
Improved Artificial Negative Event Generation
to Enhance Process Event Logs

Seppe K.L.M. vanden Broucke, Jochen De Weerdt,
Bart Baesens, and Jan Vanthienen

Department of Decision Sciences and Information Management, KU Leuven,
University of Leuven, Naamsestraat 69, B-3000, Leuven, Belgium

firstname.lastname@econ.kuleuven.be

Abstract. Process mining is the research area that is concerned with
knowledge discovery from event logs. Process mining faces notable dif-
ficulties. One is that process mining is commonly limited to the harder
setting of unsupervised learning, since negative information about state
transitions that were prevented from taking place (i.e. negative events) is
often unavailable in real-life event logs. We propose a method to enhance
process event logs with artificially generated negative events, striving
towards the induction of a set of negative examples that is both cor-
rect (containing no false negative events) and complete (containing all,
non-trivial negative events). Such generated sets of negative events can
advantageously be applied for discovery and evaluation purposes, and in
auditing and compliance settings.

Keywords: process mining, process discovery, event logs, negative events.

1 Introduction

Many of today’s organizations are currently confronted with an information para-
dox: the more business processes are automated, the harder it becomes to under-
stand and monitor them. While information support systems such as Enterprise
Resource planners (ERP) and modern Workflow Management systems (WfMS)
provide some analysis and visualization tools in order to monitor and inspect
processes – often based on key performance indicators, an abundance of data
about the way people conduct day-to-day practices still remains untapped and
concealed in so called event logs, capturing exactly which business activities
happened at certain moments in time. The research area that is concerned with
deep knowledge discovery from event logs is called process mining [1] and is
often situated at the intersection of the fields of data mining and Business Pro-
cess Management (BPM). Most of the attention in the process mining literature
has been given to process discovery techniques [2], which focus specifically on
the extraction of control-flow models from event logs [2, 3, 4, 5, 6]. One of the
particular difficulties process discovery is faced with is that the learning task is
commonly limited to the harder setting of unsupervised learning, since informa-
tion about state transitions (e.g. starting, completing) that were prevented from

J. Ralyté et al. (Eds.): CAiSE 2012, LNCS 7328, pp. 254–269, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Improved Artificial Negative Event Generation 255

taking place (i.e. negative events) is often unavailable in real-life event logs and
consequently cannot guide the discovery task [7]. In addition, process models
frequently display complex structural behavior such as non-free choice, invisible
activities (which were executed but not recorded in an event log) and duplicate
activities, which make the hypothesis space of process mining algorithms harder
to navigate. A third difficulty is the presence of noise in event logs, which often
leads to the discovery of models which overfit the given log. In this paper, we
focus our attention towards the first difficulty, namely the absence of negative
examples in event logs.

Generating a robust set of negative events boils down to finding an optimal
set of negative examples under the counteracting objectives of correctness and
completeness. Correctness implies that the generation of false negative events
has to be prevented, while completeness entails the induction of “non-trivial”
negative events, that is, negative events which are based on constraints imposed
by complex structural behavior, such as non-free choice constructs. The existence
of the trade-off between these two goals is due to a “completeness assumption”
one has to make over a given event log when generating artificial negative events.
Under its most strict form, the completeness assumption states that the given
event log contains all possible traces that can occur. Without some assumption
regarding the completeness of a given event log, it would be impossible to in-
duce any negative events at all, since no single candidate negative event can be
introduced in the knowledge that the given log does not cover all possible cases.
Note that process discovery algorithms make a similar assumption, in order to
derive models which are not overly general.

In this paper, we refine an artificial negative event generation method first
introduced in [7]. In the original version of this algorithm, a configurable com-
pleteness assumption is defined by proposing a window size parameter and a
negative event injection probability. We aim to make the completeness assump-
tion more configurable and the generation procedure more robust so that the
induction of false negative events in cases where an event log does not capture
all possible behavior is prevented (correctness), while also remaining able to de-
rive “non-trivial” negative events, that is, negative events following from complex
structural behavior (completeness).

Enhancing a process log with a correct and complete set of negative events
as shown hereafter can prove beneficial for a number of reasons. First, super-
vised learners can now be employed in order to perform a process discovery task.
Multi-relational learning techniques have already been applied in this context,
using inductive logic programming in order to learn a process model from a given
event log supplemented with negative events. We refer to [8, 9, 10, 11, 12] for
a detailed overview of inductive logic programming and its applications in the
field of process mining. Second, event logs supplemented with negative events
can also be applied towards evaluation purposes, in order to assess fitness and
precision of process discovery algorithms. For instance, the metrics in [7, 13]
make use of event logs containing negative events to compose a confusion ma-
trix in concordance with standard metric definitions in the field of data mining.

256 S.K.L.M. vanden Broucke et al.

Third, since negative events capture which actions in a process could not occur,
compliance and conformance related analysis tasks present themselves as a natu-
ral area of application for negative events. For example, auditors can cross-check
a set of induced negative events with the expected behavior of real-life processes
to determine if prohibited actions were indeed captured in this generated set of
rejected activity state transitions. Another specific example is access rule min-
ing. Often, users are not so much interested in the actual control policy already
present in a specific process, as this policy might already have been formally
specified, but rather in a more restrictive policy that reveals which access rules
are unnecessary. Negative events can then stipulate that a particular agent did
never perform a particular activity at a given time, even although it could be
the case that this agent officially had the rights to do so. In this way, learners
could distinguish access rules that are actually needed, instead of leaving the es-
tablishment of such rules and modifications of policies to modelers and business
practitioners alone. As shown hereafter, our contributions provide some impor-
tant benefits with regard to correctness and completeness when compared with
earlier techniques, allowing to improve the obtained results when executing the
aforementioned analysis tasks.

