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Abstract. In this paper, we introduce a general paradigm called
identity-based extractable hash proof system (IB-EHPS), which is an
extension of extractable hash proof system (EHPS) proposed by Wee
(CRYPTO ’10). We show how to construct identity-based encryption
(IBE) scheme from IB-EHPS in a simple and modular fashion. Our con-
struction provides a generic method of building and interpreting CCA-
secure IBE schemes based on computational assumptions. As instantia-
tions, we realize IB-EHPS from the bilinear Diffie-Hellman assumption
and the modified bilinear Diffie-Hellman assumption, respectively.

1 Introduction

Security against adaptive chosen-ciphertext attack (CCA-security) [27] is now ac-
cepted as the standard security notion for public-key encryption (PKE) schemes
as well as identity-based encryption (IBE) schemes. In contrast to security
against adaptive chosen-plaintext attack (CPA-security) [25], CCA-security cap-
tures the immunity against an active adversary who is given access to a decryp-
tion oracle that allows it to obtain the decryptions of ciphertexts of its choice.

On the other hand, in most cases related to cryptography, decisional assump-
tions form a much stronger class of assumptions than the corresponding search
(computational) assumptions1. As such, cryptosystems based on search problems
are generally preferred to those based on decisional assumptions. From now on,
we will use the term computational and search interchangeablely.

Up to now, only a handful of IBE schemes [11,14,19] have been proven to be
CCA-secure from computational assumptions in the standard model. Besides,
there seems no overarching concept explaining these constructions. Inspired by
the notion of extractable hash proof system [31] in the public key setting, we
introduce a new notion named identity-based extractable hash proof system and
show how to construct CCA-secure IBE schemes from it.
� Corresponding author.
1 Unless the decisional assumption can be proved equivalent to its computational
counterpart, as it is the case with cryptosystems based on the problem of “leaning
with error” (LWE) [26].

F. Bao, P. Samarati, and J. Zhou (Eds.): ACNS 2012, LNCS 7341, pp. 153–170, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



154 Y. Chen et al.

1.1 Background

The concept of identity-based encryption (IBE) was introduced by Shamir [28]
in 1984. Boneh and Franklin [6] proposed the first practical IBE scheme whose
security is based on the computational bilinear Diffie-Hellman (CBDH) assump-
tion. Cocks [12] described another IBE scheme based on the decisional quadratic
residues (DQR) assumption modulo a composite. Both of them are proven secure
under the random oracle model [2]. However, a proof in the random oracle model
can only serve as a heuristic argument and possibly lead to insecure schemes
in the standard model. This posed an interesting problem of constructing IBE
schemes in the standard model.

First, Canetti, Halevi, and Katz [8] made the breakthrough by giving a solu-
tion in the standard model, but under a weaker notion named “selective-identity”
where the attacker must declare the target identity id∗ before seeing the public
parameters. Boneh and Boyen [4] then provided two efficient selective-identity
CPA-secure IBE schemes known as BB1-IBE and BB2-IBE. The former is based
on the decisional bilinear Diffie-Hellman (DBDH) assumption while the latter
is based the decisional q-BDHI assumption. Subsequently, Waters [29] proposed
an efficient and adaptive-identity CPA-secure IBE scheme (Waters-IBE) in the
standard model which is also based on the DBDH assumption by employing Wa-
ters hash in place of Boneh-Boyen hash used in BB1-IBE. One drawback is that
it suffers from large public parameter size. Gentry [15] proposed an IBE scheme
(Gentry-IBE) which enjoys short public parameters and tight security reduction.
Although Gentry-IBE achieves adaptive-identity CCA-security in the standard
model, it did so at the cost of relying a non-standard and non-static assumption
called the decisional q-ABHDE assumption. Waters [30] then introduced dual
system encryption methodology and proposed an adaptive-identity CPA-secure
IBE scheme based on the DBDH assumption and the decisional linear (DLIN)
assumption in the standard model. Recently, Gentry et al. [16] proposed an IBE
scheme based on the LWE assumption in the random oracle model. Cash et
al. [9] and Agrawal et al. [1] showed how to construct IBE schemes based on the
LWE assumption in the standard model.

As previously stated, CCA-security is the de facto level of security required
for IBE schemes used in practice. Unfortunately, constructing CCA-secure IBE
scheme without resorting to random oracle heuristic turns out to be difficult.
Boneh, Canetti, Halevi, and Katz [5] proposed a generic transformation (known
as the BCHK transformation) from any CPA-secure 2-level HIBE scheme to a
CCA-secure IBE scheme, which is the only generic approach known for con-
structing efficient CCA-secure IBE in the standard model.

1.2 Motivation

As we have already mentioned, a decisional assumption is generally stronger than
its computational counterpart. From both theoretical and practical perspective,
it is more desirable to reduce the security of cryptographic schemes to com-
putational assumptions. Considering an IBE scheme obtained from the BCHK
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transformation, its CCA-security relies on the CPA-security of the underlying
2-level HIBE scheme and the security of one-time signature or MAC. Hence its
assumption cannot be directly counted as computational or decisional assump-
tion. However, the indistinguishability against CPA-attack is of decisional flavor,
thus it is arguably closer to decisional assumptions.

Haralambiev et al. [19] proposed several efficient PKE schemes in the standard
model. They also sketched that one of their PKE schemes can be extended to a
BB1-style identity-based key encapsulation mechanism (IB-KEM). Galindo [14]
gave an IB-KEM from the PKE scheme due to Hanaoka and Kurosawa [18]. Chen
et al. [11] proposed another BB1-style IB-KEM. All the above IB-KEMs are
proven to be selective-identity CCA-secure based on the CBDH assumption in
the standard model. All of them fall outside of the BCHK [5] methodology. While
the IB-KEMs due to [19] and [11] are similar, it seems that the IB-KEM [14] relies
on different techniques to achieve CCA-security. So far, there is no overarching
framework explaining these constructions.

