
Generating Event Logs

with Workload-Dependent Speeds
from Simulation Models�

Joyce Nakatumba, Michael Westergaard, and Wil M.P. van der Aalst

Eindhoven University of Technology, The Netherlands
{jnakatum,m.westergaard,w.m.p.v.d.aalst}@tue.nl

Abstract. Both simulation and process mining can be used to analyze
operational business processes. Simulation is model-driven and very use-
ful because different scenarios can be explored by changing the model’s
parameters. Process mining is driven by event data. This allows detailed
analysis of the observed behavior showing actual bottlenecks, deviations,
and other performance-related problems. Both techniques tend to focus
on the control-flow and do not analyze resource behavior in a detailed
manner. In this paper, we focus on workload-dependent processing speeds
because of the well-known phenomenon that people perform best at a
certain stress level. For example, the “Yerkes-Dodson Law of Arousal”
states that people will take more time to execute an activity if there is
little work to do. This paper shows how workload-dependent processing
speeds can be incorporated in a simulation model and learned from event
logs. We also show how event logs with workload-dependent behavior can
be generated through simulation. Experiments show that it is crucial to
incorporate such phenomena. Moreover, we advocate an amalgamation of
simulation and process mining techniques to better understand, model,
and improve real-life business processes.

1 Introduction

Process mining is a technique that extracts knowledge from event logs recorded
by information systems [2]. Most systems are able to sequentially record events
such that each event refers to an activity (i.e., a well-defined step in the process)
and is related to a particular case (i.e., a process instance). The event logs of
such systems also store more information about events, for example, the resource
(i.e., person or device) executing or initiating the activity, and the timestamp
of the event. Examples are Enterprise Resource Planning systems (SAP, Or-
acle), Business Process Management Systems (Hospital Information Systems)
Using process mining techniques it is possible to discover processes from event
logs. Moreover, event logs can be checked to assess conformance with respect
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to defined processes and process models can be modified and extended using
process mining techniques. This provides necessary insights to manage, control,
and improve business processes [2]. In many of the business processes supported
by information systems, human resources are the limiting factor, i.e., delays are
often caused by the unavailability or overloading of people. Understanding such
delays is vital for process improvement. Therefore, we focus on the analysis of
event logs where most activities are executed by human resources.

Simulation is an important technique that can be used to, for example, an-
alyze the performance of business processes, verify that a business process will
work as designed, gain insights into the effects of particular business decisions.
All of these tools use information about tasks, resources, and the ordering of
tasks to calculate various performance indicators. Whereas simulation is a well
established area of computing, there are several challenges when mapping a real
life business process onto a simulation model especially when involving humans.
Several pitfalls of current simulation models have been discussed in [1, 3]. One
of these is that the resource models built in simulations are usually very simple
and are not a true reflection of reality. However, in this paper we deal with the
modeling of resources in simulation models by adding additional parameters to
the resource model in order to make sure that the process is modeled accurately.
We focus on the problem of the effect of workload on processing speeds .

We provide a refined view on modeling resource behavior by taking into con-
sideration the fact that the processing speeds of resources are not merely de-
pendent on the service rates of the tasks but also on the workload present in
the system. This is based on various studies in the area of psychology and op-
erations research that suggest a relation between workload and performance of
workers [5, 13, 16]. Such behavior is typical in organizations and in this paper,
we build a simulation model based on colored Petri nets (CPNs) [6] that models
workload influence on processing speeds of resources. Further on, we carry out
experiments and the aim is to compare the simulated resource performance while
taking workload into account with a simulated resource performance without the
workload effect. Our experimental results indeed show that workload does have
an effect on resource performance and should not be ignored when building sim-
ulation models. However, to adequately set the resource behavior parameters in
simulation models, we can also exploit information available in event logs using
process mining techniques. Given an event log, we can learn information char-
acterizing workload-dependent speeds using process mining. This approach is
implemented in the process mining framework ProM [14]. Moreover, we see the
same relationship modeled in a simulation model also exists in real life based on
the ProM analysis.