2 Related Work

Process mining is a relatively young research area. Cook and Wolf [14], Agrawal
et al. [15], Lyytinen and Datta et al. [16] and van der Aalst et al. [2] can be
considered as fundamental works in the field.

The notion of negative events was developed in the context of the applica-
tion of machine learning and classification techniques towards process discovery.
Maruster et al. [17] were among the first to investigate the use of rule-induction
techniques to predict dependency relationships between activities. The authors
do not rely on artificial negative event generation, but apply a uni-relational
classification learner on a table of direct metrics for each process activity in
relation to other activities. Ferreira and Ferreira [18] apply a combination of
inductive logic programming and partial-order planning techniques, where nega-
tive events are collected from users and domain experts. Similarly, Lamma et al.
[19] apply an logic programming towards declarative process discovery. Unlike
the approach in [18], the authors assume the presence of negative events, without
providing an immediate answer to their origin. In [9], the authors extend this
approach and define a “negation response” constraint in order to derive informa-
tion about which activities where prohibited to occur after some other activity
type. Our approach differs from these methods, since we apply a window based
trace comparison technique in order to derive negative events based on a given
process log, leading to a larger set of negative examples. Furthermore, instead of
deriving information about prohibited state transitions in the form of declarative
rules, we immediately inject the negative examples in the given traces.

Goedertier et al. [7] represent the process discovery task as a multi-relational
first-order classification learning problem and use the TILDE inductive logic

Improved Artificial Negative Event Generation 257

programming learner for their AGNEsMiner algorithm to induce a declarative
control flow model. To guide the learning process, an input event log is supple-
mented with artificial negative events by replaying the positive events of each
process instance and by checking if a state transition of interest corresponding
to a candidate negative event could occur, more specifically by investigating if
other traces can be found in the event log which do allow this state transition,
and present a similar history of completed activities.

3 Preliminaries

Before outlining the artificial negative event generation algorithm, some impor-
tant concepts and notations that are used in the remainder of this paper are
discussed.

An event log consists of events that pertain to process instances. A process
instance is defined as a logical grouping of activities whose state changes are
recorded as events. We thus assume that it is possible to record events such that
each event refers to a task (a step in a process instance), a case (the process
instance) and that events are totally ordered.

As such, let X be a set of event identifiers, P a set of case identifiers, the alpha-
bet A a set of activity types and the alphabet E a set of event types corresponding
with activity life cycle state transitions (e.g. start, assign, restart, complete,
etc.). An event can then be formulated as a predicate Event(x, p, a, e, t) with
x ∈ X the event identifier, p ∈ P the case identifier and a ∈ A the activity
type, e ∈ E the event type and t ∈ N the position of the event in its process se-
quence. Note that events commonly store much more information (timestamps,
originators, case data, etc.), but since we do not necessarily have to deal with
this additional information in the context of generating artificial negative events,
this information is left out in the remainder of this paper. Furthermore, we will
assume that the state transition e for each logged event equals complete. The
function Case ∈ X ∪L �→ P denotes the case identifier of an event or sequence.
The function Activity ∈ X �→ A denotes the activity type of an event.

Let event log L be a set of sequences. Let σ ∈ L be an event sequence;
σ = {x|x ∈ X ∧ Case(x) = Case(σ)}. The function Position ∈ X × L �→ N0
denotes the position of an event in its sequence. The set X of event identifiers
has a complete ordering, such that ∀x, y ∈ X : x < y ∨ y < x and ∀x, y ∈ σ, x <
y : Position(x) < Position(y). Let x.y ⊆ σ be two subsequent event identifiers
within a sequence σ; x.y ⇐ ∃x, y ∈ σ : x < y ∧ �z ∈ σ : x < z < y. We
will use this predicate in the context of single sequence which is therefore left
implicit. Furthermore, a sequence of two events x.y with activity types a and
b respectively can be abbreviated as 〈a, b〉. Each row σi in the event log now
represents a different execution sequence, corresponding to a particular process
instance, and can be depicted as 〈a, b, c, ..., z〉 with a, b, c, ..., z the activity types
of the ordered events contained in the sequence.

258 S.K.L.M. vanden Broucke et al.

4 Artificial Negative Event Generation Algorithm

In this section, the artificial negative event generation algorithm is discussed in
more detail. Since we extend the negative event generation algorithm as intro-
duced in AGNEsMiner, we will avoid describing some parts in excessive detail,
instead referring to [7] for a more detailed overview of some steps, allowing us
to focus on new contributions.

A high level overview of the algorithm can be given as follows. Negative events
record that at a given position in an event sequence, a particular event cannot
occur. At each position in each event trace in the log, it is examined which neg-
ative events can be recorded for this position. In a first step, frequent temporal
constraints are mined from the event log. Secondly, structural information is
derived from these frequent temporal constraints. Finally, negative events are
induced for each grouped process instance, based on two complementing gen-
eration techniques: a window based trace comparison routine and a structural
introspective technique which derives negative events from dependency informa-
tion mined from an event log.

