
OpenCASE– A Tool for Ontology-Centred

Conceptual Modelling

Robert Pergl and Jakub Tůma

Department of Information Engineering,
Faculty of Economics and Management,

Czech University of Life Sciences, Prague, Czech Republic
{pergl,jtuma}@pef.czu.cz

Abstract. OpenCASE, an original CASE tool supporting conceptual mod-
elling is presented in this paper. The CASE tool has been developed dur-
ing the research focused on the ontology-centred conceptual modelling. It
provides a strong emphasis on terms and their relations while supporting
standard notations (now BORM, other notations are planned). The tool
has an open plug-in-based architecture founded on the Eclipse platform,
which makes the tool modular and extensible. The knowledge base of the
models may be accessed via an API and thus used to implement verifi-
cations, various calculations (statistics), to transform models to outputs
(reports) and to make inner transformations (e.g. normalisation). The
architecture of the tool is briefly mentioned as well.

Keywords: CASE Tool, Eclipse platform, conceptual modelling, onto-
logical analysis, BORM method.

1 Introduction

This contribution addresses the discussion of the importance of diligent onto-
logical analysis during the enterprise IS modelling presented in [13], where the
author explains the importance of ensuring the consistency between various
models (and inside each model) and concludes (besides others) the need of a
“quality CASE tool support”.

In this paper, we would like to present our advancements in designing and
implementing a CASE tool to support ontology-centred modelling: OpenCASE.
OpenCASE [12] is a CASE tool designed to support the research in the field
of conceptual modelling and ontologies. It is built upon the Eclipse framework
[8] and it utilizes many of its advanced possibilities (see section 4). Right now,
we have implemented the BORM method’s Business Architecture Diagrams and
Object Relation Diagrams ([7],[1], [10]) as a proof-of-concept of ontology-centred
modelling and OpenCASE’s philosophy and design1.

1 Apologies for the readers: due to lack of space in this short paper, we do not provide
a BORM introduction here.

M. Bajec and J. Eder (Eds.): CAiSE 2012 Workshops, LNBIP 112, pp. 511–518, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



512 R. Pergl and J. Tůma

2 Goal and Methodology

The goal of the contribution is to present OpenCASE, an original ontology-centred
CASE tool. We present the philosophy behind the tool, its practical utilisation
and its architecture.

3 Ontology-Centred Modelling

3.1 Entities vs. Elements

To deal with ontology generally means to deal with terms and their relations2.
Conceptual modelling using the ontology-centred approach thus needs to fully
support tracking of distinct terms and their relations throughout the models.
This practically means a transition from visually-centred to the ontology-centred
CASE tools architecture. We may find notions of this approach in some CASE
and Meta-CASE tool like Craft.CASE [3], MetaEdit+ [11] and others, however
we were focused on total concept purity in separating the Domain Layer and
the Domain Model Layer while maintaining the relation between the elements
(Figure 13).

Fig. 1. Layered architecture of ontologies (taken from [13])

We implemented the concept of ontologically equivalent elements introduced
in[13]:

2 A more thorough introduction to ontologies and their relation to conceptual mod-
elling and the BORM methodology may be found in our original paper [13].

3 The layered architecture of ontologies has already been published in its rudimentary
form numerus times over the past 30 years, see e.g. [4].



OpenCASE 513

Definition 1. We say that the model element x is ontologically equivalent
to the model element y if and only if there exist relations representationOf(x, t)
and representationOf(y, t), where t is an element of the CMoD4.

We implemented this concept by strictly discerning the domain entities and
model’s elements. An “entity” represents a domain object in the M0 layer in
Figure 1, while the “element” is an object in the M1 layer, being a particular
instance of the M2 layer element. Practically, let us suppose we deal with a
Customer entity being modelled by a Participant Customer graphically repre-
sented according to the BORM methodology as a rectangle with a solid border
and pale blue filling, which is an instance of the Participant concept.

There is a relation 1:N between entities and elements: each entity (layer M0)
may be represented by several elements (layer M1): a Customer may play its role
in several diagrams, thus being represented by a visual element in each, while
being the same entity’s representationOf . There is a screenshot in Figure 2
showing the OpenCASE’s support for tracking entities with respect to elements.
The left panel shows all the entities. If we unfold an entity, we see all its elements.
In Figure 2 there are 3 participant elements that represent entity Customer5.
When we click an element, its full path is revealed in the status line. Double-
clicking an element takes us to the appropriate diagram and selects the element.

Fig. 2. Entities and Elements in OpenCASE

4 CMoD = Concept Map of Domain . . . a graph of domain terms and their relations.
5 Generally, there may be various element types representing one entity, e.g. there may
be as well a data class Customer that would describe customer’s attributes.