Accurate modeling of resource behavior in simulation models is important for
two main reasons. First, a better modeling of resource behavior in simulation
models will help make simulation models that are more realistic and also tightly
coupled to Process-aware Information Systems [1,15]. Using simulations, we aim
at the generation and extension of event logs with workload-dependent speeds .
Log generation is a very important aspect because we are able to change model
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parameters or include different process alternatives in the simulation model, run
simulations while obtaining new event logs. The generated event logs can be
analyzed using process mining techniques to verify the effects of the parameter
changes on resource behavior. This is not only relevant for analyzing alternatives
for a concrete process, but also for the evaluation of process mining techniques
focusing on the resource and time perspectives. Hence, event logs from the simu-
lated environment and the real world can be compared using the same technique,
i.e., process mining as shown in Fig. 1.
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resultsProcess

mining

Simulation

Reality

Event
logModel

Fig. 1. Process mining is able to analyse event logs
from different sources, i.e., Simulation and Reality

Second, the information
about modeling resource be-
havior in simulation mod-
els can be used as a basis
for operational support and
providing of more realistic
simulations of resources . For
example, in [12] we discuss a
testing platform for simulat-
ing resource behavior where users interacting with a workflow system are pro-
vided with on-line information about running processes and recommendations
about the next actions to take in order to arrive at a goal [1]. Here, we provide for
more realistic modeling of resource behavior in simulation models while taking
workload present in the system into account.

The remainder of the paper is organized as follows. First, we provide an
overview of workload-dependent speeds in Section 2 and discuss the approach
taken to model workload-dependent speeds in a simulation model. In Section
3, we discuss the CPN model developed for modeling the effect of workload on
processing speeds. In Section 4, we discuss the experiments carried out based
on the simulation model. Section 5 has a discussion of related work. Section 6
concludes the paper.

2 Background
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Fig. 2. Yerkes-Dodson Law modeled as U-
shaped Curve

In [1, 3], we discussed several prob-
lems that can arise when building sim-
ulation models involving human re-
sources. For example, when resources
are working they tend to distribute
their attention over multiple pro-
cesses, they also work part-time and
in batches. However, when resources
are working it is not only their distri-
bution of attention over different pro-
cesses that can affect their performance. In this paper, we argue that the absolute
working speeds of resources also determine their capacity for a particular process.

The speed at which resources work is in many systems partly determined
by the amount of work that is currently present [13]. For example, in busy
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periods of the year people tend to increase their speed to process more cases.
However, when people are given too much work over a long period of time,
their performance then tends to drop. In the literature, this phenomenon is
known as the “Yerkes-Dodson Law of Arousal” [16]. This law models human
performance as an inverted U-shaped curve as depicted in Fig. 2. If the law holds,
the performance of people (i.e., the speed at which they work) is determined by
the workload that is currently present in the system [5, 11, 13]. This implies
that for a given individual and a given set of tasks, there is an optimal level at
which the performance of that individual has a maximal value and beyond this
optimal level, the worker’s performance collapses. In this paper, we do not try
to represent this very complex world in a simulation model. However, we use
simple parameters depending on the work-items present in the system. We limit
our focus to a single process involving multiple resources and tasks and represent
this in a simulation model.

2.1 Approach
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Fig. 3. Resources r1 and r2 execute work-items over a 12
hour period

When resources work,
they execute a num-
ber of work-items for
each case. In Fig. 3, we
give an example of how
work-items can be han-
dled by two resources r1
and r2 over a 12-hour
time period. The hori-
zontal axis indicates the
time over which work-
items are executed while
the vertical axis indi-
cates the order in which
the work-items are executed. Each box shown in the figure corresponds to a work-
item executed by a resource. The start of the box indicates when a work-item is
scheduled, the start of the shaded part of the box indicates when the work-item
is started and the end of the box shows when the work-item is completed. For
example, r1 executes work-items w1-w9. and starts with the execution of w1,
followed by w2 etc. From Fig. 3, we observe work-item executions at different
points in time for each resource, i.e., point p1 for r1. If we consider point p2
corresponding to resource r2 we observe that:
– in the allocated (i.e., scheduled but not started) state, there are work-items

w15, w16 and w17,
– in the executing state, there is work-item w14, and
– in the finished state, there are work-items w10, w11, w12 and w13.

We have different properties of a work-item for example, when it was sched-
uled, started and completed, and we can use these to define further work-item
properties that can be used to define workload.
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Definition 1 (Work Item Properties). Let R be a set of resources, T be
the time domain and W be a set of work-items. For any work-item w ∈ W , we
define the following properties:

– tsch(w) ∈ T as the schedule time of w,
– ts(w) ∈ T as the start time of w,
– tc(w) ∈ T as the completion time of w,
– r(w) ∈ R as the resource scheduled to execute w.