4.1 Step 1: Mining Frequent Temporal Constraints

Frequent temporal constraints are constraints that hold in a sufficient number
of sequences σ within an event log L. The following list of predicates express
temporal constraints that either hold or not for a particular sequence σ ∈ L,
with a, b, c ∈ A activity types:

Existence(1,a,σ)⇔∃x∈σ:Activity(x)=a

Absence(2,a,σ)⇔�x,y∈σ:Activity(x)=a∧Activity(y)=a∧x �=y

Ordering(a,b,σ)⇔∀x,y∈σ,Activity(x)=a,Activity(y)=b:x.y

Precedence(a,b,σ)⇔∀y∈σ:Activity(y)=b,∃x∈σ:Activity(x)=a∧x<y

Response(a,b,σ)⇔∀x∈σ:Activity(x)=a,∃y∈σ:Activity(y)=b∧x<y

ChainPrec(a,b,σ)⇔∀y∈σ:Activity(y)=b,∃x∈σ:Activity(x)=a∧x.y

ChainResp(a,b,σ)⇔∀x∈σ:Activity(x)=a,∃y∈σ:Activity(y)=b∧x.y

ChainSeq(a,b,c,σ)⇔(∀z∈σ:Activity(z)=c,∃x,y∈σ:Activity(x)=a∧Activity(y)=b∧x.y.z)∨
(∀y∈σ:Activity(y)=b,∃x,z∈σ:Activity(x)=a∧Activity(z)=c∧x.y.z)∨
(∀x∈σ:Activity(x)=a,∃y,z∈σ:Activity(y)=b∧Activity(z)=c∧x.y.z)

For an event log L, a temporal constraint C is considered frequent if its support is
greater than or equal to a predefined threshold. Let C, D be temporal constraints.
The support for a temporal constraint can be defined as:

Suppσ∈L(C,L)=
|S|
|L|

for which S is a set containing the sequences σ for which C succeeds. Temporal
constraints can also be combined to form temporal association rules of the form
C → D. The support of an association rule is defined as:

Improved Artificial Negative Event Generation 259

Suppσ∈L(C→D,L)=Suppσ∈L(C,L)

The confidence of a temporal association rule is defined as:

Confσ∈L(C→D,L)=
Suppσ∈L(C∧D,L)

Suppσ∈L(C,L)

Temporal association rules are considered frequent if their support and confi-
dence are greater than or equal to a predefined threshold. Since some activities
occur more frequently than others in some event logs, the detection of frequent
patterns must not be sensitive to the frequency of occurrence of a particular
activity type in the event log. Consider for an example an event log L containing
a large number of traces that do not contain activity type a. When checking
the rule ChainResp(a, b, σ) over all traces in L, this expression will hold true
for all traces that do not contain a. Since these traces make up for a large part
of the event log, the support of ChainResp(a, b) would thus be high. To detect
frequent patterns in an event log, it is therefore more important to look at the
confidence of the association rule Existence(1, a, σ) → ChainResp(a, b, σ). The
following frequent temporal association rules are derived from an event log L
(left implicit):

Absence(2,a)⇐∀a∈A:Suppσ∈L(Absence(2,a,σ),L)≥tabsence

Ordering(a,b)⇐∀a,b∈A:Confσ∈L(Existence(1,a,σ)∧Existence(1,b,σ)→
Ordering(a,b,σ),L)≥tordering

Precedence(a,b)⇐∀a,b∈A:Confσ∈L(Existence(1,b,σ)→
Precedence(a,b,σ),L)≥tsuccession

Response(a,b)⇐∀a,b∈A:Confσ∈L(Existence(1,a,σ)→
Response(a,b,σ),L)≥tsuccession

ChainPrec(a,b)⇐∀a,b∈A:Confσ∈L(Existence(1,b,σ)→ChainPrec(a,b,σ),L)≥tchain

ChainResp(a,b)⇐∀a,b∈A:Confσ∈L(Existence(1,a,σ)→ChainResp(a,b,σ),L)≥tchain

ChainSeq(a,b,c)⇐∀a,b,c∈A:Confσ∈L(Existence(1,a,σ)∨Existence(1,b,σ)∨
Existence(1,c,σ))→ChainSeq(a,b,c,σ),L)≥ttriple

Remark that our definition of the Ordering and ChainSeq temporal constraints
and corresponding association rules differs from the original implementation so
that the detection of these patterns is no longer sensitive to the frequency of
occurrence of particular activity types. This is our first tangible improvement.
We also define the following additional temporal constraint:

Iteration(l,n,υ,σ)⇔∃s∈σ,t=Position(s,σ):Activity(s)=Activity(u)∧∀i∈[1,l],j∈[1,n]:

∀x∈σ,y∈υ,i=Position(y,υ),t+i+jl=Position(x,σ):

Activity(x)=Activity(y)∧l=|υ|,υ⊆σ,1=Position(u,υ)

260 S.K.L.M. vanden Broucke et al.

With the corresponding association rule:

Iteration(l,n,υ)⇐∀υ⊆σ,σ∈L,l=|υ|,n=2,0<l≤3:

Confσ∈L(∀x∈υ:Existence(1,Activity(x),σ)→
Iteration(l,n,v,σ))≥titeration

The Iteration temporal constraint holds in a sequence σ if another sequence υ
with length l iterates n times in σ. In order to keep the number of computations
under control, we limit the discovery of iterations to length 3 and less, which
repeat for minimally 2 times; n = 2 and 0 < l ≤ 3.