Recently, several CCA-secure PKE schemes from various computational as-
sumptions emerged, such as [10, 18–20]. Inspired in part by hash proof sys-
tem (HPS) [13], Wee [31] introduced the notion of extractable hash proof sys-
tem (EHPS) and showed how to derive efficient CCA-secure PKE via EHPS.
Roughly speaking, EHPS resembles hash proof system (HPS) [13] in that both
of them are essentially a special kind of non-interactive zero-knowledge proof,
except that EHPS replaces the soundness requirement with a proof of knowl-
edge property [27]. The framework of EHPS does not only encompass a series of
CCA-secure PKE schemes [21,22] based on decisional assumptions, but also can
explain a series of CCA-secure PKE schemes [19, 20] based on computational
assumptions in a unified way, which is the most appealing advantage of EHPS.

Although the realm of IBE and PKE are inherently different, the techniques
are sometimes interchangeable. Motivated by the above discussion, we find the
following intriguing question:

Does there exist a general framework for the construction of identity-based en-
cryption from computational assumptions in the standard model?

1.3 Our Contributions

EHPSs and their benefits are confined to the realm of public-key setting. In this
paper we bring them to the identity-based setting, defining identity-based ex-
tractable hash proof system (IB-EHPS). Using IB-EHPS, we obtain new insights
into the construction of CCA-secure IBE schemes. In particular, we show that
this notion unifies many seemingly unrelated IBE constructions under a single
framework. We summarize our main contributions as follows.

Identity-Based Extractable Hash Proof Systems. We introduce the notion
of IB-EHPS by tailoring EHPS to the identity-based setting. We show that IB-
EHPS instantly yields adaptive-identity CPA-secure IBE. However, the basic IB-
EHPS is too generic to encompass more applications. To resolve this problem,
we further propose the notion of all-but-one (ABO) IB-EHPS, which can in turn
be used to construct adaptive-identity CCA-secure IBE.
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Practical CCA-secure IBE from IB-EHPS. We present two ABO IB-
EHPSs from the CBDH assumption and the modified CBDH assumption, re-
spectively. As a result, we obtain two efficient adaptive-identity CCA-secure
IBE schemes based on computational assumptions in the standard model.

2 Preliminaries

2.1 Definitions

For a positive integer n, we use [n] to denote the set [n] = {1, . . . , n}. For a finite

set X , we use x
R←− X to denote that x is sampled from X uniformly at ran-

dom. The main security parameter through this paper is κ, and all algorithms
are implicitly given κ as input. We use standard asymptotic notation O and o
to denote the growth of functions. Let poly(κ) denote an unspecified function
f(κ) = O(κc) for some constant c. Let negl(κ) denote an unspecified function
f(κ) such that f = o(κ−c) for every constant c. We say that a probability is
overwhelming if it is 1 − negl(κ). A probabilistic polynomial-time (PPT) algo-
rithm is a randomized algorithm that runs in time poly(κ). If A is a randomized
algorithm, we write z ← A(x1, . . . , xn; r) to indicate that A outputs z on inputs
(x1, . . . , xn) and random coins r. We will omit r and write z ← A(x1, . . . , xn)
when it is not necessary to make explicit the randomness A uses. We assume
that an algorithm returns ⊥ if any of its inputs is ⊥.

2.2 Identity-Based Key Encapsulation Mechanisms

Instead of providing the full functionality of an IBE scheme, in many applications
it is sufficient to allow sender and receiver to agree on a common random session
key. This can be accomplished by identity-based key encapsulation mechanism
(IB-KEM) as formalized in [3]. Considering there are many practical reasons to
prefer an IB-KEM over an IBE scheme, we define IBE schemes as IB-KEM in
this paper. An IB-KEM consists of four PPT algorithms as follows:

– Setup(κ): takes as input a security parameter κ, outputs the master public
key mpk and the master secret key msk. mpk will be used as an implicit
input by all other algorithms KeyGen, Encap, Decap. Let I, C, and K be the
identity space, ciphertext space, and the key space (for DEM), respectively.

– KeyGen(msk, id): takes as input msk and an identity id ∈ I, outputs a
private key sk of id.

– Encap(id): takes as input an identity id ∈ I, outputs a ciphertext c ∈ C and
a DEM key k ∈ K.

– Decap(sk, c): takes as input a private key sk of identity id and a ciphertext c,
outputs a DEM key k ∈ K or an distinguished symbol ⊥ (which is not in K)
indicating that c is not consistent under id. Here we say that a ciphertext
is consistent or well-formed or valid if it can be “honestly generated” by
the encryption algorithm. For a PKE or IBE scheme, if anyone can do the
“consistency check”, we say that it is public verifiable. Otherwise, we say
that it is private verifiable.
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We refer to [23] for formal security definition of IB-KEM. For correctness, we
require that for any (mpk,msk) ← Setup(κ), any (c, k) ← Encap(id), and any
sk ← KeyGen(msk, id), we have Pr[Decap(sk, c) = k] = 1.

2.3 Bilinear Diffie-Hellman Assumption

Let (p,G,GT , e)← GroupGen(1κ), where GroupGen(·) is a bilinear groups param-
eters generator [7]. Let g be a random generator of G. Define bdh(A,B,C) := T ,
where A = ga, B = gb, C = gc, and T = e(g, g)abc. The computational bilin-
ear Diffie-Hellman (CBDH) problem is computing bdh(A,B,C) given random
A,B,C ∈ G. The CBDH assumption asserts that the CBDH problem is hard,
that is, Pr[A(A,B,C) = bdh(A,B,C)] ≤ negl(κ) for all PPT algorithms A.

In the bilinear setting, the Goldreich-Levin theorem [17] gives us the following
lemma for a Goldreich-Levin hardcore predicate fgl : GT × {0, 1}u→ {0, 1}.
Lemma 2.1 Let A,B,C

R←− G, R
R←− {0, 1}u, K = fgl(bdh(A,B,C), R), and

U
R←− {0, 1}. Suppose there exists a PPT algorithm B distinguishing the dis-

tributions Δbdh = (g,A,B,C,K,R) and Δrand = (g,A,B,C, U,R) with non-
negligible advantage. Then there exists a PPT algorithm solving the CBDH prob-
lem with non-negligible correct probability.

