
Accelerator-Based implementation

of the Harris Algorithm�

Claude Tadonki1, Lionel Lacassagne2,
Elwardani Dadi3, and Mostafa El Daoudi3

1 Mines ParisTech - Centre de Recherche en informatique,
Mathématiques et systèmes 35, rue Saint Honoré,

77305 Fontainebleau Cedex, France
claude.tadonki@mines-paristech.fr

2 Institute of Fundamendal Electronics,
University of Orsay, Faculty of Sciences, Bat. 220,

91405 Orsay Cedex, France
3 Université Mohamed Premier Oujda,

Boulevard Mohamed VI, Oujda, Morocco

Abstract. Real-time implementations of corner detection is crucial as it
is a key ingredient for other image processing kernels like pattern recogni-
tion and motion detection. Indeed, motion detection requires the analysis
of a continuous flow of images, thus a real-time processing implies the
use of highly optimized subroutines. We consider a tiled implementa-
tion of the Harris corner detection algorithm on the CELL processor.
The algorithm is a chain of local operators applied to each pixel and
its periphery. Such a special memory access pattern clearly exacerbates
on the hierarchy transition penalty. In order to reduce the consequent
time overhead, tiling is a commonly considered way. When it comes to
image processing filters, incoming tiles are overdimensioned to include
their neighborhood, necessary to update border pixels. As the volume of
”extra data” depends on the tile shape, we need to find a good tiling
strategy. On the CELL, such investigation is not directly possible with
native DMA routines. We overcome the problem by enhancing the DMA
mechanism to operate with non conventional requests. Based on this ex-
tension, we proceed with experiments on the CELL with a wide range of
tile sizes and shapes, thus trying to confirm our intuition on the optimal
configuration.

Keywords: Accelerator, CELL BE, Harris, image processing, tiling,
DMA.

1 Introduction

The common characteristic of image processing algorithms is the heavy use
of basic operators. Indeed, the typical scheme is a repetitive application of

� Work jointly supported by ANR projects Ocelle and PetaQCD, also by the Excellence
Grant of Moroccan Ministry of Higher Education. Grant No. G 08/004.

A. Elmoataz et al. (Eds.): ICISP 2012, LNCS 7340, pp. 485–492, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



486 C. Tadonki et al.

linear and local kernels at the pixel level. The fact that each output pixel is
obtained from the corresponding input pixel and it periphery breaks any hope
of regular memory access, thus making it hard to achieve real-time performance
implementations.

The Harris algorithm [4] for corner detection is an interesting case study ap-
plication because it allows various implementation and optimization strategies
[6]. Among these possibilities, tiling [10] is potentially attractive as it can be
considered inside any valid scheduling as a an additional (memory) optimiza-
tion. However, tiling on the CELL cannot be directly implemented because of
data alignment constraints when using native DMA routines. Because of this
constraint, tiles corresponding to contiguous memory region (full row tiles for
instance) are used most of the time. Thus, their is no choice for the tile shape.

Tile shape restriction is particularly frustrating with image processing oper-
ators because either it does not allow the use of a predicted optimal tile shape,
or it acts as a runtime bottleneck. The later could occurs, for instance, with
an image so large that the SPE local store cannot hold three of its entire rows
(one active row plus its top and bottom neighborhoods). Data alignment is an-
other critical requirement. On this paper, we focus on the problem and provide a
seamless effective solution. We study the effect of tiling and report experimental
results driven by theoretical predictions. Our approach is more general for an
accelerated-based computation, we chose CELL BE to illustrate our strategy.

The rest of the paper is organized as follows. The next section presents an
overview of the CELL Broadband Engine. We describe the Harris-Stephens al-
gorithm and some implementation considerations in Section 3. In Section 4, we
discuss about tiling and predict the optimal tile shape. This is followed in Sec-
tion 5 by an outline of the DMA issue when consider general tile shapes and
what we provide to overcome the problem. Section 6 presents and analyses our
experimental result according to our predictions. Section 7 concludes the paper.