The derivation of temporal frequent constraints can be compared with the
more general problem of mining event sequences and episodes in an event log
using apriori-like techniques, see for instance [20, 21, 22]. An alternative but ulti-
mately similar method to mine structural behavior from an event log is suggested
by Maggi et al. [23], who apply temporal logic property verification techniques,
formalized in the Declare modeling language to discover structural behavior.

4.2 Step 2: Deriving Structural Information: Parallelism, Locality
and Recurrence

Now that a set of temporal frequent constraints is constructed, it becomes pos-
sible to derive information about parallelism and locality of pairs of activities.
Based on the constraints above, two derivation rules: Parallel(a, b) (symmetric)
and Local(a, b) (non-symmetric), can be defined. The former denotes that two
activities a, b ∈ A can occur concurrently, while the latter states that two ac-
tivities occur in a serial manner, denoting an explicit dependency. For a more
detailed description of these derivation rules, see [7].

Additionally, the Iteration temporal constraint as defined in the previous
section allows us to formulate a loop discovery heuristic. However, loops can-
not immediately be derived from the set of Iteration temporal constraints. To
see why this is the case, consider the sequence 〈a, b, c, d, b, c, d, b, c, d, e〉. The
following Iteration constraints hold in this sequence: Iteration(3, 2, 〈b, c, d〉),
Iteration(3, 2, 〈c, d, b〉) and Iteration(3, 2, 〈d, b, c〉). Since we are only concerned
with the loop following from the first Iteration constraint, with the start activity
in the correct, first position, we define Loop(υ) as such:

∀υ⊆σ,σ∈L,1=Position(u,υ),l=|υ|:Iteration(l,2,υ)∧∃a∈A:Local(a,u)⇒Loop(υ)

4.3 Step 3: Generating Artificial Negative Events

Window Based Negative Event Generation. Once parallelism, recurrence
and locality information is derived, negative examples can be introduced in given
process instances. Negative events record that at a particular position in an event
sequence, a particular event cannot occur. At each position k in each event
sequence τi, it is examined which negative events can be introduced at this

Improved Artificial Negative Event Generation 261

position. In a first step, the event log is made more compact by grouping process
instances that have identical sequences σ ∈ L into grouped process instances
τ ∈ M . In the next step, all negative events are induced for each grouped process
instance τi (the “positive trace” under consideration) by checking at any given
positive event xk ∈ τi whether another event of interest (a “candidate negative
event”) zk with activity type b ∈ A \ {Activity(xk)} also could occur. Thus,
for each positive event xk ∈ τi, it is tested whether there exists a sequence
τj �= τi ∈ M in the event log in which an event yk has taken place that is similar
to zk and where both sequences present a similar history up until that point.
Note that we consider two events being similar if their activity types are identical.
If such a similar “disproving sequence” can not be found, such behavior is not
present in the event log L, meaning that the candidate event indeed cannot occur.
Consequently, candidate negative event zk cannot be disproved and is added at
position k in the positive sequence τi. Finally, the negative events in the grouped
process instances are used to induce negative events into the similar non-grouped
sequences. Usually, a large number of negative events can be generated, so that
a probability π is introduced as a threshold for injecting negative events into the
ungrouped sequences.

To address the problematic nature of the completeness assumption of an event
log under recurrent (loops) and concurrent (parallelism) behavior, we exploit
the previously mined parallelism and loop information to generate parallel and
looping variants of traces, by swapping parallel activity types and inserting or
removing loops where possible. We now thus compare the positive trace under
consideration τi with each τ∼j ∈ AllV ariants(τj), with AllV ariants a function
which returns the set of all parallel and loop variants of sequence τj . Generat-
ing these variants results in a larger number of traces which will be used when
evaluating a negative event, thus resulting in a weaker completeness assump-
tion. The addition of the generation of variants based on recurrence is a second
contribution.

Even when parallel and loop variants are considered, incorrect negative events
could still be induced, due to the possible recursive and complex nature of recur-
rence and concurrency (nested loops, for example). Instead of trying to deal with
this complex behavior by adjusting the Loop and Iteration constraints further, a
window size parameter windowSize is introduced to limit the number of events
which are compared when evaluating a candidate negative event (i.e. how far we
look back before xk ∈ τi and yk ∈ τ∼j). The larger the window size, the less prob-
able that a similar subsequence is contained by the other sequences in the event
log, and the more probably that a candidate negative event will be introduced.
Reducing the window size makes the completeness assumption less strict. An un-
limited window size (a maximum-length comparison between sequences) results
in the most strict completeness assumption. Note that history-dependent pro-
cesses generally will require a larger window size to correctly detect all non-local
dependencies. When the window size is limited to 1, it is no longer possible to
take into account non-local dependencies, so that negative events following from
this behavior will not be generated. This underlines the trade-off as discussed

262 S.K.L.M. vanden Broucke et al.

before in the introduction. Using a higher window size leads to the generation
of more valuable negative events, that is, negative events derived from non-local
dependencies. On the other hand, using an increased window also leads to a
more strict completeness assumption, so that candidate negative events are less
likely to be disproved, leading to the possible introduction of incorrect negative
examples.

