

M. Bajec and J. Eder (Eds.): CAiSE 2012 Workshops, LNBIP 112, pp. 425–439, 2012.
© Springer-Verlag Berlin Heidelberg 2012

The Function-Behaviour-Structure Diagram
for Modelling Workflow of Information Systems

Stanislaw Jerzy Niepostyn and Ilona Bluemke

Institute of Computer Science, Warsaw University of Technology,
Nowowiejska 15/19, 00-665 Warsaw, Poland

{S.Niepostyn,I.Bluemke}@ii.pw.edu.pl

Abstract. Currently, no single UML diagram provides the satisfactory
completeness and consistency of the system description. There is also no
BPMN diagram to satisfy such requirements. The satisfactory completeness
means that the model enables to describe fully a function, a structure, and a
behaviour of the IT system. With BPMN diagram one cannot provide a
complete data model i.e. the structure of the IT system. The proposed Function-
Behaviour-Structure activity diagram introduced in this paper enables to
develop consistent and satisfactorily complete models.

Keywords: MDA, Business Process Management, UML, BPMN, activity
diagram, consistency, completeness.

1 Introduction

In the beginning of the year 2001 the Object Management Group (OMG) launched
Model Driven Architecture [1] based on transformational approaches (generating
models from other models). The main concept of the MDA standard specifies rules
for building application which are generated from models at higher (business) level of
abstraction. Despite a lot of research conducted during many years MDA tools still
have not been produced on an industrial scale. The cause of such situation is mainly
resulting from lacking rules defining how the elements from different models relate to
each other. The reason for the lack of such rules is the semantic of the UML [2]
models defined in natural language. UML cannot provide a straightforward way of
representing a connector (association) and there is no specific construct for
representing architectural styles [3]. UML cannot fully define the relationships
between diagrams so the consistency across diagrams must be ensured manually [4]
or expressed e.g. in OCL [5].

Model Driven Architecture is in the stagnation for the last few years while
Business Process Management (BPM) [6] has been quickly developing. BPM systems
support execution of business processes (workflow applications) according to BPM
concepts [7]. BPM platforms also allow users to build and deploy business process
models supported with Business Process Execution Language for Web Services
(BPEL) [8] and XML Process Definition Language (XPDL) [9] standards. Today's

426 S.J. Niepostyn and I. Bluemke

BPM platforms offer their own notations to describe business processes. Therefore,
since January 2011, OMG proposed the Business Process Model & Notation (BPMN)
[10] language to build and deploy business process models on BPM platforms. It can
be noticed that BPMN ensures the consistency of the business processes (workflow).
BPMN provides only the description of a system behaviour and the description of its
structure and function are neglected. The lack of sufficient structure description of the
system can become soon a significant restriction to the full automation in BPM
solutions.

In this paper we introduce a new Function-Behaviour-Structure Activity diagram,
which enables to keep the consistency and satisfactory completeness of the
application model. Some model elements are formally described in Z notation [11,
11] in section 3 to provide the consistency proof. In section 2 the dimensions of
software architecture are described, then completeness and types of inconsistencies
are described. The rationale of applying the FBS activity diagram in the design view
of the software architecture to derive the complete and consistent UML model is
given in section 4. Related work and some conclusions are given in sections 5 and 6.

2 Incompleteness and Consistency of Model

According to Function-Behaviour-Structure (FBS) framework introduced by Gero
[13] the purpose of the design’s description is to transfer sufficient information about
target system so it can be constructed. The description must at least enable to
incorporate a function, a structure, and a behaviour of the target system. Therefore the
development of software in which one cannot take into account these three
dimensions, are “doomed to fail”. Truyen [14] described a model, in major MDA
concepts, as a formal specification of the function, structure and behaviour of a
system. He claims, that model must be represented by a combination of UML
diagrams. Spanoudakis and Zisman [15] described this as a situation, in which model
inconsistencies may arise.

