-atomic Stores. The semantics of the sync and lwsync
barriers in POWER are quite subtle. As seen in WRC+lwsync+addr, lwsync has a
cumulative semantics, but adding lwsync between every two instructions does not
restore sequential consistency, as shown by IRIW+lwsyncs. As in the operational
model, we capture this behavior by splitting barriers into multiple propagation
events, analogous to those for writes, with the proper ordering rules for these. A
barrier can propagate to a thread when all the writes in the cumulative Group
A of the barrier have propagated to that thread.

Barriers and Coherence. As shown by Z6.3+lwsync+lwsync+addr, coherence
relationships between writes do not necessarily bring them into the cumulative

An Axiomatic Memory Model for POWER Multiprocessors 503

Group A of lwsync barriers (or for that matter of sync barriers). We capture this
behavior by allowing writes that are not read by a certain thread to propagate
to that thread later than coherence-after writes. This weakened semantics for
coherence must be handled with caution, and additional constraints are required
to handle certain combinations of barriers and coherence edges, as shown by
example 2+2W+lwsyncs (in Fig. 1).

To summarize, the specification uses the notion of events with possibly mul-
tiple events corresponding to an axiomatic instruction instance to capture these
behaviors. There are four types of events:

1. Satisfy events. There is a single read satisfy event sat(x) for each read
axiomatic instruction instance x, representing the point at which it takes
its value. Unlike in the operational model (in which a read might be satisfied
multiple times on speculative paths), there is exactly one satisfy event for
each read axiomatic instruction instance.

2. Initiate events. Each write has an initiate event ini(x), the point at which
its address and value are computed, perhaps speculatively, and it becomes
ready to be forwarded to local reads.

3. Commit events. Each axiomatic instruction instance x of any type has a
commit event com(x). Reads and writes can commit only after they are
satisfied/initiated. Writes and barriers can propagate to other threads only
after they are committed.

4. Propagation events. For each write or barrier instruction x and for each
thread t which is not the originating thread of x, there is a propagation
event ppt(x), which is the point at which x propagates to thread t.

The main part of our axiomatic model is defined using evord , a happens-before
relation between events, which must be acyclic for consistent executions. Given
an axiomatic candidate execution, evord is uniquely defined using the rules listed
below.

Intra-instruction Order Edges. Our specification provides two ordering rules
that relate events for the same instruction: events-before-commit states that reads
must be satisfied and writes must be initiated before they commit; propagate-
after-commit states that an instruction can propagate to other threads only after
it is committed.

Local Order Edges. The local-order rules for evord relate sat , ini and com
events within each thread. For a pair of events x and y from program-ordered
axiomatic instruction instances (x before y), these events must occur in program
order and cannot be reordered in the following cases:

– x is a read satisfy event and y is a read satisfy or write initiate event of an
instruction with either an address or data dependency on x.

– x and y are read satisfy events separated by lwsync in program order.
– x and y are read or write commit events of instructions that have either

data, address, or control dependency between them.
– x and y are read or write commit events for instructions accessing the same

address.

504 S. Mador-Haim et al.

– x and y are commit events and at least one of x and y is a barrier.

– x is a conditional branch commit event and y is a commit event.

– x and y are read or write commit events and there is a program-order-
intervening instruction whose address depends on x.

– x is a read commit event, y is a read satisfy event, and both reads accessing
the same address but reading from different non-local writes.

– x is a commit event of sync or isync and y is a read satisfy event.

Communication Order Edges. Communication rules order reads and writes
to the same address from different threads, based on the relations rf , co, and
fr . The read-from rule ensures that a read is satisfied only after the write it
reads from propagates to the reading thread. The coherence-order rule states
that for a write w, any write w′ that is coherence-after w can propagate to w’s
thread only after w commits. The from-read rule defines which writes can be
observed by each read. It states that if a read r reads from w, any write w′ that
is coherence-after w can propagate only to the thread of r after r is satisfied.

One implication of the above definition for the from-read rule is that the
reads in each thread can only observe writes in coherence order, even if they
propagate out-of coherence order. For example, if w1 is coherence-before w2,
and w1 propagates to t after w2, any program-order-later read in t would still
read from w2 and not w1.