Contrary to the strict manner of comparing windows found in the original
definition of the window comparison routine found in [7] – which stated that the
position of the completed event under consideration (xk) in its trace (τi) must
be equal to the position of the event with activity type equal to the activity type
of the proposed negative event (yk) in the candidate disproving trace (τ∼j), we
compare the window τi of the original “positive” trace with each possible window
in the “candidate disproving” trace τ∼j , meaning each sequence of events before
an event with activity type equal to the activity type of the current candidate
negative event under consideration. An example can clarify this principle. Con-
sider the positive trace τi = 〈a, b, c, d, f〉 and τ∼j = 〈a, b, c, b, c, e, f〉 a candidate
disproving trace under consideration. Assume that we are currently checking to
see if candidate activity e could also occur instead of d in τi. In cases where a
strict window is used, with size equal to, say, 2, the candidate disproving trace
τ∼j fails to disprove the negative event, since Position(d, τi) �= Position(e, τ∼j).
Instead of doing so, we now compare the window 〈b, c〉 in τi with each possi-
ble window in τ∼j . In this case, the window of size 2 before activity e in τ∼j is
also equal to 〈b, c〉. This leads to a correct rejection of the candidate negative
event. The full artificial negative event generation algorithm using this “dynamic”
window is listed in Algorithm 1.

Note that, depending on the window size configured, cases might now exist
where the size of the window in the original trace τi is unequal to the size
of a window in a candidate disproving trace τ∼j . In cases where the window
in τ∼j is larger than the window in τi, an effective window with size equal to
the window used in τi is used. When the window in τ∼j is smaller than the
window in τi, using the smallest window could potentially lead to the rejection
of negative events, even when a high window size parameter was set. An example
can help to illustrate this. Consider again the positive trace τi = 〈a, b, c, d, f〉
and τ∼j = 〈a, b, c, b, c, e, f〉 the candidate disproving trace under consideration.
Assume now we are currently checking to see if candidate activity b could also
occur instead of d in τi. Based on this information, two windows can be defined
in τ∼j which can be used to check the validity of the candidate negative event at
hand: 〈a〉 and 〈a, b, c〉. For the latter, no problem exists, as this window is as long
as the window 〈a, b, c〉 in τi. On the other hand, the other window (〈a〉) is smaller
than the window in τi, and thus the similarity check between these two windows
might differ from the actual window size parameter which was configured by the
user. Although this does not lead to the generation of incorrect negative events
(or any additional events, in fact), we define a parameter minimumWindowSize
to denote a minimum required length for a window to be used in the negative

Improved Artificial Negative Event Generation 263

Algorithm 1. Artificial event generation algorithm with a dynamic window
- - group similar sequences σ ∈ L into τ ∈ M
M := GroupLog(L)
- - generate artificial events
N := ∅
for each τi ∈ M do

for each xk ∈ τi do
k := Position(xk , τi)
for each b ∈ A \ {Activity(xk)} do

if �τ∼j ∈ AllV ariants(τj) : ∀τj ∈ M ∧ τ∼j �= τi∧
∀yk ∈ τ∼j , j = Position(yk, τ∼j), Activity(yk) = b :
∀yl ∈ τ∼j , j − l = Position(yl, τ

∼
j), k − l = Position(xl, τi),

0 < l ≤ windowSize : Activity(yl) = Activity(xl)
then zk := Event(x, Case(τi), b, completeRejected, k)

- - with x a new event identifier
N := N ∪ {NegativeEvent(zk, k, τi)}

- - induce negative events in non grouped sequences σ ∈ L with injection
frequency π
Ln := InduceEvents(N, L, π)

event rejection procedure. Setting this parameter to -1 denotes that the window
in τ∼j should be at least of the same size as the current window in τi.

Using this dynamic window extension now allows us to drastically weaken
the completeness assumption made by the artificial negative event generation
process. Using a dynamic window with size 1 indeed assumes only that each
binary sequence of two activities is somewhere present in the given event log,
or can be generated from the given event log using parallel and loop variant
calculation as described above. This weakens the completeness assumption equal
to the one made by the formal alpha-miner learner [2].

Finally, remark the absence of a “forward window”; we only consider the
history of completed events when investigating which activities could not be
completed at a certain point in the process instance. The reason for this is
straightforward: at the time of investigating a current state transition, the fu-
ture of the process instance at hand is still unknown. Therefore, only historical
facts can be considered in the negative event generation process.

Dependency Based Negative Event Generation. As a fourth and final ex-
tension, instead of using a window based trace comparison algorithm, we present
an alternative way of generating artificial negative events, based on discovered
structural information as given by the temporal frequent constraints and associ-
ation rules. Both explicit dependency (locality), and long-distance dependency
information can be applied towards the induction of negative events.

264 S.K.L.M. vanden Broucke et al.

Explicit Dependencies (Locality). It is possible to generate negative events based
on locality information (i.e. explicit dependencies). As a rule of thumb, negative
events with a certain activity type can be added before a given completed event
in a process instance at position k when this activity type is not locally dependent
on the activity type of the event completed at the previous position (k − 1)1:

∀τ∈M,1≤k≤|τ |,k=Position(xk,τ),a∈A,a �=Activity(xk),k−1=Position(xk−1,τ):

∼Local(Activity(xk−1),a)⇒Event(x,Case(xk),a,completeRejected,k)

Note that, when k = 1, xk−1 will be set to a dummy, non-existing event, so that
constraints involving this dummy event (e.g. Local(x0, x1)) always evaluates as
being false. This constraint is omitted from the above and following definitions
for reasons of clarity.