Below we explain informally the model consistency, which we subsequently apply
in the analysis of selected diagrams. Then we present our concept of the dimensions
of the software architecture which form consistent description of software
architecture.

2.1 Model Inconsistencies

To assert that something is consistent we have to declare what it is consistent with.
Software models describe system from different points of view, at different levels of
abstraction and granularity, in different notations. They may represent viewpoints and
goals of different stakeholders. Usually inconsistencies between diagrams are arising.
Inconsistencies reveal design problems. The roots of consistency can be found in
formal methods. The research on consistency models was started by Finkelstein [16].
Finkelstein stated, that inconsistency is not necessarily a bad thing, and should be
evaluated after the translation of the model specification into formal logic. UML is

 The Function-Behaviour-Structure Diagram for Modelling Workflow 427

not a formal language so often UML models are translated into more formal notation.
UML is widely used in the software design so the problem of inconsistency in UML
models received special attention. In UML inconsistencies between class, state
machine and sequence diagrams [17] are studied. Inconsistencies arise because some
models are overlapping [15]

UML consistency analysis goes far beyond checking syntax and semantics, it
should also encompass other domains like targeted programming language, modelling
methodology, modelled systems, and application and implementation domains.

Mens [18] proposed five consistency types:

1. Inter model (vertical) consistency. Consistency is evaluated between
different diagrams and different levels of abstraction. The syntactic and
semantic consistencies are also taken into account.

2. Intra model (horizontal) consistency. Consistency is validated between
different diagrams but at the same level of abstraction.

3. Evolution consistency. Consistency is validated between different versions of
the same UML diagram.

4. Semantic consistency. Consistency is validated for the semantic meaning of
UML diagram defined by an UML metamodel.

5. Syntactic consistency. Consistency is validated for the specification of UML
diagrams in an UML metamodel.

Another classification divides consistency into static and dynamic. Static consistency
can be verified without running the model while dynamic constraint cannot be
verified until runtime. In [19] a survey of consistency checking techniques for UML
models is presented. The existing techniques are classified based on intermediate
representation into three categories: formally represented, extended UML -
intermediate representation is defined as an extension in UML diagrams and without
intermediate representation. Many interesting information on consistency problems in
UML-based software development can be found in [20].

2.2 Dimensions of the Software Architecture

In the majority of projects using UML diagrams [21, 22], use case diagrams are
developed at the beginning of software development to describe the main functions of
the software-based system. Then class diagrams are created to show the structure of
the system, and state machine diagrams are built to show the behaviour of system’s
elements ([23, 24]). Subsequently activity or sequence diagram can be used in order
to verify consistency of other diagrams. These diagrams are also using visualizing
scenarios i.e. – use case realization diagrams.

Activity diagram enables to associate activities with objects (instantiate classes),
and use-cases ([23, 24, 25]). It can be noticed that Use Case, Class and State Machine
diagrams are orthogonal (Fig. 1), and enable to derive use case realization diagram
[26]. A model, which adequately integrates these diagrams thus enables to keep the
consistency and the satisfactory completeness of the whole system because these three
diagrams do not have common elements. Anyone can interpret the operation of the

428 S.J. Niepostyn and I. Bluemke

class (dimension of the structure), the state in statechart (dimension of the behaviour),
and use case (dimension of the functionality) as a single element of the integrated
model. Such integrated model (diagram) enables to achieve satisfactory completeness.
We define satisfactory completeness as comprising necessary elements (listed above)
and at least one element that integrates all those three dimensions of the software
architecture.

Fig. 1. Three dimensions of the software architecture view

3 Analysis of Some Diagrams

In this section we analyse the consistency and the satisfactory completeness of class,
state machine and use case diagrams. In this analysis we use simplified metamodels,
without cardinalities, and Z schemas describing some metamodel’s elements used in
the consistency reasoning. Cardinalities do not change the results of consistency
analysis. Next, we show that other diagrams like activity, sequence or BPMN
diagrams do not have properties required to sufficiently describe the target system so
we propose such a diagram in section 4.