The modified computational bilinear Diffie-Hellman (mCBDH) problem [24] is

similar to the CBDH problem except that an additional point B′ = gb
2

is given.
We can prove a similar lemma regarding mCBDH problem as Lemma 2.1.

2.4 Binary Relations for Search Problems

A search problem S = (Sκ)κ≥0 is a collection of distributions. For every value
of κ ≥ 0, an instance of Sκ specifies two finite, non-empty sets X and W ,
public parameter PP, and a binary relation Rpp ∈ X × W . A search prob-
lem also provides two algorithms, namely SampS and SampR. SampS takes
as input a security parameter κ, and outputs an instance of Sκ. We write
(X,W,PP,Rpp)← SampS(κ; SP), where SP is the random coins used in SampS.
SampR takes as input PP, and outputs a tuple (x,w) belong to Rpp. We write
(x,w) ← SampR(PP; r), where r is the random coins used in SampR. Note that
PP is often assumed to be an implicit input and it is useful to make the random
coins explicitly in SampR algorithm, thus we often write SampR(r) henceforth
whenever the context is clear. Different to the requirement in EHPS [31], we do
not require that Rpp can be efficiently verifiable in IB-EHPS.

Intuitively, the relation Rpp corresponds to a hard search problem, that is,
given a random element x ∈ X , it is hard to find w ∈ W such (x,w) ∈ Rpp.
More formally, we say that a binary relation Rpp is one-way if:

– with overwhelming probability over PP, for any x ∈ X , there exists at most
one w ∈W such that (x,w) ∈ Rpp (we say that w is a witness for x); and

– there is an efficiently computable function F from W to {0, 1}l for some
positive integer l such that given x, F(w) is pseudo-random over {0, 1}l
where (x,w)← SampR(PP).
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For relations where computing w given x is hard on average, we may derive a
function GL with a one-bit output via the Goldreich-Levin hardcore predicate
fgl. Note that GL is an instantiation of the above function F.

Bilinear Diffie-Hellman Relation. Let (p,G,GT , e) ← GroupGen(κ). The
public parameter PP is given by (g, ga, gb) for a random g ∈ G and random

a, b
R←− Zp

2. We consider the bilinear Diffie-Hellman relation over G×GT :

Rbdh
pp =

{
(x,w) ∈ G×GT : w = e(g, x)ab

}

The associated SampR picks r
R←− Zp and outputs (gr, e(ga, gb)r). Lemma 2.1

shows that we may extract a single hardcore bit from w using GL(w) for relation
Rbdh
pp . The modified BDH relation Rmbdh

pp can be defined analogously.

2.5 General Hashing

Let X , I, and Y be finite, non-empty sets. Let H = (Hmpk)mpk∈MPK be a
collection of functions indexed by MPK, so that for every mpk ∈MPK, Hmpk

is a function from I ×X into Y . We call H = (H,MPK, I,X, Y ) a hash family.

3 Identity-Based Extractable Hash Proofs

An IB-EHPSP for S associating with each instance (X,W,PP,Rpp)← SampS(κ)
of Sκ and an identity space I and a hash family H = (H,MPK, I,X, Y ), is a
tuple of algorithms (SetupExt, SetupHash, KeyGen, KeyGen∗, Pub, Priv, Ext).
Loosely speaking, an IB-EHPS can behave in one of two modes, namely the
extraction mode and the hashing mode. We will rely on the extraction mode for
the normal functionality of the resulting IBE scheme, and on the hashing mode
for the proof of security.

Extraction Mode

– SetupExt(PP, SP): takes as input (PP, SP), outputs the master public key
mpk and the master secret key msk.

– Pub(mpk, id, r): takes as input mpk, an identity id ∈ I and random coins r,
outputs y ∈ Y such that y = Hmpk(id, x) where (x,w)← SampR(r). This is
the public evaluation algorithm.

– KeyGen(msk, id): takes as input msk and an identity id ∈ I, outputs a
private key sk for id.

– Ext(sk, x, y): takes as input a private key sk of identity id ∈ I, x ∈ X and
y ∈ Y , outputs w ∈ W .

For the correctness of extraction mode, we require that for any (mpk,msk) ←
SetupExt(PP, SP) and any id ∈ I and any sk ← KeyGen(msk, id), we have y =
Hmpk(id, x) =⇒ (x,Ext(sk, x, y)) ∈ Rpp.

2 We assume PP also includes p and the descriptions of (e,G,GT ).
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Hashing Mode

– SetupHash(PP): takes PP as input, outputs the master public key mpk and
the master secret key msk∗. msk∗ implicitly splits the whole identity space I
into two orthogonal subspaces I1 and I2, namely I = I1∪I2 and I1∩I2 = Ø.

– Priv(msk∗, id, x): takes as input msk∗ and an identity id ∈ I, if id ∈ I2
outputs y ∈ Y , else outputs ⊥. This is the private evaluation algorithm.

– KeyGen∗(msk∗, id): takes as input msk∗ and an identity id ∈ I, if id ∈ I1
outputs a private key sk for id, else outputs ⊥.

For the correctness of hashing mode, we require that for any (mpk,msk) ←
SetupHash(PP) and any id ∈ I2, we have Priv(msk∗, id, x) = Hmpk(id, x).

Indistinguishability. We require the first output (mpk) of SetupExt(PP, SP)
and SetupHash(PP) are statistically indistinguishable. For anympk and any iden-
tity id ∈ I1, we require the output of KeyGen(msk, id) and KeyGen∗(msk∗, id)
are statistically indistinguishable.
Well Partition. We now set a property that is sufficient for the existence
of an efficient transformation that we will use to obtain CPA-secure IB-KEM.
Intuitively, this property guarantees that no PPT adversary can distinguish the
CPA-security games simulated by operating IB-EHPS in extraction mode and
hashing mode with non-negligible probability. We formally define this property
via the following game played between a PPT adversary A and a challenger CH.