Intra-thread Communication Edges. If a read receives a value written by
a local write, this read must be satisfied after the write is initiated. This edge
is the only type of intra-thread communication edge in this specification. There
are no evord edges arising from fr or co edges between events for axiomatic
instruction instances in the same thread.

Before Edges (Barrier Cumulativity). In the operational specification, any
write reaching thread t before a barrier is committed in t must (unless super-
seded by a coherence successor) be propagated to any other thread before that
barrier is propagated, as shown in the WRC test. Our axiomatic specification
expresses the same cumulative property using a before-edge rule, stating that if
a write propagates to a thread before a barrier commits or vice versa (a barrier
propagates before a write commits), then the propagation events for these two
instructions must have the same order between them in any other thread.

Before edges apply both to events associated with instructions from the same
thread and instructions from different threads. For same-thread instructions,
they require writes separated by a barrier to propagate to other threads in
program order. For instructions from different threads, their effect is enforcement
of a global propagation order between writes and barriers that are related by
communication edges.

After Edges (Sync Total Order). Heavyweight syncs are totally ordered.
A sync may commit only after all previously committed syncs in the program
have finished propagating to all threads. We enforce this using the after-edge rule,
which states that if a sync b propagated to a thread after committing a local sync
a, then any event associated with b must be ordered after any event associated

An Axiomatic Memory Model for POWER Multiprocessors 505

with a. Note that this is different from (and simpler than) the operational model,
where sync propagations can overlap.

Extended Coherence Order. The extended coherence order, cord , is a rela-
tion between axiomatic instruction instances that includes co, as well as edges
from each write w to each barrier b that commit after w propagates to b’s
thread, and from each barrier b to each write w that commits after b propa-
gates to w’s thread. Extended coherence must be acyclic, which captures the
coherence/lwsync properties of examples such as 2+2W+lwsyncs.

3.3 Examples

We now discuss how the examples in Fig.1 are explained by this model, princi-
pally by looking at the evord relation between the events in each litmus test.

MP. In this example, there is a read-from edge from the pp1 of b to the sat
of c, and a from-read edge from the sat of d to the pp1 of a. Without any
additional dependencies or barriers, there are no additional edges and no cycles.
Adding a dependency between the two reads on Thread 1 would add a local
edge between the sat events of these reads. Adding an lwsync between the writes
in Thread 0 would add local edges from a to the barrier to b and before edges
between the pp1 events of these three instruction instances, forming the cycle:
pp1(a) → pp1(b) → sat(c) → sat(d) → pp1(a), making this forbidden.

WRC+lwsync+addr. The evord for this test is shown on the right.

Test WRC+lwsync+addr Candidate 4

Thread 0

a:W x=1

Thread 1

b:R x=1

c:Lwsync

d:W y=1

Thread 2

e:R y=1

f:R x=0

ini

com com

pp 1 pp 2

pp 0

sat

com

pp 2

com

com

pp 0

ini

pp 2

sat

sat

com

comm

comm

local

before

before

comm

local

local

before

before

before

before

local

In this example, a is read by
b, leading to a communication
edge between them. As a re-
sult, the pp1 event of a pre-
cedes the lwsync barrier, trig-
gering a before-edge between
them and forcing a to prop-
agate before c in Thread 2.
The result is a cycle: pp2(a) →
pp2(c) → pp2(d) → sat(e) →
sat(f) → pp2(a). Without the
barrier, there would be no be-
fore edges connecting the prop-
agation events of a and c. These
two writes would be allowed to
propagate to Thread 2 in any
order, hence this example would
be allowed.

IRIW+addrs. In this ex-
ample, without barriers there
would be no edges between the
propagation events of a and d

506 S. Mador-Haim et al.

and therefore they could be observed in any order by Threads 1 and 3. Adding
lwsync between the reads in this example adds before edges from a to the bar-
rier in Thread 1 and from d to the barrier in Thread 3, but there are no edges
connecting the propagation events of the two writes yet. Replacing lwsync with
a heavy-weight sync, however, would add after edges from the propagation event
of the sync in Thread 1 to the sync in Thread 3, as well as as after edges from
the sync in Thread 3 to Thread 1, and therefore there would be a cycle.