3.1 Class Diagram, State Machine Diagram, and Use Case Diagram

The simplified metamodel of the class diagram is presented in Fig. 2.a and its
formalization using Z schemas is shown in Fig. 2.b.

Use-Case diagram

Class diagram

State machine diagram

 The Function-Behaviour-Structure Diagram for Modelling Workflow 429

a)

Structural Dimension

Class

Operation Property

Association

 b)

Fig. 2. a) UML metamodel of a class b) Z formalisation of the class diagram

In the schema StructureDim, classes are the set of Class instances, operations are
the set of Operation instances, and properties are the set of Property instances. Class
diagram describes only the dimension of the structure of the system. All elements
describe the structure of the system but some behaviour properties could be generated
from Operation [27].

The simplified metamodel of the state machine diagram is presented in Fig. 3.a and
its formalization is shown in Fig. 3.b. In the schema BehaviourDim states are the set
of State instances. State machine diagram describes only the dimension of the
behaviour of the system.

a)

StateTransition

Behavioural Dimension

 b)

Fig. 3. a) UML metamodel – state machine diagram, b) Z - formalisation of the statechart -
dimension of behaviour

The use case diagram (dimension of functionality) is presented in Fig. 4.a, and its
formalisation in Z schemas is shown in Fig. 4.b. In the schema FunctionalDim use
cases are the set of UseCase instances and actors are the set of Actor instances. Use
case diagram describes only the dimension of the functionality of the system. Actor
and UseCase are defined in the standard UML as the elements that describe the
behaviour rather than the functionality of the system.

430 S.J. Niepostyn and I. Bluemke

a)

Actor UseCase

Functional Dimension

Association

b)

Fig. 4. a) Metamodel of the use case, b) Z - formalisation of the dimension of functionality

Comparing all diagrams (dimensions) with each other no common element can be
found so those three UML diagrams must be consistent. Moreover, those three UML
diagrams could describe satisfactory completeness of an IT system if the operation,
the state, and the use case elements are integrated into a single UML diagram.

3.2 Activity Diagram

The activity diagram is presented in Fig. 5.a and its formalisation in Z schemas is
shown in Fig. 5.b.

a)

Behaviour Dimension

Structural Dimension

Activ ity ControlFlow

Partition

Functional
Dimension

ObjectNode

ObjectFlow

 b)

Fig. 5. a) Metamodel of the activity diagram, b) Z - formalisation of the activity diagram

The dimension of the functionality describes Partition and Activity. ObjectNode
represents the dimension of the structure, and the dimension of the behaviour contains
all elements of the activity diagram. There is no common element in all three
dimensions. Thus it is not possible to integrate the three dimensions of software

 The Function-Behaviour-Structure Diagram for Modelling Workflow 431

architecture in this activity diagram. The dimension of the behaviour has common
elements with the dimension of the structure, and also with the dimension of the
functionality. It means, that the other elements of the activity metamodel are
dependent on each other so the three dimensions overlap with each other. According
to Spanoudakis and Zisman [15] “inconsistencies arise because the models overlap”
therefore, the three dimensions of the activity model are not consistent [28]. This
property implies also that the corresponding UML models (use case diagram, state
machine diagram, class diagram) may not be consistent.

3.3 Sequence Diagram

The sequence diagram is presented in Fig. 6.a, and its formalisation in Z schemas is
shown in Fig. 6.b. The dimension of functionality describes lifeline. Lifeline and
message represent the dimension of structure, and the dimension of behaviour
contains all elements of the sequence diagram. There is a common element in the
three dimensions so it is possible to integrate the three dimensions of software
architecture in this sequence diagram. The other elements of the interaction
metamodel are dependent on each other so the three dimensions overlap with each
other. According to Spanoudakis and Zisman [15] inconsistency definition the three
dimensions of the interaction model are not consistent. This property implies also that
the corresponding UML models (use case diagram, state machine diagram, class
diagram) may not be consistent.

a)

Behaviour Dimension

Structural Dimension

MessageLifeline

ExecutionOccurence

StateInv ariant

Functional
Dimension

b)

Fig. 6. a) Metamodel of the sequence diagram, b) Z - formalisation of the sequence diagram

3.4 BPMN Diagram

The BPMN metamodel is presented in Fig. 7.a and its formalisation in Z schemas is
shown in Fig. 7.b.