514 R. Pergl and J. Tůma

Tracking the entities is a concept that enables us to:

Ensure elements’ consistency – Elements usually take the name of their en-
tity, so renaming an entity automatically renames all the attached elements.
Thus if we have an element Customer participating in several diagrams and
we change its entity’s name to Client, all the attached elements get au-
tomatically renamed. In case we do not want an element to automatically
take its entity’s name – this may be the situation in multilingual diagrams
or languages that use inflection – we may disable the implication “entity
name → element name” (option Entity ID as label, red ellipse on the
right in Figure 2). We need to rename the element by hand, however with
the comfort of having the list of all elements that are representationOf the
entity.

Facilitate impact analysis – When some change occurs to a domain entity,
we may easily track the impact to the model, i.e. the elements in the model
that may need attention due to the change.

Use the model knowledge base – Elements represent some information we
have about the entity – its roles and relations in the domain. We may de-
sign and run reports, statistics, optimizations and reasoning based on this
knowledge. OpenCASE provides a full API to this model knowledge base – see
subsection 3.4.

3.2 Business Properties

Another concept of ontology-centred modelling implemented in OpenCASE are
business properties. Inspired by the success of this concept in the Craft.CASE
tool [3], we implemented a sort of meta-modelling layer enabling to specify cus-
tom domain (business) properties. Compared to Craft.CASE we did not limit
business properties just to classes of elements (Participant, State, Activity, . . . ),
but we made possible to attach a business property to an element (thus hav-
ing just one instance) or to an element class (thus having several instances) –
Figure 3. Because diagrams are elements as well, they may have business prop-
erties orthogonally assigned, too (the author, version, etc.). If we look at states,
activities, diagrams, participants and other elements as UML classes, business
element class BPs would correspond to class attributes, while element properties
would correspond to instance attributes.

3.3 Internal Knowledge Base

The tool is database-centred, i.e. it maintains an internal knowledge base con-
taining functions, scenarios, diagrams, entities, elements together with their
graphical properties. Internally, they form nodes of a graph structure and their
relations are represented as edges, thus various graph algorithms may be ap-
plied on the knowledge base [17]. Graph traversals and graph transformations
are probably the most useful and may implement operations like



OpenCASE 515

Fig. 3. Element Properties and Element Class Properties in OpenCASE

– Listings, like all input/output flows from/to a participant.
– Calculation of metrics (like numbers of states and activities in participants)

that may be used for complexity estimations [16], [15].
– Calculation of statistics, e.g. about dataflows and communications (which

participants communicate the most/least, above/below average, etc.).
– Semantics checks : there is a starting state in every participant, at least one

final state6, . . .
– Conceptual normalisations [9].
– Any further custom reporting / calculations / processing.

3.4 Model API

We see diagrams as a convenient way how to specify the model and visualize the
model to a business user, however the true power lies in its underlying knowl-
edge base. We designed OpenCASE to transparently reveal its API (Application
Programming Interface) of the model’s structure. Using this API, a program-
mer may iterate through the model’s elements and entities, make verifications,
perform various calculations (statistics), transform them to some sort of output
(reports) and make inner transformations (e.g. normalisation).

The API is self-documented in the form of UML Class diagrams thanks to the
Ecore framework (see section 4). An example of the OR diagram metamodel is
in Figure 4.

4 OpenCASE Implementation

OpenCASE is implemented entirely in the Java programming language utilizing
the Eclipse Platform and various modelling frameworks from the Eclipse Mod-

6 According to the BORM method, there may be exceptions to these rules, see [7] for
more details.



516 R. Pergl and J. Tůma

eling Project (EMP). The Eclipse Rich Client Platform (RCP) offers a very
powerful foundation since it provides an extensible component system and a
platform for creating complex applications with rich user interfaces.

Due to lack of space in this short paper, we do not provide an overview of the
RCP platform. The reader may read about it on the Internet or in the literature
– we highly recommend [2], [5], [8], [14].

The core of the OpenCASE project is the OpenCASE written as an RCP appli-
cation. There are 10 essential plug-ins constituting the core of the application
called OpenCASE Workbench. The workbench is just the user interface without
any diagram editing capabilities. Diagram manipulation is performed by the
remaining plug-ins.

Each feature has a core plug-in having an ID with no suffix, e.g.,
org.opencase.diagrams. Such a plug-in is almost entirely generated from an
Ecore model and it implements the basic behaviour of the modelled domain. An
example of Ecore model is in Figure 4.

Fig. 4. A part of Ecore model of BORM’s Object Relationship Diagram

Currently, there are several plug-ins being developed, compiled and deployed
in separation from the core of OpenCASE. Thanks to Eclipse plug-in system such
components can be installed right into the running OpenCASE from an archive or
internet update site.

5 Summary, Conclusions and Future Work

OpenCASE is an attempt to bring the ontology-centred modelling into everyday
life and profit from research achievements while at the same time to provide
an open platform for further research. That provided a challenge to implement
theoretical results into suitable software implementation and to build a user-
friendly tool with features like keyboard shortcuts, complete undo, aligning and
distribution of graphical elements, batch operations, etc.



OpenCASE 517

We put a high focus to implement the whole ontology chain, i.e.