From the three work-item states, we can define metrics for calculating workload.
Although many workload definitions are possible [5,13], in this section we define
workload based on the two main perspectives.
i. The Queue Length perspective specifies the amount of work scheduled for a

given resource, and
ii. The How Busy perspective specifies the amount of work that each resource

has executed in the recent past.
During the simulation it is possible to look at all the work-items that have been
scheduled for a given resource before they start execution of a particular work-
item. We now formally define workload based on the queue length perspective.

Definition 2 (Workload from Queue Length Perspective). Let R, T and
W be as defined in Def. 1. We define workload based on queue length perspec-
tive for a resource r ∈ R at a specific time t ∈ T by function ql : R× T → N
where N is the set of natural numbers as: ql(r, t) = |{w ∈ W | tsch(w) ≤ t ≤
ts(w) ∧ r(w) = r}|

Hence function ql counts the number of work-items that have been scheduled for
a resource, however, at the point at which we measure workload, the work-items
have been not been started. This can be computed on-the-fly by counting when
a work-item is scheduled and this value can be decremented when the work-item
is started.

We also define how to calculate workload based on the how busy perspective.
However, in the how busy perspective we need to define a horizon period over
which we can measure the number of completed work-items.We now formally
define workload based on the queue length perspective.

Definition 3 (Workload from How Busy Perspective). Let R, T and
W be be as defined in Def. 1. Given a specific horizon period h ∈ T , we define
workload based on the how busy perspective for a resource r ∈ R at time t ∈ T
by function bu : R×T → N as: bu(r, t) = |{w ∈ W | t−h ≤ tc(w) ≤ t∧r(w) = r}|

Here, we consider all the work-items that a resource has executed in a specific
time period. Hence, given the current time t, we can define a time period for
example, t−h where h is a specific time period. If h is defined as 10 (cf. Fig. 3),
this implies that we look at all the work-items that were completed no more
than 10 time units before the resource starts execution of the current work-
item. The schedule moment of a work-item can be derived as the point in time
when a case arrives in the model. In this model, we are interested in the effect
of workload on the processing speeds of resources. Although we here measure
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workload given a specific horizon period, it is also possible to use a function for
assigning various weights to work-items depending on how long ago they were
executed, assigning higher weight to items completed the same day but lower
weight to items completed last week.

We characterize processing speeds as the flow time associated with each case.
The flow time is the total time the case spends in the system, i.e., the difference
between when the case is created and when the last task for the case is completed.

Definition 4 (Processing Speeds). Let tsch(w), ts(w), and tc(w), be as de-
fined in Def. 1. We define the service time and flow time attached to each
work item as:

– st(w) = tc(w) - ts(w) is the service time associated to w, and
– ft(w) = tc(w) - tsch(w) is the flow time associated to w.

The main parameters of the simulation model are as follows (a) arrival rate λ
(λ > 0) the average number of cases arriving per time unit, (b) service rate μ
(μ > 0) the average number of cases that can be handled per time unit, and the
utilization ρ = λ

μ is the expected fraction of time that the resource will be busy.

3 Modeling Workload Dependent Speeds
in Terms of Colored Petri Nets

The effects of workload on processing speeds of resources were explored by sim-
ulating a CPN model. Colored Petri Nets (CPNs) is a high-level Petri net for-
malism that extends classical Petri nets with data (colored tokens), time, and
hierarchy [8]. CPNs are bipartite directed graphs comprising of places and tran-
sitions and all the tokens in a particular place have a value of some common type.
In CPN-terms, this means that all the tokens in a given place should belong to
the same color set and each place has a color set (i.e., type). Tokens also have
timestamps indicating when they can be consumed. When producing a token,
it may be given a delay. This delay may be sampled from some probability dis-
tribution. Moreover, the time concept and the availability of many probability
distributions in CPN Tools makes it possible to model performance aspects. By
introducing resource tokens in the model, organizational aspects of the business
process can be modeled. With the hierarchy concept of CPN Tools, it is possible
to compose a CPN model in a modular way hence handling different levels of
abstraction. CPNs can be distributed over so-called pages where one page can
describe places and transitions and it may also refer to other pages [8]. Further-
more, CPN Tools have the ability to generate event logs which can be exported
into ProM for analysis. Given the various functionality in CPN Tools necessary
for modeling and simulating business processes, colored Petri nets were selected
as the modeling language in this paper.