432 S.J. Niepostyn and I. Bluemke

a)

Behaviour Dimension

Structural Dimension

Flow Object

Association

Data

Swimlane

SequenceFlow

Functional
Dimension

b)

Fig. 7. a) Metamodel of the BPMN diagram, b) Z - formalisation of the BPMN diagram

The dimension of functionality describes Swimlane and FlowObject. Data and
Association represent the dimension of structure, and the dimension of behaviour
contains FlowObject and SequenceFlow elements of the BPMN diagram. As no
common element is present in the three dimensions, it is not possible to integrate the
three dimensions of software architecture in this BPMN diagram. It means that
BPMN model does not have properties to satisfactory describe the target system. It
can be noticed that the dimension of the structure is unsatisfactory to perform
mapping of a class diagram to Data and Association elements. Therefore with BPMN
diagram one cannot provide a complete data model.

4 FBS Activity Diagram

The FBS activity diagram enables to build a model integrating the three dimensions of
software: functional, structural and behavioural. In Fig. 8 an example of a routine task
in an office modelled by FBS activity diagram is shown.

The header of the diagram describes the objects and the first column shows the
Actors. In following columns the activities are given, each one is performed by an
appropriate actor. There are several kinds of the activities: Creating, Checking,
Archiving, Approving and Other. These activities have the incoming and
outcoming instances of the classes. Figure 8 presents a request of a service from an
office. A Customer fills a written request (Creating request), then Clerk checks this
request (Checking request). After this checking, the Clerk looks into it (Creating
opinion). The Supervisor accepts the request (Approving opinion and request) and

 The Function-Behaviour-Structure Diagram for Modelling Workflow 433

Clerk archives his decision (Archiving request and opinion). Then the Clerk prepares
the reply (Creating reply), the Supervisor accepts it (Approving reply) and, at the end,
the Customer receives it (Receiving reply).

Request

C
le

rk

StateMachine DiagramStateMachine DiagramStateMachine Diagram

UseCase Diagram

Class Diagram

FBS Activity Diagram
ReplyOpinion

C
u

s
to

m
e

r
S

u
p

e
rv

is
o

r

Opinion-In Request-In
RequestOut

OpinionOut

Approv ingRequestOpinion«parallel»

Opinion-In Request-In
RequestOut

OpinionOut

Creating
Request

Checking
Request

Request

Creating Opinion

Request

RequestOpinion

:Request

[Creating]

:Request

[Checking]

:Opinion

[Creating]

Reply

Approv ing RequestApprov ing Opinion

Archiv ing
Opinion

Archiv ing
Request

:Opinion
[Approving]

:Request
[Approving]

Creating
Reply

Approv ing Reply

Archiv ing
Reply

:Reply
[Creating]

Receiv ing
Reply

:Reply
[Approving]

:Reply

[Sending]

Start Final

UC2. Creatng
opinion

UC1. Checking
request

UC3.
Approv ing

case

UC5.
Approv ing

reply

UC4. Creating
reply

UC6. Sending
reply

Initial

Creating

Approv ing

Sending

Final

Ini tial

Creating

Checking

Approv ing

Final

Ini tial

Creating

Checking

Approv ing

Final

Clerk

Superv isor

UC2. Creatng
opinion

UC1. Checking
request

UC3.
Approv ing

case

UC5.
Approv ing

reply

UC4. Creating
reply

UC6. Sending
reply

«trace»

«trace»

«trace»

«trace»

«trace»

«trace»

«trace»

«trace»

«trace»

«trace»

«trace»

Fig. 8. The Function-Behaviour-Structure activity diagram

In Fig. 8 the mappings between FBS activity model and UML diagrams are also
shown. These diagrams describe the design view of the software architecture. The
FBS activity model is in simple and unambiguous relationships with class diagram
(structure), state diagram (behaviour), and use case diagram (functionality).