PPOCA. In this example, there are local edges between the com events of
Thread 1. For the sat and ini events, there are edges between d and e (intra-
thread communication) and between e and f (local), but control dependency
does not add edges between the satisfying c to the initiate of d, and hence there
is no cycle.

Z6.3+lwsync+lwsync+addr. In this test, the only communication edge con-
necting Thread 0 and Thread 1 is from the com of b to pp0 of c (due to coher-
ence). This edge does not generate any before edges because it does not order
any propagation event of Thread 0 before the barrier in Thread 1. Therefore,
there are no edges between the propagation events of a and d, and hence there
is no cycle.

2+2W+lwsyncs. In this example, there are before edges between a and b and
between c and d, due to the barriers in these threads. Furthermore, the coherence
order between b and c creates a communication edge between the com of b to
the pp0 of c (and similarly for d and a). These edges do not form a cycle in
evord . However, the before-edges and coherence relation form a cycle in cord ,
and therefore this test is forbidden.

3.4 Formal Specification

The formal specification of the model, automatically typeset from the
Lem [OBZNS11] definition, is shown in Figure 2. The following functions de-
fine the edges of evord : local order defines which pairs of instructions form
the local edges; the events before commit and propagate after commit order the
events of the same instruction; communication defines the communication edges;
read from initiated is the intra-thread communication edges; fbefore defines
which instructions are ordered by before-edges, and before evord closure defines
the actual edges; similarly, fafter and after evord closure define the after edges.
The evord relation itself is defined as the least fixed point of evord more, starting
from evord base. Also listed are the uniprocessor correctness rule, uniproc, and
the cord relation, cord of.

4 Experimental Validation

We establish confidence in our axiomatic specification experimentally, by check-
ing that it gives the same allowed and disallowed behaviors as the operational
model [SSA+11], using a large suite of tests designed to expose a wide variety

An Axiomatic Memory Model for POWER Multiprocessors 507

let uniproc ace =
(* Uniprocessor correctness condition *)
let comm = communication of ace in
let commr = transitive closure of comm in
(∀(x , y)∈commr . ¬ ((y, x) ∈ ace.ace po))

let local order ace events =
(* local order rules: do not reorder if true *)
{(ex , ey)|∀ex∈events, ey∈events |
(instruction of ex , instruction of ey) ∈ ace.ace po ∧ (
(is sat ex ∧ is ini ey ∧ (instruction of ex , instruction of ey) ∈ ace.ace datadep) ∨
(is sat ex ∧ (is ini ey ∨ is sat ey) ∧ (instruction of ex , instruction of ey) ∈ ace.ace addrdep) ∨
(is com ex ∧ is com ey ∧ same addr ex ey) ∨
(is com ex ∧ is com ey ∧ (instruction of ex , instruction of ey) ∈ ace.ace datadep) ∨
(is com ex ∧ is com ey ∧ (instruction of ex , instruction of ey) ∈ ace.ace addrdep) ∨
(is com ex ∧ is com ey ∧ (instruction of ex , instruction of ey) ∈ ace.ace ctrldep) ∨
(is com ex ∧ is com ey ∧ is fence ex) ∨
(is com ex ∧ is com ey ∧ is fence ey) ∨
(is branch ex ∧ is com ey) ∨
(is com ex ∧ is com ey ∧ (∃ez∈events. (instruction of ex , instruction of ez) ∈ ace.ace po ∧

(instruction of ez , instruction of ey) ∈ ace.ace po ∧ (instruction of ex , instruction of ez) ∈ ace.ace addrdep)) ∨
(is com ex ∧ is read ex ∧ is read ext ace ey ∧

same addr ex ey ∧ ¬ (same read from ace ex ey)) ∨
(is lwsync ex ∧ is read satisfy ey) ∨
(is com ex ∧ is read ex ∧ is read satisfy ey ∧ (∃ez∈events. (instruction of ex , instruction of ez) ∈ ace.ace po ∧
(instruction of ez , instruction of ey) ∈ ace.ace po ∧ is lwsync ez)) ∨