2 The CELL Broadband Engine

Designed to provide a real-time processing response and a high-bandwidth net-
work, the CELL [1,5] is a multi-core chip composed of nine processing elements.
One core, the POWER Processing Element (PPE), is a 64-bit Power Architecture
acting as a kind of master. The remaining eight cores, the Synergistic Processing
Elements (SPEs), RISC architecture with SIMD organization with 128-bit vec-
tor registers and 256 KB of local memory, referred to as local store (LS). Each
SPE has a clock speed of 4 Ghz (3.2 Ghz in average), with a peak performance
of 256 GFlops (single precision) and 26 GFlops (double precision). The chip can
handle 128 concurrent transactions to memory per processor. Figure 1 provides
a synthetic view of the CELL architecture [5].



Accelerator-Based implementation of the Harris Algorithm 487

Fig. 1. Cell Chip Block Diagram

Programming the CELL is mainly a mixture of single instruction multiple data
parallelism, instruction level parallelismand thread-level parallelism.The chipwas
primarily intended for digital image/videoprocessing, butwas immediately consid-
ered for general purpose scientific programming (see [9] for an exhaustive report on
the potential of the CELL BE for several key scientific computing kernels). A spe-
cific consideration for QR factorization is presented in [2]. Nevertheless, exploiting
the capabilities of the CELL in a standard programming context is really challeng-
ing. The programmer has to deal with hardware and software constraints like data
alignment, local store size, double precision penalty, different level of parallelism.
Efficient implementation on the CELL is commonly a conjunction of a good com-
putation/DMA overlap and a heavy use of the SPU intrinsics.

3 The Harris-Stephen Algorithm

Harris and Stephen [4] interest point detection algorithm is an improved variant
of the Moravec corner detector [7], used in computer vision for feature extraction
like motion detection, image matching, tracking, 3D reconstruction and object
recognition. Figure 2 illustrates the use of the algorithm.

Fig. 2. Illustration of the Harris-Stephens procedure



488 C. Tadonki et al.

The algorithm is mainly a succession of local operators implementing a dis-
crete form of an autocorrelation S, given by

S(x, y) =
∑

u,v

w(u, v)[I(x, y) − I(x− u, y − v)]2, (1)

where (x, y) is the location of a pixel with color value I(x, y), and u, v ∈ 1, 2, 3
model the move on each dimension. At a given point (x, y) of the image, the
value of S(x, y) is compared to a suitable threshold, and the decision follows on
the nature of the pixel at (x, y). Roughly speaking, the process is achieved by
applying four discrete operators, namely Sobel (S), Multiplication (M), Gauss
(G), and Coarsity (C). Figure 3 displays an overview of the global workflow.

Fig. 3. Harris algorithm diagram

Multiplication and Coarsity are point to point operators, while Sobel and
Gauss, which approximate the first and second derivatives, are 9 → 1 or 3 × 3
operators defined by

Sx =
1

8

⎛

⎝
−1 0 1
−2 0 2
−1 0 1

⎞

⎠ Sy = 1
8

⎛

⎝
−1 −2 −1
0 0 0
1 2 1

⎞

⎠ (2)

G =
1

16

⎛

⎝
1 2 1
2 4 2
1 2 1

⎞

⎠ (3)

Applying a 3 × 3 operator to a given pixel (x, y) consists in a point-to-point
multiplication of the corresponding 3× 3 matrix by the following pixels matrix

⎛

⎝
I(x− 1, y − 1) I(x− 1, y) I(x− 1, y + 1)
I(x, y − 1) I(x, y) I(x, y + 1)

I(x+ 1, y − 1) I(x+ 1, y) I(x+ 1, y + 1)

⎞

⎠ (4)

Here comes the notion of border. In order to compute an output pixel O(x, y),
we need the pixel I(x, y) and its immediate periphery. We say the operator is of
depth 1. Operator depth is additive, means that if two operators f and g are of
depth p and q respectively, then the depth of f ◦ g is p+ q. Three problems are
raised by the way operators are applied:



Accelerator-Based implementation of the Harris Algorithm 489

• accessing the points at the periphery yields an irregular memory access pat-
tern, which is a serious performance issue

• computing two consecutive points involves some reused pixels (those on their
common border). This yields a memory access redundancy, thus another
performance issue

• applying each operator separately implies several read and write operations
on the main memory (same location or not), yet another source of perfor-
mance penalty

There are several ways to deal with the above problems. One way is to fuse
or chain consecutive operators whenever possible. This overcome the repetitive
read/write of the entire image, at the price of data and computation redundancy
(more border pixels), thus should be done under a certain compromise. The
first two issues are well tackled by tiling, which could be considered with fused
operators. Although tiling is a more general technique, we really need a specific
analysis in order to understand how the extra data that covers each incoming
tile affect the global performance when dealing with operator-based algorithms.