Long-Distance Dependencies, Implicit Dependencies. We define the following
structural derivation rules to mine all dependencies between activity types (both
implicit and explicit), similar to Local (explicit dependencies only):

∀a,b∈A:(Precedence(a,b)∨Response(a,b))∧∼Parallel(a,b)⇒Dependence(a,b)

∀a,b∈A:(Precedence(a,b)∧Response(a,b))∧∼Parallel(a,b)⇒StrongDependence(a,b)

Based on these dependencies, the rule of thumb defined above can be expanded.
Even negative events with a certain activity type that is locally dependent on
the activity type of the event completed at the previous position (k − 1) can
be added before a given completed event (position k), so long as not all ac-
tivities on which the negative event under consideration is strongly dependent
(StrongDependence) on were completed before, or so long as no single activity
on which the negative event under consideration is dependent on (Dependence)
has completed before:

∀τ∈M,1≤k≤|τ |,k=Position(xk,τ),a∈A,a �=Activity(xk),k−1=Position(xk−1,σ),

υ={Activity(i)|i∈σ,Position(i,σ)<k}:∃b∈A,b �∈υ:

StrongDependence(b,a)⇒Event(x,Case(xk),a,completeRejected,k)

and:

∀τ∈M,1≤k≤|τ |,k=Position(xk,τ),a∈A,a �=Activity(xk),k−1=Position(xk−1,σ),

υ={Activity(i)|i∈σ,Position(i,σ)<k}:�b∈A,b∈υ:

Dependence(b,a)⇒Event(x,Case(xk),a,completeRejected,k)

1 Remark that we use negation-as-failure (∼) rather than normal logical negation (¬)
to denote that the absence of a frequent temporal constraint is derived from the
absence of sequences in the event log that portray this behavior. In this context,
the reader may ignore the exact semantic differences between the two notations, as
∼ p ⇒ ¬p under a closed-world assumption.

Improved Artificial Negative Event Generation 265

Finally, we can also use the StrongDependence construct to suggest an opti-
mal minimum window size, i.e. a window size which is able to capture pairs
of activity types between which an implicit (long-distance) dependency relation
exists. To do so, we need to restrict StrongDependence a bit further to drop
strong dependencies which do not correspond with an implicit dependency in
the underlying process model. For example, a StrongDependence construct can
always be found between starting and ending activities. However, a starting ac-
tivity is always followed by the ending activity, so that this dependency is not
an implicit one. Deriving a window size from this construct would lead to a use-
less suggestion, as this would give the same result as when using an unlimited
window. Therefore, we restrict our search to unique strong dependencies (de-
rived with the UniqueStrongDependence rule below) where activity types are
strongly dependent on one other activity type only, which is a good indication
for the presence of an implicit dependency.

∀a,b∈A:StrongDependence(a,b)∧�c∈A,c�=a:

StrongDependence(c,b)⇒UniqueStrongDependence(a,b)

MinimalWindowSize(M)=Maxa,b(Minx,y,τ (Position(x,τ)−Position(y,τ)))

with: a,b∈A,UniqueLongDistanceDependence(a,b),

τ∈M,x∈τ,y∈τ,Activity(x)=a,Activity(y)=b,Position(x,τ)<Position(y,τ)

Note that, when sequences are present in the event log which contain multiple
events corresponding to the same activity type (e.g. for process models contain-
ing loops), Position(x, τ) − Position(y, τ) is computed such that the resulting
difference between the two events is minimal and greater than zero.

5 Experimental Results and Discussion

We have implemented our revised artificial negative event generation technique
in ProM6 [24]. We test the improvements above with the “DriversLicenseLoop”
log, an artificial process log which has been used before by de Medeiros et al. [3]
to evaluate the GeneticMiner discovery algorithm. The drivers license process is
interesting, since it contains parallelism, recurrence, duplicate tasks and implicit
dependencies. To compare the different settings of the artificial event generation
algorithm, a process log containing 350 process instances was used (87 distinct
traces, 11 activity types).

Table 1 lists the various parameter configurations used the evaluate the artifi-
cial event generation technique. For each of the configurations, all generated
negative events were introduced in the given event log. The “Window Gen-
eration” parameter denotes the use of window based artificial negative event
generation, “Window Size” denotes the size of the window, “Dynamic Win-
dow” denotes the use of the dynamic window improvement with a minimum

266 S.K.L.M. vanden Broucke et al.

required window size “Minimum Window Size”. “Structural Generation” defines
if dependency based artificial negative event generation is performed, either on
its own (“strucOnly”), or together with window based negative event genera-
tion (“strucNonDynamicWs-1” and following are obtained by merging a win-
dow based generated set of negative events with the set of negative events
obtained from “strucOnly”). We use window sizes -1 (unlimited), 3 (suggested
by MinimalWindowSize(M)) and 1 (most limited) to test the event generation
procedure. When a dynamic window is used, we use both -1 (candidate disprove
window must be as long as window in positive trace) and 1 (no effective mini-
mum) as required minimum window values. “Original” configuration identifiers
correspond with a parameter setting which could be obtained with the original
version (i.e., no improvements) of the artificial event generation algorithm.