Given PP and SP, CH picks b
R←− {0, 1}, and plays Sub-Game b with A.

Sub-Game 0. CH interacts with A by operating IB-EHPS in extraction mode.
Setup: CH generates (mpk,msk)← SetupExt(PP, SP) and gives mpk to A. CH
also samples (x∗, w∗)← SampR(r∗) and records them for latter use.
Phase 1 - Private key queries: When A submits an private key query 〈id〉,
CH responds with KeyGen(msk, id).
Phase Middle: When A submits an identity id∗ ∈ I on the condition that
id∗ did not appear in any private key query in Phase 1, CH obtains y∗ =

Hmpk(id
∗, x∗) by evaluating Pub(mpk, id∗, r∗), then sets k∗0 = F(w∗) and k∗1

R←−
{0, 1}l. CH picks a random bit β ∈ {0, 1} and returns (x∗, y∗, k∗β) to A.
Phase 2 - Private key queries: Same as Phase 1 except that the private key
query 〈id∗〉 is not allowed.
Sub-Game 1. CH interacts with A by operating IB-EHPS in hashing mode.
Setup: CH generates (mpk,msk∗) ← SetupHash(PP) and gives mpk to A. CH
also samples (x∗, w∗)← SampR(r∗) and records them for latter use.
Phase 1 - Private key queries: When A submits a private key query 〈id〉,
CH responds with KeyGen(msk∗, id).
Phase Middle: When A submits an identity id∗ ∈ I on the condition that
id∗ did not appear in any private key query in Phase 1, CH computes y∗ =

Hmpk(id, x
∗) via Priv(msk∗, id∗, x∗), and sets k∗0 = F(w∗) and k∗1

R←− {0, 1}l. CH
picks a random bit β ∈ {0, 1} and returns (x∗, y∗, k∗β) to A.
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Phase 2 - Private key queries: Same as Phase 1 except that the private key
query 〈id∗〉 is not allowed.

At the end of the game, A outputs its guess b′ for b and wins the game if b = b′.
Let Pr[A wins] be the probability that A wins the game, where the probability
space is over the random coins consumed by CH. Let δ be a real number in [0, 1].
It is straightforward to see that if Pr[A wins] ≤ 1− 1

2δ, then the probability that
the A’s view in Sub-Game 1 is identical to Sub-Game 0 is at least δ. Let Qe be the
number of private key queries. We say such an IB-EHPS is (Qe, δ)-well-partition.

All-But-One Identity-Based Extractable Hash Proofs. For our applica-
tions, it is convenient to work with a richer abstraction. More precisely, an ABO
IB-EHPS is a tuple of algorithms (SetupExt, SetupABO, Pub, Priv, Verify, Verify∗,
KeyGen, KeyGen∗, Ext, Ext∗).

Extraction Mode

– The algorithms SetupExt, Pub, and KeyGen related to the extraction mode
are identical to that in IB-EHPS.

– Verify(id, sk, x, y): takes as input an identity id ∈ I, a private key sk for id,
x ∈ X and y ∈ Y , if y = Hmpk(id, x) returns 1, else returns 0. Particularly,
when sk is not necessary, we say Hmpk is public verifiable.

– Ext(sk, x, y): takes as input a private key sk for identity id ∈ I, x ∈ X and
y ∈ Y , if Verify(id, sk, x, y) = 1 then outputs w ∈ W , else outputs ⊥.

For the correctness of extraction mode, we require that for any (mpk,msk) ←
SetupExt(PP, SP), any id ∈ I and any sk ← KeyGen(msk, id), we have:

y = Hmpk(id, x) =⇒ (x,Ext(sk, x, y)) ∈ Rpp (1)

ABO Hashing Mode

– SetupABO(PP, x∗): similar to SetupHash(PP) in IB-EHPS except taking an
extra input x∗ ∈ X .

– KeyGen∗(msk∗, id): same as KeyGen∗ in IB-EHPS.
– Priv(msk∗, id, x): takes as input msk∗, id ∈ I, and x ∈ X , if id ∈ I2 and

x = x∗ outputs y ∈ Y , else outputs ⊥.
– Verify∗(id,msk∗, x, y): takes as input an identity id ∈ I, msk∗, x ∈ X and

y ∈ Y , if y = Hmpk(id, x) returns 1 else returns 0. When Hmpk is public
verifiable, msk∗ is not necessary.

– Ext∗(msk∗, x, y): takes as input msk∗, x ∈ X , and y ∈ Y , if x 
= x∗ and
Verify∗(id,msk∗, x, y) = 1 then outputs w ∈W , else outputs ⊥.

For the correctness of ABO hashing mode, we require for any x∗ ∈ X and any
(mpk,msk∗)← SetupABO(SP, x∗) and any id ∈ I2, we have Priv(msk∗, id, x∗) =
Hmpk(id, x

∗), and for any id ∈ I if x 
= x∗ we have:

y = Hmpk(id, x) =⇒ (x,Ext∗(msk∗, x, y)) ∈ Rpp (2)
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Indistinguishability. We require that the similar indistinguishable proper-
ties hold as that for IB-EHPS, namely for any x∗ ∈ X the first output of
SetupExt(PP, SP) and SetupHash(PP, x∗) are statistically indistinguishable. For
anympk and any identity id ∈ I1, we require that the output of KeyGen(msk, id)
and KeyGen∗(msk∗, id) are statistically indistinguishable.
Well Partition. This property for ABO IB-EHPS is defined analogously as
that for IB-EHPS. We formally defined it via the following game played between
a PPT adversary A and a challenger CH.

Given PP and SP, CH picks b
R←− {0, 1}, and plays Sub-Game b with A.