(is com ex ∧ (is sync ex ∨ is isync ex) ∧ is read satisfy ey))}
let events before commit ace events =
{(ex , ey)|∀ex∈events, ey∈events | ((is ini ex ∨ is sat ex) ∧ is com ey ∧ instruction of ex = instruction of ey)}
let propagate after commit ace events =
{(ex , ey)|∀ex∈events, ey∈events | (is com ex ∧ is propagate ey ∧ instruction of ex = instruction of ey)}

let communication ace events comm =
{(ex , ey)|∀ex∈events, ey∈events |
(instruction of ex , instruction of ey) ∈ comm ∧ (
(is read satisfy ex ∧ is propagate ey ∧ propagation thread of ey = Some (thread of ex)) ∨
(is propagate ex ∧ is read satisfy ey ∧ propagation thread of ex = Some (thread of ey)) ∨
(is write commit ex ∧ is propagate ey ∧ propagation thread of ey = Some (thread of ex)))}

let read from initiated ace events =
{(ex , ey)|∀ex∈events, ey∈events |

(is ini ex ∧ is sat ey ∧ thread of ex = thread of ey ∧ (instruction of ex , instruction of ey) ∈ ace.ace rf)}
let fbefore ace events ex ey =
(is write ex ∧ is fence ey) ∨ (is fence ex ∧ is write ey)

let fbefore evord closure ace events evord0 =
{(ex , ey)|∀ex∈events, ey∈events | (∃tid∈ace.ace threads. relevant to thread ex tid ∧ relevant to thread ey tid) ∧
fbefore ace events ex ey ∧
(∃(ex1, ey1)∈evord0.

relevant to thread ex1 (thread of ey) ∧ relevant to thread ey1 (thread of ey) ∧
instruction of ex1 = instruction of ex ∧ instruction of ey1 = instruction of ey)}

let fafter ace events ex ey =
(is sync ex ∧ is sync ey ∧ ex < > ey)

let fafter evord closure ace events evord0 =
{(ex , ey)|∀ex∈events, ey∈events |
(∃tid∈ace.ace threads. relevant to thread ex tid ∧ relevant to thread ey tid) ∧
fafter ace events ex ey ∧
(∃(ex1, ey1)∈evord0. relevant to thread ex1 (thread of ex) ∧
instruction of ex1 = instruction of ex ∧ instruction of ey1 = instruction of ey)}

let evord base ace events comm =
local order ace events ∪
read from initiated ace events ∪
events before commit ace events ∪
propagate after commit ace events ∪
communication ace events comm

let evord more ace events evord0 =
fbefore evord closure ace events evord0 ∪
fafter evord closure ace events evord0 ∪
{(ex , ez)|∀(ex , ey)∈evord0, (ey

′

, ez)∈evord0 | ey = ey
′

}
let cord of ace events evord =

let fbefore cord = fbefore cord of ace events evord in
fbefore cord ∪ ace.ace co

Fig. 2. Formal specification of POWER in Lem

508 S. Mador-Haim et al.

of subtle behaviors. We also check that the model is sound with respect to the
observable behavior of current POWER hardware.

Implementations. For the operational specification, we use the ppcmem

tool [SSA+11], which takes a test and finds all possible execution paths of the
abstract machine. For the axiomatic specification, we adapt the ppcmem front
end to (straightforwardly) enumerate the axiomatic candidate executions of a
test, then filter those by checking whether they are allowed by the definition of
the axiomatic model. The kernel for both tools is OCaml code automatically
generated from the Lem definition of the model, reducing the possibility for
error.

Test Suite. Our test suite comprises 4480 tests, including the tests
used to validate the operational model against hardware [SSA+11].
It includes the VAR3 systematic variations of various families of tests
(http://www.cl.cam.ac.uk/users/pes20/ppc-supplemental/test6.pdf);
new systematic variations of the basic MP, S and LB tests, enumerating se-
quences of intra-thread relations from one memory access to the next, including
address dependencies, data dependencies, control dependencies and identity of
addresses. It also includes the tests of the PHAT experiment, used to validate
the model of [AMSS10]; and hand-written tests by ourselves and from the
literature. Many were generated with our diy tool suite from concise descriptions
of violations of sequential consistency [AMSS11]. The tests and detailed results
are available in the on-line supplementary material.