4 Tiling Consideration

When applying an operator to a given tile, we need some extra pixels for the
calculation of border pixels. This means that, applying the Sobel operator to a
a × b tile yields a (a − 1) × (b − 1) tile. This aspect is usually referred in the
reverse side, means that we require a (a + k) × (b + k) tile in order to produce
a a × b tile, where k is the depth of the operator. Redundant reads/writes and
computations occur within the border, whose the volume depends on the tile
shape. Indeed, since (a+ k)× (b + k) = ab + k(a+ b) + k2 ≈ ab + k(a+ b), we
see that the volume of the border is k(a + b) for a a × b tile. Here comes the
question about the optimal tile shape for a fixed tile volume (typically derived
from memory constraints). We give the answer in proposition 1.

Proposition 1. The optimal tile shape over the set of tiles with equal volume
is a square tile.

Proof. We need to minimize

M(a, b) = (a+ b)
W ×H

ab
, (5)

where ab = λ (constant). Indeed, W×H
ab is the number of a×b tiles on the W ×H

region, and the border of a a× b tile is proportional to (a+ b). Reporting b = λ
a

in (5) yields

M(a, λ) = (a+
λ

a
)
W ×H

λ
, (6)

and we get
∂M

∂a
= (1− λ

a2
)
W ×H

λ
. (7)

Thus, ∂M
∂a = 0 gives a =

√
λ and then b = λ√

λ
=

√
λ, i.e. a = b.



490 C. Tadonki et al.

This result is important, provided the possibility to use any expected tile shape.
We made this possible by encapsulating the necessary DMA into a single and
generic routine. The result is general, but we need to check it for the case of
the CELL because of the special access to the main memory. We use a scalar
implementation of the operators and consider a full fused form of the Harris-
Stephens algorithm.

5 DMA Issue with Standard Tiles

The problem we want to solve can be stated as follows. Given Mp, a np ×mp

matrix on the main memory, and Ms, a ns ×ms matrix on the local store. We
need to copy the a× b submatrix of Ap located at (ip, jp) into As at the location
(is, js). Figure 4 depicts the task.

Main memory: np = 6, mp = 10, ip = 2, jp = 4
Local store: ns = 5, ms = 7, is = 2, js = 2

a = 3, b = 4

Fig. 4. Generic DMA pattern

Performing the transfer expressed in figure 4 raises number of problems:

• the region to be transfered is not contiguous on memory, thus list DMAs are
used most of the time

• the address of one given row is not aligned, thus the global list DMA is not
possible

• the (address, volume) pair of a row does not match the basic DMA rules
(the above two ones), thus the entire list DMA cannot be carried out

• misalignment could come from both sides (main memory and/or local store)

• the target region on the local store might be out of the container limits

It is important to overcome the above problems at the minimum cost, since the
consequent (pre/post)processing is an overhead for the programmer. To do so,
we encapsulate all necessary (pre/post)processing into a single generic DMA
subroutine. Roughly speaking, we perform either a direct DMA or a list DMA
(one DMA per line of the tile), taking care of the above issues.



Accelerator-Based implementation of the Harris Algorithm 491

6 Experimental Results

We now proceed to some experimentations. The goal is to validate our implemen-
tation over various tile shapes, and see how close we are regarding our prediction
on the optimal tile shape. Our program runs from the PPE and cooperate with
one SPE. For each image, we chose a fixed tile volume and iterate on various
shapes.