Sub-Game 0. CH interacts with A by operating ABO IB-EHPS in extraction
mode.
Setup: Same as Sub-Game 0 in IB-EHPS.
Phase 1 - Private key queries: Same as Sub-Game 0 in IB-EHPS.
Phase 1 - Decapsulation queries: When A submits a query 〈id, x, y〉, if
x = x∗, CH directly returns ⊥. Otherwise CH responds with F(Ext(sk, x, y)).
Phase Middle: Same as Sub-Game 0 in IB-EHPS.
Phase 2 - Private key queries: Same as Sub-Game 0 in IB-EHPS.
Phase 2 - Decapsulation queries: When A submits a query 〈id, x, y〉, CH
computes sk ← KeyGen(msk, id) and responds with F(Ext(sk, x, y)). The query
〈id∗, x∗, y∗〉 is not allowed.
Sub-Game 1. CH interacts withA by operating ABO IB-EHPS in ABO hashing
mode.
Setup: CH generates (mpk,msk∗) ← SetupABO(PP, x∗) and gives mpk to A.
CH also samples (x∗, w∗)← SampR(r∗) and records it for latter use.
Phase 1 - Private key queries: Same as Sub-Game 1 in IB-EHPS.
Phase 1 - Decapsulation queries: When A submits a query 〈id, x, y〉, if
x = x∗, CH returns⊥. Otherwise if id ∈ I1, CH extracts sk = KeyGen∗(msk∗, id)
and responds with F(Ext(sk, x, y)), else responds with F(Ext∗(msk∗, x, y)).
Phase Middle: Same as Sub-Game 1 in IB-EHPS.
Phase 2 - Private key queries: Same as Sub-Game 1 in IB-EHPS.
Phase 2 - Decapsulation queries: When A submits a query 〈id, x, y〉, if id ∈
I1, CH computes sk = KeyGen∗(msk∗, id) and responds with F(Ext(sk, x, y)),
else responds with F(Ext∗(msk∗, x, y)). The extraction query 〈id∗, x∗, y∗〉 is not
allowed.

At the end of the game, A outputs its guess b′ for b and wins the game if b = b′.
Similar to the analysis we have done before, if Pr[A wins] ≤ 1 − 1

2δ, then the
probability that theA’s view in Sub-Game 1 is identical to Sub-Game 0 is at least
δ. Let Qe and Qd be the number of private key queries and extraction queries,
respectively. We say such an ABO IB-EHPS is (Qe, Qd, δ)-well-partition.

In ABO IB-EHPS, property (1) for the extraction mode ensures the functionality
of the resulting IB-KEM while the property (2) for the ABO hashing mode
ensures the correctness of simulation. The crux to achieve CCA-security is to
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make sure that the decryption oracle does not help the adversary to distinguish
w∗ from random; in other words, the output of the decryption algorithm should
contain no knowledge of w∗ related to x∗ when the input ciphertext (x∗, y) is not
consistent. In line of this, to yield CCA-secure IBE, the ABO IB-EHPS should
also have the following two properties:

y 
= Hmpk(id, x) =⇒ (x,Ext(sk, x, y)) /∈ Rpp (3)

y 
= Hmpk(id, x) =⇒ (x,Ext∗(msk∗, x, y)) /∈ Rpp (4)

We achieve properties (3) and (4) by equipping the ABO IB-EHPS with al-
gorithms Verify and Verify∗ which can determine if y = Hmpk(id, x), and algo-
rithms Ext and Ext∗ returns a distinguished symbol ⊥ when y 
= Hmpk(id, x). We
note that it is also possible to achieve properties (3) and (4) without requiring
algorithms Verify and Verify∗ available. The trick is for certain relation R we
may re-design algorithms Ext and Ext∗ smartly using the “implicit rejection”
idea [21, 24], namely for y 
= Hmpk(id, x), Ext(sk, x, y) and Ext∗(msk∗, x, y) re-
turns a random value w ∈ W which is independent of x. Thus the properties (3)
and (4) will hold with overwhelming probability.

Combining properties (3) and (4) with (1) and (2), the ABO IB-EHPS in fact
has the following stronger properties: y = Hmpk(id, x) ⇐⇒ (x,Ext(sk, x, y)) ∈
Rpp for the extraction mode and y = Hmpk(id, x)⇐⇒ (x,Ext(msk∗, x, y)) ∈ Rpp

for the ABO mode (when x 
= x∗), which is reminiscent of ABO EHPS [31]. The
key difference is that [31] achieves properties (3) and (4) by requiring the relation
Rpp can be efficiently verifiable, which may make it too stringent to cover many
known CCA-secure IBE schemes, such as [11, 19, 23].

3.1 Relation to Extractable Hash Proof System

IB-EHPS is the corresponding notion of EHPS in the IBE setting. However, we
stress that the extension is not straightforward for the following main differences.

1. The (ABO) hashing mode for (ABO) IB-EHPS is defined in partitioning style.
More precisely, the setup algorithm generates (mpk,msk∗) and implicitly splits
the whole identity space I into two orthogonal subspaces, — 1) I1: identities for
which KeyGen∗ can generate private keys; and 2) I2: identities for which Priv
can evaluate the hash value. We note that (ABO) IB-EHPS inherently relies on
the partitioning strategy. Suppose that there is an identity id belongs to the
intersection of I1 and I2, then given (PP, x) one can compute the corresponding
w such that (x,w) ∈ Rpp by itself as follows: first computes y = Hmpk(id, x) via
Priv(msk∗, id, x), then obtains a private key sk of id via KeyGen(msk∗, id) and
uses it to extract w via Ext(sk, x, y). This contradicts the one-wayness of Rpp.
This feature of IB-EHPS makes it particularly well-suited to yield IBE schemes
whose provable security follows the partitioning strategy [15, 30].
2. In ABO EHPS, the ABO hashing mode is defined with respect to a tag t∗,
which in turn is the hash value of x∗ for some target collision resistant (TCR)
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hash function. Hence the correctness of the ABO hashing mode is related to
the TCR hash function. In our case, we define the ABO hashing mode directly
with respect to x∗. We do so out of two reasons. One is that for an abstract
paradigm it is more preferable to minimize the dependence on other primitives,
while the other is that the proof for the transformation from IB-EHPS to CCA-
secure IBE would be rather clean and simple. Nevertheless, TCR hash function
turns out to be a useful tool when instantiating EHPS/IB-EHPS from concrete
number-theoretic assumptions.