Each element in the header of the FBS activity model corresponds to only one
object, which is instance of a proper class from the class diagram. The associations

434 S.J. Niepostyn and I. Bluemke

between objects are derived from the edges of horizontal object flow (in red colour).
Moreover, each FBS object has simple and unambiguous state diagram. Each FBS
object with its state corresponds to only one state in the state diagram. Transitions in
this state chart are derived from FBS activity with horizontal object flow between
FBS objects. In similar way the FBS activities can be mapped onto use case diagram.

A few FBS activities are realized by one use case, and each use case is associated
with an actor in use case diagram. The Actor is derived from the horizontal Partition,
which is grouping particular FBS activities. In order to improve the readability of Fig.
8, not all dependencies between diagrams are visible.

4.1 Satisfactory Completeness of the FBS Activity Model

In Fig. 9 the simplified UML activity FBS meta-model is presented. The dimension of
functionality describes Actors, Use Cases, and Activities. States of Objects with
Activities and verticalObjectFlow represent the dimension of behaviour, and the
dimension of structure contains Objects, horizontalObjectFlow and Activities.

Z-formalization of the FBS activity diagram is shown in Fig. 10. The common
element of the three dimensions is Activities, it could be used to integrate the three
dimensions of software architecture in this diagram. Other elements of the FBS model
fully describe the three dimensions so the FBS activity diagram is satisfactorily
complete.

Behaviour Dimension

Structural Dimension

Activ ity

horizontalObjectFlow

Object

UseCase

VerticalPartition

HorizontalPartition

Statev erticalObjectFlow

Functional
Dimension

Fig. 9. Metamodel of the FBS activity diagram

 The Function-Behaviour-Structure Diagram for Modelling Workflow 435

Fig. 10. Z-formalisation of the FBS activity diagram

Fig. 11. Formalization of consistency of the FBS activity model

4.2 Consistency of the FBS Activity Model

Inconsistencies arise between elements belonging to several models. In Fig. 11. Z-
formalization of the consistency of FBS activity diagram is presented. The common
element of the three dimensions is Activity and others elements are not dependent on
each other so the three dimensions do not overlap with each other. Therefore,
according to Spanoudakis and Zisman [15], the three dimensions of the FBS activity
model are consistent. This property implies that the corresponding UML models (use
case diagram, state machine diagram, class diagram) are consistent too. Any change
in the Activity element is visible in all dimensions of the FBS activity model. The
changes of other elements of the FBS activity model do not influence each other.
Z-schema FBSConsistency (Fig.11) describes the above mentioned rules.

436 S.J. Niepostyn and I. Bluemke

5 Related Work

Different software models describe the same system from different points of view, at
different levels of abstraction and granularity, possibly in different notations. They
may represent the perspectives and goals of different stakeholders. Usually some
inconsistencies between models are arising. Inconsistencies in models reveal design
problems. If these problems are detected at the early stages of the design, costs of
fixing them are much lower than if they are detected at later stages of software design.

Usually UML models are translated into programming languages. Inconsistent
UML model may result in an imprecise code. Inconsistencies highlight conflicts
between the views and goals of the stakeholders, indicating those aspects of the
system which should be analysed.