Results: Comparing the Axiomatic and Operational Models. We ran
all tests with the implementations of both models. The preexisting tool for
evaluating the operational model gives a verdict for only 3565 of the tests; the
remaining 915 tests fail to complete by timing out or reaching memory limits.
In contrast, the implementation of our axiomatic model gives a verdict for all
4480 of the tests. For all those for which the operational implementation gives
a verdict, the operational and axiomatic specifications agree exactly.

Results: Comparing the Model to Hardware Implementations. We
also used the test suite to compare the behavior of the axiomatic specifi-
cation and the behavior of POWER6 and POWER7 hardware implementa-
tions, as determined by extensive experimental data from the litmus tool
(http://diy.inria.fr/doc/litmus.html). In all cases, all the hardware-
observable behaviors are allowed by the axiomatic model. As expected, the model
allows behaviors not observed in current hardware implementations, because our
models, following the POWER architectural intent, are more relaxed in some
ways than the behavior of any current implementation [SSA+11]. This result
covers the 915 tests on which the operational model timed out, which gives evi-
dence that the axiomatic model is not over-fitted to just the tests for which the
operational result was known.

http://www.cl.cam.ac.uk/users/pes20/ppc-supplemental/test6.pdf
http://diy.inria.fr/doc/litmus.html

An Axiomatic Memory Model for POWER Multiprocessors 509

5 Proof of Equivalence to the Operational Specification

We establish further confidence in the equivalence of the axiomatic model pre-
sented here and the operational model, by providing a paper proof that the sets
of behaviors allowed for any program are identical for both models: we show
that any outcome allowed by the operational model is allowed in the axiomatic
model and vice versa. In this section we provide an overview of the proof; the
full proof is in the on-line supplementary material [Sup].

5.1 Operational to Axiomatic

The first part of the proof shows that any allowed test in the operational model
is an allowed test in the axiomatic model. We do this by defining a mapping
function O2A from sequences of transitions of the operational model to a pro-
gram execution and evord relations in the axiomatic model, proving that the
resulting evord and cord are always acyclic.

A witness trace W = {tr1, ...trn} is a sequence of operational-model tran-
sitions, from an initial to a final system state. Given a witness W , our O2A
mapping generates a relation evord ′ by iterating over all labeled transitions.
At each step, O2A adds the corresponding events to evord ′, and adds edges to
the new event if they are allowed by evord . Most events correspond directly to
certain transition types in the machine, with two exceptions: (1) initiate-write
events do not correspond directly to any transition type, and are added to evord ′

either before the first forwarded read or before their commit; and (2) irrelevant
write propagation events are write propagation events that do not correspond
to any write propagation transition. These are added to evord′ either before
barriers (when required by before edges), or at end of the execution.

Another difference between the two models is in the handling of sync barriers.
In the axiomatic model, after edges enforce a total order between syncs, effec-
tively allowing syncs to propagate one at a time. In the operational model, a
thread stops after a sync and waits for an acknowledgment that it propagated
to all other threads, but several syncs can propagate simultaneously. When the
mapping encounters a sync-acknowledge transition, it adds after-edges between
this sync and all previously acknowledged syncs.

Theorem 1. Given a witness W = {tr1, ...trn}, the mapping O2A(W) produces
an axiomatic program execution with co and rf that satisfy the uniproc condition
and acyclic evord and cord relations.

We prove that evord for the axiomatic program execution is acyclic by showing
that the evord relation produced by O2A is both: (1) acyclic and (2) the same
as the evord which is calculated from co and rf .

For all edges except the after edges, the evord produced by the mapping is
acyclic by construction, because each newly added event is ordered after the
previously added events. After edges are added between existing events when an
acknowledge transition is encountered. The following Lemma guarantees that
after edges do not form a cycle:

510 S. Mador-Haim et al.

Lemma 1 (Sync acknowledge for ordered sync propagations). If b1 and
b2 are two sync instructions and b1 is acknowledged before b2, then there is no
path in evord ′ from an event of b2 to an event of b1.

The mapping adds edges only if the corresponding evord edges are allowed. To
show that all the edges in evord are in O2A(W), we show that the mapping adds
events in an order than agrees with the direction of the edges in evord . For each
type of edge in evord , we show that the transition rules of the operational model
guarantee this order.