1. Input – How to input the terms and their relations in synergy with a concrete
notation. We addressed this issue by separating the identity (entity) from its
representation (element) – subsection 3.1

2. Processing – How to access the ontology and manipulate it by transforma-
tions and various algorithms (verifications, normalizations, optimizations,
etc.). We built an application programming interface (API) to access the
model’s knowledge base. The API architecture is documented by UML
(Ecore) diagrams7 – subsection 3.4.

3. Output – How to export the ontological knowledge contained in the model.
Exporters plug-ins handle this task. Exporter plug-ins are implemented as
Eclipse plug-ins and they may be implemented to perform an export to
various human-readable formats (TXT, HTML, LaTeX, ODT, PDF, . . . )
or formats suitable for machine processing (CSV, XML, JSON, OWL, . . . ),
or it may perform the export directly into relational database or reveal the
knowledge base as a service (SOAP, REST).

At the time of writing this contribution, the modelling core is completely im-
plemented, being further fine-tuned and improved. As for the plug-ins, several
output plug-ins are developed (TXT, HTML, LaTeX). We are also working on
implementing models simulations and support for optimizations. A huge step
toward the holistic ontology-centred conceptual modelling will be implementing
other types of diagrams, especially data-structure diagrams (UML Class Dia-
grams and OntoUML, [6]) and providing a means to make ontologic relations to
the process diagrams.

Acknowledgements. This contribution was elaborated with a support of grant
no. 20121059 of Grant Agency of The Faculty of Economics and Management of
the Czech University of Life Sciences in Prague.

References

1. Brožek, J., Merunka, V., Merunková, I.: Organization Modeling and Simulation
Using BORM Approach. In: Barjis, J. (ed.) EOMAS 2010. LNBIP, vol. 63, pp.
27–40. Springer, Heidelberg (2010)

2. Clayberg, E., Rubel, D.: Eclipse Plug-ins. Addison-Wesley Professional (2008)
3. Craft.CASE Tool, http://www.craftcase.com
4. Gasevic, D., Djuric, D., Devedzic, V.: Model Driven Engineering and Ontology

Development, 2nd edn. Springer (2009)
5. Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific Language (DSL)

Toolkit. Addison-Wesley Professional (2009)

7 Actually, as was explained, the situation is opposite: the internal structures are
generated from the Ecore diagrams, which makes a powerful mechanism to main-
tain specification-implementation consistency. Nevertheless, this is irrelevant for the
API’s user.

http://www.craftcase.com


518 R. Pergl and J. Tůma

6. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. Telem-
atica Instituut Fundamental Research Series No. 15 (2005)

7. Knott, R.P., Merunka, V., Polák, J.: The BORM methodology: a third-generation
fully object-oriented methodology. Knowledge-Based Systems 16(2), 77–89 (2003)

8. McAffer, J., Lemieux, J.-M., Aniszczyk, C.: Eclipse Rich Client Platform: Design-
ing, Coding, and Packaging Java Applications. Addison-Wesley Professional (2005)

9. Molhanec, M.: Some Reasoning Behind Conceptual Normalisation. In: Informa-
tion Systems Development, pp. 517–525. Springer Science+Business Media, Berlin
(2011)

10. Molhanec, M., Merunka, V.: BORM: Agile Modelling for Business Intelligence. In:
Business Intelligence and Agile Methodologies for Knowledge-Based Organizations:
Cross-Disciplinary Applications, pp. 120–130. IGI Global, Hershey (2011)

11. MetaEdit+, http://www.metacase.com/cases/borm.html
12. Tool, http://www.opencase.net (in construction)
13. Pergl, R.: Supporting Enterprise IS Modelling Using Ontological Analysis. In: Bar-

jis, J., Eldabi, T., Gupta, A. (eds.) EOMAS 2011. LNBIP, vol. 88, pp. 130–144.
Springer, Heidelberg (2011)

14. Steinberg, D., Budinsky, F., Paternostro, M.: EMF: Eclipse Modeling Framework.
Addison-Wesley Professional (2008)

15. Struska, Z., Merunka, V.: BORM points – New concept proposal of complexity
estimation method. In: ICEIS 2007: Proceedings of the Ninth International Confer-
ence on Enterprise Information Systems: Information Systems Analysis and Spec-
ification, 9th International Conference on Enterprise Information Systems (ICEIS
2007), Funchal, Portugal, June 12-16, pp. 580–586 (2007)

16. Struska, Z., Pergl, R.: BORM-points: Introduction and Results of Practical Testing.
In: Filipe, J., Cordeiro, J. (eds.) ICEIS 2009. LNBIP, vol. 24, pp. 590–599. Springer,
Heidelberg (2009)

17. Valiente, G.: Algorithms on Trees and Graphs. Springer (2010)

http://www.metacase.com/cases/borm.html
http://www.opencase.net

	OpenCASE– A Tool for Ontology-Centred Conceptual Modelling
	Introduction
	Goal and Methodology
	Ontology-Centred Modelling
	Entities vs. Elements
	Business Properties
	Internal Knowledge Base
	Model API

	OpenCASE Implementation
	Summary, Conclusions and Future Work
	References