4 Generic Constructions from Identity-Based Extractable
Hash Proofs

In this section, we present the generic constructions of IBE from (ABO) IB-
EHPS. As a warm up, we first show the transformation from IB-EHPS to
adaptive-identity CPA-secure IBE, then the transformation from ABO IB-EHPS
to adaptive-identity CCA-secure IBE. Before going into details, we first give an
intuitive explanation of the constructions from IB-EHPS to IBE with respect
to the underlying relation. Suppose that the binary relation of an IB-EHPS is
Rpp and (x,w) is a tuple that belongs to Rpp. The overall construction is: first
encrypt (or commit to) a fresh DEM key (the corresponding witness is w) which
is in turn used to encrypt the actual message, and then provide an identity-based
extractable hash proof y = Hmpk(id, x) (which is also zero-knowledge) of the key.
The ciphertext is of the form (x, y). In fact, such an approach was used implicitly
in the PKE schemes based on computational assumptions and its connection to
the Rackoff-Simon paradigm [27] was made explicit in [31]. Here we make its link
to the underlying relation R clear. It is useful to note the distinguished feature
in the construction from IB-EHPS to IBE that the value w (used to compute
the session key) is uniquely determined by PP and the random coins used by
SampR. This explains why IB-EHPS cannot encompass the IBE schemes whose
session keys are related to the identity, e.g. Boneh-Franklin IBE [7].

4.1 IND-ID-CPA Secure IBE

Starting from an IB-EHPS (SetupExt, SetupHash, Pub, Priv, Ext, KeyGen,
KeyGen∗) associating with a one-way relation instance (X,W,PP,Rpp) and a
hash family H = (H,MPK, I,X, Y ), we construct an IB-KEM as follows:

– Setup(κ): same as SetupExt(PP) in IB-EHPS.
– KeyGen(msk, id): same as KeyGen(msk, id) in IB-EHPS.
– Encap(id): samples (x,w) ← SampR(r), computes y = Pub(mpk, id, r), and

returns a ciphertext c = (x, y) and a DEM key k = F(w),
– Decap(sk, c): parses c as (x, y), and returns F(Ext(sk, x, y)).

The functionality of the above IB-KEM follows readily from the correctness of
the extraction mode. For the security, we have the following theorem whose proof
appears in the full version of this paper.
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Theorem 4.1 If Rpp is a one-way relation and the IB-EHPS is (Qe, δ)-well-
partition, then the above IB-KEM is IND-ID-CPA secure as long as δ is non-
negligible.

4.2 IND-ID-CCA Secure IBE

Starting from an ABO IB-EHPS (SetupExt, SetupABO, Pub, Priv, Verify, Verify∗,
Ext, Ext∗, KeyGen, KeyGen∗) for a one-way relation instance (X,W,PP,Rpp) and
a hash family H = (H,MPK, I,X, Y ), we construct an IB-KEM as follows:

– Setup(κ): same as SetupExt(PP, SP) in ABO IB-EHPS.
– KeyGen(msk, id): same as KeyGen(msk, id) in ABO IB-EHPS.
– Encap(id): samples (x,w) ← SampR(r), computes y = Pub(mpk, id, r), and

returns a ciphertext c = (x, y) and a associated DEM key k = F(w).
– Decap(sk, c): parses c as (x, y), and returns F(Ext(sk, x, y)).

The functionality of the above IB-KEM follows readily from the correctness of
the extraction mode. For the security, we have the following theorem.

Theorem 4.2 If Rpp is a one-way relation and the ABO IB-EHPS is
(Qe, Qd, δ)-well-partition, then the above IB-KEM is IND-ID-CCA secure as long
as δ is non-negligible.

Proof. To establish the IND-ID-CCA security based on the one-wayness of rela-
tion Rpp, we proceed via a sequence of games. Let A be the event that A wins
in Game CCA, and Ai be the event that A wins in Game i.

Game CCA. Given PP and SP, CH plays with A in the following game.
Setup: CH generates (mpk,msk)→ SetupExt(PP, SP) and gives mpk to A.
Phase 1 - Private key queries: When A submits a private key query 〈id〉,
CH responds with KeyGen(msk, id).
Phase 1 - Decapsulation queries: When A submits a decapsulation query
〈id, c = (x, y)〉, CH extracts sk = KeyGen(msk, id) and responds with
Ext(sk, x, y).
Challenge: When A submits a target identity id∗ such that id∗ did not appear
in any private key query in Phase 1, CH samples (x∗, w∗) ← SampR(r∗) and
computes y∗ = Hmpk(id

∗, x∗) via Pub(mpk, id∗, r∗), then sets k∗0 = F(w∗) and

k∗1
R←− {0, 1}l. CH picks β

R←− {0, 1} and returns (x∗, y∗, k∗β) to A as the challenge.
Phase 2 - Private key queries: Same as in Phase 1 except that the query
〈id∗〉 is not allowed.
Phase 2 - Decapsulation queries: Same as in Phase 1 except that the query
〈id∗, x∗, y∗〉 is not allowed.
Guess: A outputs its guess β′ for β and wins if β′ = β.

A’s view in Game CCA is identical to the standard IND-ID-CCA game, thus

Pr[A] = 1/2 + AdvCCA
A (κ) (5)
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Game 0. Given PP and PP, CH plays with A in the following game.
Setup: Same as in Sub-Game 0 for ABO IB-EHPS.
Phase 1 - Private key queries: Same as in Sub-Game 0 for ABO IB-EHPS.
Phase 1 - Decapsulation queries: Same as in Sub-Game 0 for ABO IB-EHPS.
Challenge. Same as the Phase Middle in Sub-Game 0 for ABO IB-EHPS.
Phase 2 - Private key queries: Same as in Sub-Game 0 for ABO IB-EHPS.
Phase 2 - Decapsulation queries: Same as in Sub-Game 0 for ABO IB-EHPS.
Guess: A outputs its guess β′ for β and wins if β = β′.