Table 1. Used parameter setting configurations for the artificial event generation tests

Parameter Configuration
Identifier

Window
Generation

Window
Size

Dynamic
Window

Minimum
Window

Size

Structural
Generation

originalWs-1 yes -1 no – no
originalWs3 yes 3 no – no
originalWs1 yes 1 no – no

dynamicWs-1MinWs-1 yes -1 yes -1 no
dynamicWs3MinWs-1 yes 3 yes -1 no
dynamicWs1MinWs-1 yes 1 yes -1 no
dynamicWs-1MinWs1 yes -1 yes 1 no
dynamicWs3MinWs1 yes 3 yes 1 no
dynamicWs1MinWs1 yes 1 yes 1 no

strucOnly no – – – yes
strucNonDynamicWs-1 yes -1 no – yes
strucNonDynamicWs3 yes 3 no – yes
strucNonDynamicWs1 yes 1 no – yes

strucDynamicWs-1MinWs-1 yes -1 yes -1 yes
strucDynamicWs3MinWs-1 yes 3 yes -1 yes
strucDynamicWs1MinWs-1 yes 1 yes -1 yes
strucDynamicWs-1MinWs1 yes -1 yes 1 yes
strucDynamicWs3MinWs1 yes 3 yes 1 yes
strucDynamicWs1MinWs1 yes 1 yes 1 yes

Table 2 gives the results for each of the above defined parameter setting
configurations. We compare the results for the various parameter configurations
with two given sets of negative events. A “naive generation method” constructs a
set of negative events by injecting at each position in a trace a negative event for
each activity type, except the activity type equal to the (completed) event at the
current position. Note that even when this naive method is used, the number of
incorrect negative events in respect to the total negative events is rather low. This
is an indication towards the fact that the given event log gives a good coverage
of all possible execution traces as allowed by the underlying process model. The
“Fully Correct Log” was constructed based on the given Petri net used to simulate
the drivers license process. Of course, in real life cases, such a reference model is

Improved Artificial Negative Event Generation 267

Table 2. Results of the DriversLicenseLoop experiment under various configurations

Parameter Configuration
Identifier

Incorrect
Negative Events

Total Negative
Events Correctness Completeness

Fully Correct Log 0 44866 100% 100%
Naive Generation Method 2484 47350 0% 100%

originalWs-1 642 45508 74,2% 100%
originalWs3 621 45487 75,0% 100%
originalWs1 621 44866 75,0% 98,6%

dynamicWs-1MinWs-1 642 45508 74,2% 100%
dynamicWs3MinWs-1 0 44866 100% 100%

dynamicWs1MinWs-1 0 42382 100% 94,5%
dynamicWs-1MinWs1 642 45508 74,2% 100%

dynamicWs3MinWs1 0 44866 100% 100%
dynamicWs1MinWs1 0 42382 100% 94,5%

strucOnly 0 40469 100% 90,2%
strucNonDynamicWs-1 642 45508 74,2% 100%
strucNonDynamicWs3 621 45487 75,0% 100%
strucNonDynamicWs1 621 45349 75,0% 99,7%

strucDynamicWs-1MinWs-1 642 45508 75,2% 100%
strucDynamicWs3MinWs-1 0 44866 100% 100%

strucDynamicWs1MinWs-1 0 43969 100% 98,0%
strucDynamicWs-1MinWs1 642 45508 74,2% 100%

strucDynamicWs3MinWs1 0 44866 100% 100%
strucDynamicWs1MinWs1 0 43969 100% 98,0%

unavailable, preventing the construction of a fully correct set of negative events
by which the artificial induction results can be evaluated. For each parameter
configuration, we calculate the correctness and completeness ratio. Correctness
is defined as one minus the ratio of incorrect negative events to the number
of incorrect negative events generated by the naive method. Completeness is
defined as the ratio of correct negative events over the full number of possible,
correct negative events, as given by the fully correct log.

The following conclusions can be derived from the results. First, the inherent
trade-off between correctness and completeness becomes apparent here, as most
configurations show an inverse relation between the two requirements. Second,
we note that no single window size configuration is able to generate a set of neg-
ative events which is both correct and complete when using the original version
of the artificial event generation algorithm. Next, using a strict window size (1)
in combination with the dynamic window improvement leads to a set of negative
events which is fully correct, albeit not complete. Constructing a set of negative
events which is both complete and correct is possible if the window size is in-
creased to 3 (suggested by investigating the structure of implicit dependencies –
denoted in bold case in Table 2), or by using non-window dependency based
generation, which also leads to an acceptable completeness value (98%). More-
over, using dependency-based generation ensures the addition of “non-trivial”
negative events, derived from implicit dependencies, which proves especially
helpful in a later phase when the set of negative events is used for evaluation
or discovery tasks. The results also deal with another concern: even although
we have defined a large number of parameters, two straightforward, well per-
forming defaults can be suggested: either apply window based generation with

268 S.K.L.M. vanden Broucke et al.

a dynamic window of size 1 in conjunction with dependency based event gener-
ation, or only apply window based generation with a window size equal to the
suggested window size.

6 Conclusions and Future Work

In this paper, we propose an improved artificial negative event generation method,
building upon [7] in order to derive sets of negative events which are both correct
and complete. The construction of event logs with artificial negative events can
be expected to be valuable in multiple settings: first, supervised learners can
now be deployed in order to perform a process discovery task. Second, artificial
induction of negative events can be applied towards evaluation purposes as well,
where an event log, supplemented with negative events, is used to assess fitness
and precision of process discovery algorithms. Finally, since negative events cap-
ture which actions in a process could not occur, compliance and conformance
related analysis tasks present themselves as a natural area of application for neg-
ative events, although it should be noted that, in order to perform this last set of
tasks, the artificial negative event generation technique as described here should
be extended to take state transitions other than completed events into account,
together with event originator (agent) and case data in order to fully utilize all
available information. In future work, we aim at validating our novel approach,
by extending the set of artificial logs included in the experiment and by examin-
ing the different parameter configurations. In this way, we aim at making event
logs with artificially generated negative events widely available.