The approach to model or describe the system in three dimensions i.e. function,
structure and behaviour is widely used. E.g. Goel, Rugaber, and Vattam proposed in
[29] the structure, behaviour, and function modeling language. They viewed SBF as a
programming language with specified abstract syntax and static semantics. The SBF
language captures the expressive power of the programs and provides a basis for
interactive construction of SBF models. They also described an interactive model
construction tool called SBFAuthor that is based on the abstract syntax and static
semantics of the SBF language. The precise specification potentially enables a range
of additional automated capabilities such as model checking, model simulation, and
interactive guides and critics for model construction. The problems of consistency and
completeness of model are not discussed in their paper.

The Integrated Notation for specifying software architecture introduced in [30] also
proposes three levels of abstraction i.e.: structure (specified by graphical box and line
diagram), behavioural specification using Input/Output Automata and abstract data
types (ADT) described by Larch traits. Bastarrica, Ochoa and Rossel claim that
starting from the structure, refining it with behavioural details and using abstract data
types the software architect can obtain a consistent model. The Integrated Notation
does not have elements which are common for several levels so the rules to keep
consistency among layers [30] are much more complicated than in the FBS activity
model. The Integrated Notation does not meet our preceding definition of satisfactory
completeness.

Vondrak presented in [31] the Business Process Studio application based on
functional, behavioural, and structural views. He applied the object diagram to
structural specification, state diagram to describe behaviour of the system, and
dataflow diagram as the functional dimension. In this approach a coordination model,
based on functional and object models, is used to show how the process will be
enacted. The coordination model specifies interactions among objects (active and/or
passive) and defines the way all these activities are synchronized based on principles
used in Petri Net. The coordination view is the most important because it enables to
define the execution order of all activities, including conditions for their potential
concurrency. It means that the correct order is defined, as well as sharing of used
resources. Each activity can have more than one scenario with the duration time and
costs associated to provide necessary information for the analysis. Based on the

 The Function-Behaviour-Structure Diagram for Modelling Workflow 437

architecture definition captured in a functional model, the “primitive” activities are
accompanied by sub-processes icons that can be refined further into more detailed
collaboration models again.

Method that would allow to derive the software architecture of any system based
on its analysis model was proposed by Elleuch, Khalfallah, and Ahmed in [32]. For
that purpose, they introduce a new layer to the Model Driven Architecture (MDA)
that takes into account the software architecture. The analysis model is termed the
Architecture Independent Model (AIM), which is compliant to the UML 2.0
metamodel. They consider the software architecture in the Architecture Specific
Model (ASM), which complies to the defined architectural meta-model. The mapping
of AIM into ASM is conducted by using the both meta-models. In this approach only
the dimension of the structure based on the class diagram is used. Authors did not
explore the incompleteness or inconsistency in their model ArchMDE.

UML is the notation for software engineering projects and many adequate software
systems are built with its use. The incompleteness and the inconsistency allowed by
UML are a source for problems in the software development process. An interesting
question is to what degree inconsistency and incompleteness in UML designs impact
software engineering projects. To answer these questions Lange et al. developed a
number of techniques for analyzing UML designs. In [33] they attempt to quantify
inconsistency and incompleteness of UML diagrams. In this article the analysis is
focused on the four most widely used types of diagrams: class diagrams, state chart
diagrams, use case diagrams and message sequence charts. Authors did not take into
account the dimensions of the software architecture, but they formed some hypothesis
about incompleteness and inconsistency in UML diagrams. They performed a number
of experiments based on industrial case studies. From these experiments they observe
that quantifying inconsistencies and incompleteness provides insight into the use of
UML. Although no reference numbers have been established yet, the absolute number
of inconsistencies in UML designs is quite large. They also noticed that the types of
inconsistencies appear strongly related to the habits and conventions used by the
designers.

6 Conclusions

In this paper we have presented a new Function-Behaviour-Structure activity diagram
which has several advantages. Our diagram enables to keep the consistency and
satisfactory completeness of the application’s model. The FBS activity diagram
allows to automatically generate complete workflow applications with no need for
any “manual” programming. In addition, we have shown that the UML diagrams
mapped from the FBS activity model are consistent.