Observe thatA’s view in Game 0 is essentially the same as in Sub-Game 0. There
are two differences between Game 0 and Game CCA: 1) in Game 0 the challenger
samples (x∗, w∗) at the setup phase while in Game CCA the challenger samples
(x∗, w∗) at the challenge phase. It is easy to see that this difference is invisible
in A’s view. 2) in Game 0 the challenger will return ⊥ when encountering a
decapsulation query with x = x∗ in Phase 1. We conclude that A’s view in
Game 0 is identical to Game CCA if the event that in Phase 1 A submits a
decapsulation query with x = x∗ does not happen, whose probability is at most
Qd/|X |. Thus we have |Pr[A0]− Pr[A]| ≤ Qd/|X |. Since Qd = poly(κ), we have
that Qd/|X | = negl(κ) and hence Pr[A0] ≈ Pr[A]. We claim that AdvCCA

A =
negl(κ) based on the one-wayness of Rpp. Suppose that there exists an algorithm
A whose advantage against the CCA-security of IB-KEM is not negligible in
κ, then we can construct an adversary B breaking the pseudo-randomness of F,
which is sufficient to prove CCA-security under the one-wayness of Rpp.

Game 1. B receives a challenge instance (PP, x∗, k∗), where x∗ is picked from the
tuple (x∗, w∗) ∈ Rpp generated by SampR(r∗) and k∗ is either F(w∗) or randomly

picked from {0, 1}l. B is asked to determine k∗ = F(w∗) or k∗ R←− {0, 1}l. B plays
with A in the following game.
Setup: B operates as CH does in Sub-Game 1 for ABO IB-EHPS except that
B skips the sampling step.
Phase 1 - Private key queries: B operates as CH does in Sub-Game 1 for
ABO IB-EHPS.
Phase 1 - Decapsulation queries: B operates as CH processes the decapsu-
lation queries in Sub-Game 1 for ABO IB-EHPS.
Challenge: When A submits a target identity id∗ on the condition that id∗ did
not appear in any private key query in Phase 1, B computes y∗ = Hmpk(id

∗, x∗)
via Priv(msk∗, id∗, x∗), then instead of creating the challenge by explicitly gen-
erating a random bit β, it sends (x∗, y∗, k∗) to A as the challenge.
Phase 2 - Private key queries: B operates as CH does in Sub-Game 1 for
ABO IB-EHPS.
Phase 2 - Decapsulation queries: B operates as CH processes the decapsu-
lation queries in Sub-Game 1 for ABO IB-EHPS.
Guess: A outputs its guess β′ for β and B forwards β′ to its own challenger.

Observe that A’s view in Game 1 is essentially the same as Sub-Game 1. Since
the underlying ABO IB-EHPS is (Qe, Qd, δ)-well-partition, then we conclude
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that B can break the pseudo-randomness of F with advantage:

AdvB = |(1 − δ)/2 + δ · Pr[A0]− 1/2| = δ · |Pr[A0]− 1/2| ≈ δ · AdvCCA
A

If δ is non-negligible, then the above IB-KEM is IND-ID-CCA secure based on
the one-wayness of Rpp. This proves the theorem. ��

5 Instantiations of IB-EHPS

ABO IB-EHPS for the BDH Relation

We first run SampS(κ) to generate an instance (X,W,PP,Rpp) of the BDH re-
lation defined in Section 2.4, where X = G, W = GT , PP = (g, ga, gb). G and G

are two groups of prime order p and equipped with bilinear map e : G×G→ GT ,
and g is a random generator of G. The random coins SP consumed by SampS
consists of (a, b) ∈ Z2

p and the randomness used to pick g. For the choice of
H = (H,MPK, I,X, Y ), let MPK = G5+n for some integer n, I = {0, 1}n,
Y = G2. We write u for a n-length vector (u1, . . . , un) hereafter. We also need a
TCR hash function TCR from G to Zp. For mpk = (g, g′1, g1, g2, u0, u) ∈MPK,
we define:

Hmpk(id, x) = (y1, y2) := ((gt1g
′
1)

r , F (id)r)

Here x = gr, t = TCR(x), and F (id) = u0

∏n
i=1 u

idi

i (idi denotes the i-th bit of
identity id) is known as Waters-hash.

Extraction Mode

– SetupExt(PP, SP): sets g = g, g1 = ga, g2 = gb (from PP), picks g′1, u0
R←− G,

u
R←− Gn, and returns mpk = (g, g′1, g1, g2, u0, u), msk = a (from SP).

– Pub(mpk, id, r): returns (y1, y2) = ((gt1g
′
1)

r, F (id)r) where t = TCR(gr).

– KeyGen(msk, id): picks s
R←− Zp, and returns sk = (ga2F (id)s, gs).

– Verify(id, sk, x, y): parses y as (y1, y2), computes t = TCR(x), if e(x, gt1g
′
1) =

e(g, y1) and e(x, F (id)) = e(g, y2) returns 1, else returns 0.
– Ext(sk, x, y): parses sk as (sk1, sk2) and y as (y1, y2), if Verify(id, sk, x, y) = 1

then returns e(x, sk1)/e(y2, sk2), else returns ⊥.
The correctness of extraction follows from the following simple calculation:

y = ((gt1g
′
1)

r, F (I)r) = Hmpk(I, u) =⇒ e(x, ga2F (I)s)/e(y2, g
s) = e(g1, g2)

r

ABO Hashing Mode

– SetupABO(PP, x∗): sets g = g, g1 = ga, g2 = gb (from PP), picks d
R←−

Zp, computes t∗ = TCR(x∗), sets g′1 = g−t∗
1 gd; sets m = 2(Qe + Qd), and

chooses k
R←− [n + 1]; picks α′ R←− Zm, α

R←− Zn
m, β′ R←− Zp, β

R←− Zn
p ,

sets u0 = gp−km+α′
2 gβ

′
and ui = gαi

2 gβi for 1 ≤ i ≤ n; returns mpk =
(g, g′1, g1, g2, u0, u),msk∗ = (t∗, d, α′, α, β′, β). For ease of narration we define
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two functions, namely J(id) = (p −mk) + α′ +
∑

αiidi and K(id) = β′ +
∑

βiidi. Hence F (id) is essentially of the form g
J(id)
2 gK(id). The structure

of mpk implicitly splits the whole identity space I into I1 and I2. For an
identity id ∈ I, if J(id) 
= p it belongs to I1, otherwise it belongs to I2.