Acknowledgements. We would like to thank the KU Leuven research council
for financial support under grand OT/10/010 and the Flemish Research Council
for financial support under Odysseus grant B.0915.09.

References

[1] van der Aalst, W., Reijers, H., Weijters, A., van Dongen, B., Alves de Medeiros,
A., Song, M., Verbeek, H.: Business process mining: An industrial application.
Information Systems 32(5), 713–732 (2007)

[2] van der Aalst, W., Weijters, A.J.M.M., Maruster, L.: Workflow mining: discover-
ing process models from event logs. IEEE Transactions on Knowledge and Data
Engineering 16(9), 1128–1142 (2004)

[3] de Medeiros, A., Weijters, A., van der Aalst, W.: Genetic process mining: an
experimental evaluation. Data Mining and Knowledge Discovery 14(2), 245–304
(2007)

[4] de Medeiros, A., van Dongen, B., van der Aalst, W.: Process mining: Extending
the alpha-algorithm to Mine Short Loops (2004)

[5] Weijters, A., van der Aalst, W., de Medeiros, A.: Process mining with the heuristics
miner-algorithm (2006)

[6] Wen, L., van der Aalst, W., Wang, J., Sun, J.: Mining process models with non-free-
choice constructs. Data Mining and Knowledge Discovery 15(2), 145–180 (2007)

Improved Artificial Negative Event Generation 269

[7] Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust Process Discov-
ery with Artificial Negative Events. Journal of Machine Learning Research 10,
1305–1340 (2009)

[8] Blockeel, H., De Raedt, L.: Top-down induction of first-order logical decision trees.
Artificial Intelligence 101(1-2), 285–297 (1998)

[9] Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploit-
ing Inductive Logic Programming Techniques for Declarative Process Mining. In:
Jensen, K., van der Aalst, W.M.P. (eds.) Transactions on Petri Nets and Other Mod-
els of Concurrency II. LNCS, vol. 5460, pp. 278–295. Springer, Heidelberg (2009)

[10] Muggleton, S.: Inductive logic programming. In: Proceedings of the 1st Interna-
tional Conference on Algorithmic Learning Theory, pp. 42–62 (1990)

[11] Lamma, E., Mello, P., Riguzzi, F., Storari, S.: Applying Inductive Logic Program-
ming to Process Mining. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.)
ILP 2007. LNCS (LNAI), vol. 4894, pp. 132–146. Springer, Heidelberg (2008)

[12] Dzeroski, S., Lavrac, N.: Inductive Logic Programming: Techniques and Applica-
tions. Ellis Horwood, New York (1994)

[13] De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A robust f-measure
for evaluating discovered process models. In: IEEE Symposium Series in Compu-
tational Intelligence (2011)

[14] Cook, J., Wolf, A.: Discovering models of software processes from event-
based data. ACM Transactions on Software Engineering and Methodology 7(3),
215–249 (1998)

[15] Agrawal, R., Gunopulos, D., Leymann, F.: Mining Process Models from Workflow
Logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS,
vol. 1377, pp. 467–483. Springer, Heidelberg (1998)

[16] Lyytinen, K., Mathiassen, L., Ropponen, J., Datta, A.: Automating the discov-
ery of as-is business process models: Probabilistic and algorithmic approaches.
Information Systems Research 9(3), 275–301 (1998)

[17] Maruster, L., Weijters, A., van der Aalst, W., van den Bosch, A.: A Rule-Based
Approach for Process Discovery: Dealing with Noise and Imbalance in Process
Logs. Data Mining and Knowledge Discovery 13(1), 67–87 (2006)

[18] Ferreira, H., Ferreira, D.: An integrated life cycle for workflow management based
on learning and planning. International Journal of Cooperative Information Sys-
tems 15(4), 485–505 (2006)

[19] Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Inducing Declarative
Logic-Based Models from Labeled Traces. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 344–359. Springer, Heidelberg (2007)

[20] Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules.
VLDB 1215, 487–499 (1994)

[21] Huang, K., Chang, C.: Efficient mining of frequent episodes from complex se-
quences. Information Systems 33(1), 96–114 (2008)

[22] Mannila, H., Toivonen, H., Inkeri Verkamo, A.: Discovery of frequent episodes in
event sequences. Data Mining and Knowledge Discovery 1(3), 259–289 (1997)

[23] Maggi, F., Mooij, A., van der Aalst, W.: User-guided discovery of declarative
process models. In: IEEE Symposium on Computational Intelligence and Data
Mining (2011)

[24] van der Aalst, W., van Dongen, B., Rozinat, A., Günther, C., Verbeek, E.: Prom:
The process mining toolkit. In: de Medeiros, A.K.A., Weber, B. (eds.) BPM
(Demos). CEUR Workshop Proceedings, vol. 489, CEUR-WS.org (2009)

	Improved Artificial Negative Event Generation to Enhance Process Event Logs
	Introduction
	Related Work
	Preliminaries
	Artificial Negative Event Generation Algorithm
	Step 1: Mining Frequent Temporal Constraints
	Step 2: Deriving Structural Information: Parallelism, Locality and Recurrence
	Step 3: Generating Artificial Negative Events

	Experimental Results and Discussion
	Conclusions and Future Work
	References