The practical usage of FSB diagram may be questioned. The presented in Fig. 8
FSB diagram, prepared for six use cases, was not “easy to understand and read”. In
industrial projects the number of use cases is significantly greater but usually complex
models are decomposed into submodels. Such approach is commonly used for UML

438 S.J. Niepostyn and I. Bluemke

models and also can be applied for FSB diagram. FSB activity diagrams were
successfully applied in several industrial realization of IT systems in Poland.

In the design process UML models are refined and to keep the consistency among
them, many complicated techniques are used e.g. [20,34]. Instead, it might be
considered, to refine the FBS activity model and consecutively map it to the
consistent UML diagrams.

The next step in our work is to develop the tool automatically generating complete
workflow applications based on FSB activity diagram.

Acknowledgments. We are very grateful to the reviewers for many valuable remarks.

References
1. OMG Model Driven Architecture, http://www.omg.org/mda
2. Unified Modeling Language: Superstructure, version 2.4.1, formal (August 05, 2011),

http://www.omg.org/spec/UML/2.4.1/Infrastructure
3. Ivers, J., et al.: Documenting Component and Connector Views with UML 2.0, Technical

Report CMU/SEI-2004-TR-008, ESC-TR-2004-008. Software Engineering Institute,
Carnegie Mellon (2004)

4. Niz, D.: Diagrams and Languages for Model-Based Software Engineering of Embedded
Systems: UML and AADL,
http://www.sei.cmu.edu/library/reportspapers.cfm
(retrieved January 25, 2011)

5. Hnatkowska, B., Huzar, Z., Magott, J.: Consistency Checking in UML models. In: 4th Int.
Conf. on Information Systems, Modeling ISM 2001 (2001)

6. Business Process Management Initiative, http://www.bpmi.org
7. van der Aalst, W.M.P., ter Hofstede, A.H., Weske, M.: Business Process Management: A

Survey. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.) BPM 2003.
LNCS, vol. 2678, pp. 1–12. Springer, Heidelberg (2003)

8. Organization for the Advancement of Structured Information Standards,
http://docs.oasis-open.org/wsbpel/2.0

9. Workflow management Coalition, http://www.wfmc.org/xpdl.html
10. Object Management Group, Business Process Model and Notation,

http://www.bpmn.org
11. Woodcock, J., Davies, J.: Using Z,

http://www.usingz.com/text/online/index.html
12. Shroff, M., France, R.B.: Towards a formalization of UML class structures in Z. In: Proc.

of the 21st Int. Computer Software and Applications Conf., August 11-15, p. 646 (1997)
13. Gero, J.S.: Design prototypes: a knowledge representation schema for design. AI

Magazine 11(4), 26–36 (1990)
14. Truyen, F.: The Fast Guide to Model Driven Architecture, The Basics of Model Driven

Architecture. Cephas Consulting Corp. (2006)
15. Spanoudakis, G., Zisman, A.: Inconsistency management in software engineering: Survey

and open research issues. In: Chang, S.K. (ed.) Handbook of Software Engineering and
Knowledge Engineering, vol. 1, pp. 329–380. World Scientific Publishing Co., London
(1999)

16. Finkelstein, A., Gabbay, D., Hunter, A., Kramer, J., Nuseibeh, B.: Inconsistency Handling
in Multi-Perspective Specifications. Transactions on Software Engineering 20(8), 569–578
(1994)

 The Function-Behaviour-Structure Diagram for Modelling Workflow 439

17. Egyed, A.: Instant consistency checking for the UML. In: ICSE, pp. 381–390 (2006)
18. Mens, T., Straeten, R.V.D., Simmonds, J.: A Framework for Managing Consistency of

Evolving UML Models. In: Yang, H. (ed.) Software Evolution with UML and XML, ch. 1
(2005)

19. Usman, M., et al.: A Survey of Consistency Checking Techniques for UML Models. In:
Advanced Software Engineering & Its Applications. IEEE (2008)