5.2 Axiomatic to Operational

The second part of the proof shows that each allowed execution in the axiomatic
specification is allowed by the operational specification. We define a mapping
that takes the the relations evaluated for the axiomatic specification, includ-
ing rf , co, evord , and cord , and produces a sequence of transitions W for the
operational specification.

Given an axiomatic candidate execution CE = {P, rf , co} accepted by the
axiomatic model, the A2O mapping generates a witness W = {tr1, ...trn} for
the operational model. The mapping takes evord (which is acyclic for allowed
executions), performs a topological sort of the events in evord , and then it
processes these events in that order to produce W .

The A2O mapping translates most events directly into corresponding transi-
tions, with a few notable exceptions: (1) there are no transitions matching write
initiate events; (2) write propagation events are allowed out-of-coherence-order,
whereas write propagation transitions in the operational model must be in co-
herence order but some writes may be skipped, as identified by the mapping;
(3) no event corresponds directly to sync acknowledge transitions (which are
produced after a sync propagates to all threads); and (4) no events correspond
to partial-coherence-commits, which are produced by the mapping according to
co after processing write commit events.

Theorem 2. Given an allowed candidate execution CE, the mapping A2O(CE)
produces a witness for an accepting path in the operational model.

We prove this by induction on W . For each transition in W , we show that each
type of transition is allowed based on the rules of evord as well as cord and the
uniprocessor rule.

6 Evaluating the Axiomatic Specification with a SAT
Solver

One advantage of the constraint-based axiomatic specification presented in this
paper is that it can be readily used by constraint solvers (such as SAT or SMTs).
To investigate this impact, we built a C++ implementation of the axiomatic
specification using the minisat SAT solver [ES05]. Currently, this solver accepts

An Axiomatic Memory Model for POWER Multiprocessors 511

Table 1. Test suite runtime in the three checkers

model/tool N mean (s) max (s) effort (s) memory

Operational/ppcmem 3565/4480 3016.19 2.4e+05 8.2e+07 40.0 Gb

Axiomatic/ppcmem 4480/4480 1394.14 2.3e+05 7.1e+06 4.0 Gb

Axiomatic/SAT 4188/4188 2.67 10.26 11170 —

diy sequential-consistency-violation cycles as input (rather than litmus sources),
builds the corresponding tests internally and checks whether the resulting tests
are allowed or forbidden. We ran this solver on the 4188 of the tests that were
built from cycles.

We compare the execution time of this SAT-based tool to the ppcmem checkers
for the operational and axiomatic specifications described in Section 4, which
were built from Lem-derived code, emphasizing assurance (that they are ex-
pressing the models exactly as defined) over performance. They do not always
terminate in reasonable time and space, so we resorted to running tests with
increasing space limits, using 500+ cores in two clusters. In Table 1, N is the
number of tests finally completed successfully in the allocated processor time
and memory limits, w.r.t. the number tried. “mean” shows the arithmetic mean
of the per-test execution time of successful runs; while “max” is the execution
time for the test that took longest to complete successfully. The “effort” col-
umn shows the total CPU time allocated to running the simulators (including
failed runs due to our resource limits). Finally, the “memory” column shows the
maximum memory limit we used.

As shown by the last row of the table, the performance improvement of the
SAT-based checker over either the operational or axiomatic versions of ppcmem
is dramatic: the SAT solver terminates on all 4188 cycle-based tests, taking no
more than about 10 seconds to run any test. The total computing effort is around
3 hours (wall-clock time is about 25 minutes on an 8-core machine) compared
with the 82 CPU-days of the ppcmem axiomatic tool and 950 days of the ppcmem
operational tool. One obtains similar results when restricting the comparison to
the tests common to all three tools.

This efficient SAT-based encoding of the model opens up the possibility of
checking properties of much more substantial example programs, e.g. implemen-
tations of lock-free concurrent data-structures, with respect to a realistic highly
relaxed memory model.