Table 1. Timings on a 512× 512 image

tileh tilew total time(s)

8 512 0.0494

16 256 0.0598

32 128 0.0485

64 64 0.0345

128 32 0.0517

256 16 0.0699

512 8 0.0734

Table 2. Timings on a 2048× 512 image

tileh tilew total time(s)

8 512 0.198

16 256 0.238

32 128 0.187

64 64 0.110

128 32 0.180

256 16 0.218

512 8 0.352

Table 3. Timings on a 1200× 1200
image

tileh tilew total time(s)

5 1200 0.494

10 600 0.360

20 300 0.264

40 150 0.235

80 75 0.183

160 37 0.247

320 18 0.275

Table 4. Timings on a 2048× 2048
image

tileh tilew total time(s)

8 512 0.985

16 256 0.726

32 128 0.643

64 64 0.438

128 32 0.692

256 16 0.866

512 8 1.422

We see that the most squared tile always gives the best global performance.
The difference is marginal with closest shapes, but we should keep in mind that
the typical use of the algorithm is with a flow of images. Our implementation does
not overlap DMA with computations because of memory postprocessing due to
misalignment. For wider images (Figures 3 and 4), we see that the improvement
is more than 50% compared to full row tiles. We emphasize on the extra cost for
managing irregular DMAs, although our implementation seems to perform well.
The main difference between full row tiles and the others is that, for the later,
DMA list is always necessary. Thus, the compromise here is between irregular
DMAs and redundancies. Our experimental results clearly show that it still
advisable to consider tiles with balanced dimensions.



492 C. Tadonki et al.

7 Conclusion

The Harris-Stephens algorithm is a classical procedure in computer vision. From
a programming point of view, it offers a wide range of optimization possibilities,
each of them being appropriate for specific architecture. Since the CELL pro-
cessor suits for image/video processing, investigating on the implementation of
the Harris-Stephens algorithm is quite relevant, having in mind the impact on
a stream processing context. In our work, we consider a tiled implementation
based on a fused version of the algorithm. Using on our implementation of ”ir-
regular” DMAs, we provide a blocked implementation of the algorithm and we
validate the optimal tile shape prediction. For absolute performances, we need to
optimize our implementation of the basic operator (mainly with SPU intrinsics)
and study how to overlap DMAs and computations. Due to the current status
of the CELL BE, we plan to test our method on GPUs, and then consider the
aforementioned issues in a more global context.

References

1. Cell SDK 3.0, www.ibm.com/developerworks/power/cell
2. Kurzak, J., Dongarra, J.: QR factorization for the Cell Broadband Engine. Scien-

tific Programming 17(1-2), 31–42 (2009)
3. http://www.gnu.org/software/octave/

4. Harris, C., Stephens, M.: A combined corner and edge detector. In: 4th ALVEY
Vision Conference (1988)

5. Peter Hofstee, H.: Power Efficient Processor Design and the Cell Processor,
http://www.hpcaconf.org/hpca11/slides/Cell_Public_Hofstee.pdf

6. Saidani, T., Lacassagne, L., Falcou, J., Tadonki, C., Bouaziz, S.: Parallelization
Schemes for Memory Optimization on the Cell Processor: A Case Study on the
Harris Corner Detector. HIPEAC Journal (2009)

7. Moravec, H.: Obstacle avoidance and navigation in the real world by a seeing robot
rover. In: Tech. report CMU-RI-TR-80-03, Robotics Institute, Carnegie Mellon
University & doctoral dissertation, Stanford University (September 1980)

8. Sen, S., Chatterjee, S.: Towards a theory of cache-efficient algorithms. In: SODA
(2000)

9. Williams, S., Shalf, J., Oliker, L., Kamil, S., Husbands, P., Yelick, K.: Scientific
Computing Kernels on the Cell Processor. International Journal of Parallel Pro-
gramming (2007)

10. Xue, J.: Loop tiling for parallelism. Kluwer (2000)

www.ibm.com/developerworks/power/cell
http://www.gnu.org/software/octave/
http://www.hpcaconf.org/hpca11/slides/Cell_Public_Hofstee.pdf

	Accelerator-Based implementation of the Harris Algorithm
	Introduction
	The CELL Broadband Engine
	The Harris-Stephen Algorithm
	Tiling Consideration
	DMA Issue with Standard Tiles
	Experimental Results
	Conclusion
	References