20. Kuzniarz, L., et al. (eds.) Workshop on “Consistency Problems in UML-based Software
Development II” 2003, Research Report 2003:06, Blekinge Institute of Technology, San
Francisco, USA (2003)

21. Choi, H., Yeom, K.: An Approach to Software Architecture Evaluation with the 4+1 View
Model of Architecture. In: Ninth Asia-Pacific Software Engineering Conf., pp. 286–293.
IEEE Computer Society (2002)

22. Kennaley, M.: The 3+1 Views of Architecture (in 3D): An Amplification of the 4+1
Viewpoint Framework. In: Seventh Working IEEE/IFIP Conference, pp. 299–302. IEEE
Computer Society (2008)

23. Issa, A., Abu Rub, F.A.: Performing Early Feasibility Studies of Software Development
Projects Using Business Process Models. In: Proc. of the World Congress on Engineering,
WCE 2007, London, UK, July 2-4, vol. I (2007)

24. Dijkman, R.M., Joosten, S.M.: An Algorithm to Derive Use Case Diagrams from Business
Process Models. In: 6th Intl. Conf. on Software Engineering and Applications (SEA), pp.
679–684. Acta Press, Anaheim (2002)

25. Odeh, M., Kamm, R.: Bridging the gap between business models and system models.
Information and Software Technology 15(45), 1053–1060 (2003)

26. Kruchten, P.: The Rational Unified Process: An Introduction, 3rd edn. Addison-Wesley,
Boston (2003)

27. Cabot, J., Gómez, C.: Deriving Operation Contracts from UML Class Diagrams. In:
Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MoDELS 2007. LNCS, vol. 4735,
pp. 196–210. Springer, Heidelberg (2007)

28. Rasch, H., Wehrheim, H.: Checking Consistency in UML Diagrams: Classes and State
Machines. In: Najm, E., Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS,
vol. 2884, pp. 229–243. Springer, Heidelberg (2003)

29. Goel, A., Rugaber, S., Vattam, S.: Structure, behavior & function of complex systems: The
SBF modelling language. Int. Journal of AI in Engineering Design, Analysis and
Manufacturing 23, 23–35 (2009)

30. Bastarrica, M.C., Ochoa, S.F., Rossel, P.O.: Integrated Notation for Software Architecture
Specifications. In: SCCC 2004, pp. 26–35 (2004)

31. Vondrak, I.: Business Process Modelling. In: Proc. of the 2007 Conf. on Information
Modelling and Knowledge Bases XVIII (2007)

32. Elleuch, N., Khalfallah, A., Ahmed, S.B.: Software Architecture in Model Driven
Architecture. In: 3rd Int. Symposium on Computational Intelligence and Intelligent
Informatics – ISCIII 2007, Agadir, Morocco, March 28-30, pp. 219–223 (2007)

33. Lange, C., et al.: An Empirical Investigation in Quantifying Inconsistency and
Incompleteness of UML Designs. In: Proc. Workshop on Consistency Problems in UML-
based Software Development, 6th Int. Conf. on Unified Modelling Language (2003)

34. Wang, S., Jin, L., Jin, C.: Ontology Definition Meta-model based Consistency Checking of
UML Models. In: Proceedings of the 10th Int. Conf. on Computer Supported Cooperative
Work in Design. IEEE (2006) 1-4244-0165-8/06

	The Function-Behaviour-Structure Diagram
for Modelling Workflow of Information Systems
	Introduction
	Incompleteness and Consistency of Model
	Model Inconsistencies
	Dimensions of the Software Architecture

	Analysis of Some Diagrams
	Class Diagram, State Machine Diagram, and Use Case Diagram
	Activity Diagram
	Sequence Diagram
	BPMN Diagram

	FBS Activity Diagram
	Satisfactory Completeness of the FBS Activity Model
	Consistency of the FBS Activity Model

	Related Work
	Conclusions
	References