Acknowledgments. The authors acknowledge the support of NSF grants CCF-
0905464 and CCF-0644197; of the Gigascale Systems Research Center, one of six
research centers funded under the Focus Center Research Program (FCRP), a
Semiconductor Research Corporation entity; and funding from EPSRC grants
EP/F036345, EP/H005633, and EP/H027351, ANR project ParSec (ANR-06-
SETIN-010), ANR grant WMC (ANR-11-JS02-011), and INRIA associated
team MM.

512 S. Mador-Haim et al.

Legal. IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of In-

ternational Business Machines Corp., registered in many jurisdictions worldwide. Other

product and service names might be trademarks of IBM or other companies. A current

list of IBM trademarks is available on the Web at “Copyright and trademark informa-

tion” at www.ibm.com/legal/copytrade.shtml. POWER, POWER6, POWER7, Power

Architecture are registered trademarks of International Business Machines Corporation.

References

[AAS03] Adir, A., Attiya, H., Shurek, G.: Information-flow models for shared mem-
ory with an application to the PowerPC architecture. IEEE Trans. Parallel
Distrib. Syst. 14(5) (2003)

[AFI+09] Alglave, J., Fox, A., Ishtiaq, S., Myreen, M.O., Sarkar, S., Sewell, P., Zappa
Nardelli, F.: The semantics of Power and ARM multiprocessor machine
code. In: Workshop on Declarative Aspects of Multicore Programming
(January 2009)

[AMSS10] Alglave, J., Maranget, L., Sarkar, S., Sewell, P.: Fences in Weak Memory
Models. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS,
vol. 6174, pp. 258–272. Springer, Heidelberg (2010)

[AMSS11] Alglave, J., Maranget, L., Sarkar, S., Sewell, P.: Litmus: Running Tests
against Hardware. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011.
LNCS, vol. 6605, pp. 41–44. Springer, Heidelberg (2011)

[CSB93] Corella, F., Stone, J.M., Barton, C.M.: A formal specification of the Pow-
erPC shared memory architecture. Technical Report RC18638, IBM (1993)

[ES05] Een, N., Sorensson, N.: Minisat - a SAT solver with conflict-clause min-
imization. In: International Conference on Theory and Applications of
Satisfiability Testing (2005)

[Gha95] Gharachorloo, K.: Memory consistency models for shared-memory multi-
processors. WRL Research Report 95(9) (1995)

[Int02] Intel. A formal specification of Intel Itanium processor family memory
ordering (2002),
http://developer.intel.com/design/itanium/downloads/251429.html

[OBZNS11] Owens, S., Böhm, P., Zappa Nardelli, F., Sewell, P.: Lem: A Lightweight
Tool for Heavyweight Semantics. In: van Eekelen, M., Geuvers, H.,
Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 363–369.
Springer, Heidelberg (2011)

[SF95] Stone, J.M., Fitzgerald, R.P.: Storage in the PowerPC. IEEE Micro 15
(April 1995)

[SMO+12] Sarkar, S., Memarian, K., Owens, S., Batty, M., Sewell, P., Maranget,
L., Alglave, J., Williams, D.: Synchronising C/C++ and POWER. In:
Programming Language Design and Implementation (2012)

[SSA+11] Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understand-
ing POWER multiprocessors. In: Programming Language Design and Im-
plementation (2011)

[Sup] An axiomatic memory model for Power multiprocessors — supplementary
material, http://www.seas.upenn.edu/~selama/axiompower.html

[YGLS03] Yang, Y., Gopalakrishnan, G.C., Lindstrom, G., Slind, K.: Analyzing the
Intel ItaniumMemory Ordering Rules Using Logic Programming and SAT.
In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 81–
95. Springer, Heidelberg (2003)

http://developer.intel.com/design/itanium/downloads/251429.html
http://www.seas.upenn.edu/~selama/axiompower.html

	An Axiomatic Memory Model for POWER Multiprocessors
	Introduction
	Background: The POWER Memory Model
	Subtleties of the POWER Memory Model
	The Operational Specification

	The Axiomatic Specification
	Axiomatic Candidate Executions
	Overview of the Specification
	Examples
	Formal Specification

	Experimental Validation
	Proof of Equivalence to the Operational Specification
	Operational to Axiomatic
	Axiomatic to Operational

	Evaluating the Axiomatic Specification with a SAT Solver
	References