– Priv(msk∗, id, x): if id ∈ I2 and x = x∗ returns (y1, y2) = ((x∗)d, (x∗)K(id)),
else returns ⊥.

– Verify∗(id,msk∗, x, y): same as Verify.

– KeyGen∗(msk∗, id): if id /∈ I1 returns ⊥, else picks s
R←− Zp and returns

sk = (sk1, sk2) =

(
g

−K(id)
J(id)

1 F (id)s, g
−1

J(id)

1 gs
)

– Ext∗(msk∗, x, y): parses y as (y1, y2), if Verify
∗(id,msk∗, x, y) = 1 and t 
= t∗

then returns e((y1/x
d)1/(t−t∗), g2) where t = TCR(x), else returns ⊥.

The correctness of ABO hashing mode follows from the following two facts:

1. If id ∈ I2 and x = x∗, we have Priv(msk∗, id, x∗) = ((x∗)d, (x∗)K(id)) =
((gd)r

∗
, (gK(id))r

∗
) = ((gt

∗
1 g′1)

r∗ , F (id)r
∗
) = Hmpk(id, x

∗).
2. If x 
= x∗, then ((gt1g

′
1)

r , F (id)r) = Hmpk(id, x) =⇒ e((y1/x
d)1/(t−t∗), g2) =

e(g1, g2)
r), where t = TCR(x). The property of TCR ensures that t = t∗

holds with overwhelming probability when x = x∗.

The indistinguishability is established from the following two facts:

1. The distribution of mpk in both modes are identical.
2. For any mpk and any identity id ∈ I1, the output of KeyGen(msk, id) and

KeyGen∗(msk∗, id) are statistically indistinguishable. To see this, let s̃ =
s− a/J(id), we have

sk1 = g
−K(id)
J(id)

1 F (id)s = g
−K(id)
J(id)

1 (g
J(id)
2 gK(id))s = ga2F (id)s−

a
J(id) = ga2F (id)s̃

sk2 = g
−1

J(id)

1 gs = gs−
a

J(id) = gs̃

Since s is uniform in Zp, then s̃ is also uniform in Zp. Thereby the distribution
of KeyGen(msk, id) and KeyGen∗(msk∗, id) are identical.

Follow the same analysis in [23], the above IB-EHPS is (Qe, Qd, δ)-well-partition,
where δ ≥ 1

8(n+1)(Qe+Qd)
. Applying the transformation in Section 4.2 to this

ABO IB-EHPS, we obtain an IB-KEM (see Fig. 1), which can be viewed as a
variant of the IB-KEM in [23]. Combining theorem 4.2, we conclude that this
IB-KEM is IND-ID-CCA secure based the CBDH assumption.

ABO IB-EHPS for the mBDH Relation

Based on the modified bilinear Diffie-Hellman relation Rmbdh
pp , we can create an

ABO IB-EHPS whose Ext and Ext∗ algorithms implement the “implicitly rejec-
tion” idea. Applying the transformation from Section 4.2 to the ABO IB-EHPS,
we obtain a CCA-secure IB-KEM based on the mBDH assumption (see Fig. 2),
which is a variant of the IB-KEM in [24].
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Setup(κ): Extract(msk, I)

g, g′1, g2, u0
R←− G, u

R←− G
n; a

R←− Zp s
R←− Zp

F (id) = u0

∏n
i=1 u

idi
i sk = (ga2F (id)s, gs)

mpk = (g, g1 = ga, g′1, g2, u0, u); msk = a return sk
return (mpk,msk)

Encap(id) Decap(sk, c)

r
R←− Zp, x← gr parse sk as (sk1, sk2), c as (x, y1, y2)

t← TCR(x) t = TCR(x)
y1 = (gt1g

′
1)

r, y2 = F (id)r If e(x, gt1g
′
1) �= e(g, y1) or

k ← GL(e(g1, g2)
r) e(x,F (id)) �= e(g, y2), then return ⊥

return c = (x, y1, y2) else return GL(e(x, sk1)/e(y2, sk2))

Fig. 1. An IND-ID-CCA secure IB-KEM based on BDH (variant of [23])

Setup(κ): Extract(msk, I)

g, g2, u0
R←− G, u

R←− G
n; a

R←− Zp s
R←− Zp

F (id) = u0

∏n
i=1 u

idi
i sk = (ga2F (id)s, g−s, gs2)

mpk = (g, g1 = ga, g2, u0, u); msk = a return sk
return (mpk,msk)

Encap(id) Decap(sk, c)

r
R←− Zp, x← gr, t← TCR(x) parse sk as (sk1, sk2, sk3), c as (x, y)

y = (F (id)gt2)
r, k ← GL(e(g1, g2)

r) t = TCR(x)
return c = (x, y) return GL(e(x, sk1 · skt

3) · e(y, sk2))

Fig. 2. An IND-ID-CCA secure IB-KEM based on mBDH (variant of [24])

6 Extension

We also put forward the notion of dual ABO IB-EHPS, which can be viewed as
a special case of ABO IB-EHPS whose I2 contains a single point id∗. The term
“dual ABO” reflects that the algorithm Priv returns Hmpk(id, x) only on the point
that id = id∗ and x = x∗. The dual ABO IB-EHPS turns out to be a useful
paradigm for constructing selective-identity CCA-secure IB-KEM. In particular,
the instantiation of dual ABO IB-EHPS from the BDH relation serves as a
clarification of all the known selective-identity CCA-secure IB-KEMs [11,14,19]
based on the CBDH assumption. Due to space limit, we include this part in the
full version of this paper.
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