Our CPN model is a hierarchical model divided into six pages. The Overview
(Fig. 4) page connects the Work Creation (Fig. 5) page and the Create Work
Item page (Fig. 6). The CPN model handles tasks for a business process that
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deals with the managing of travel requests at some university. We do not discuss
this process in detail here, however, our model is generic to handle any other
process model. The process model consists of a number of tasks and for each
task we specify a number resources that are allowed to it. Cases are generated
in the Work Creation page based on a predefined distribution and are put in the
State List together with their initial state. The time between two subsequent case
arrivals is given by the function IAT() and the creation time of cases is recorded
by the current model time function Mtime(). After a case has been added to the
Queue it is sent to the Create Work Item page.

Queue
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Completed
Case
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Create 
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Fig. 4. The Main page
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Create Work Item. When the Queue arrives in the Create Work Item page in
Fig. 6, Generate Random transition obtains the case that is at the top of the Queue
and generates a random number used for making choices in the model where
there are alternative paths have to be taken from a given place. The case together
with the generated probability is added to the Case.
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Fig. 6. The Create Work Item page

Create Work Item transi-
tion takes a token from
the Case and creates a
new work-item. This tran-
sition obtains the next
task to be executed for
the case (using the State
List and Process Declara-
tion places), it also assigns
a resource to execute the
work-item (resources are
obtained using predefined
resource roles) and it also
obtains the duration of
the work-item. The work-
item is added to the Work Item List which is sent to the Add Parameters page
where resource parameters are calculated.
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Add Parameters. When the Work Item List arrives in the Add Parameters
shown in Fig. 7, Update List transition obtains each work-item from the Work
Item List and adds it to the Scheduled WorkItems. Moreover, the Length Queue is
also updated with information about the work-items that have been assigned to
each resource. This is important because the information in the Length Queue
will be used to determine the workload present in the model based on the queue
length perspective. The Add Parameters page also connects the Measure Workload
page (cf. Fig. 8) and the Execute Work Item page (cf. Fig. 9).

A work item is obtained from the Measure Workload page where its workload is
measured and sent to the Execute Work Item page where it is actually executed.
Moreover, if the work-item that has been completed in the Execute Work Item
page is the last one for the case, then the case sent back to the Work Creation
page through the Completed Case place.
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Fig. 8. The Measure Workload page

Measure Workload.
In the Measure Work-
load page (Fig. 8), each
work-item from the Sched-
uled Work Items is al-
located to a resource
to start its execution.
This is only possible if
the resource is not cur-
rently busy, i.e., is not
in the Busy Resources.
When Allocated Work
Item transition fires, a
work-item is taken from
the list of Scheduled
Work Items and added to the Work Item place. Moreover, the allocated resource
will be added to the Busy Resources place. As soon as there is a token in the
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Work Item place, Measure Workload will calculate the workload present before the
allocated resource (r) starts execution. Measure Workload uses the information
in the Length Queue and the Busyness Queues to calculate the workload present
in the model.
– The Length Queue stores the number of work-items allocated to each re-

source. Therefore, function countQueue(r,lq) will return the number of work-
items that have been scheduled for each resource (r) from the length queue
(lq).

– For each resource, Busyness Queue will store a list for each that contains the
the timestamps of work-items that each resource has completed so far. This
information is used by the countBusy(h,r,bq) function to return the number
of work-items from the busyness queue (bq) that have been completed in
a specified period of time (h) for a resource (r). For example, if the given
time period is h = 100, this function will returns the number of work-items
completed during the previous 100 time units from the current time.

The measured workload information is added to work-item in the WL Work Item
which is sent the Execute Work Item page. The number of work-items scheduled
for the current resource are also reduced by 1 from the Length Queue.

Execute Work Item. The actual execution of a work-item is handled in the
Execute Work Item page (Fig. 9). Here, the execution of the work-item is started
and eventually completed. The duration of work-item processing is now depen-
dent on the sampled duration from the Create Work Item page and the workload
parameters from the Measure Workload page. We define a workload function
execT ime(w, ql, bu) that takes the work-item duration (w), the queue length
parameter (ql), and the how busy parameter (bu) to determine how long a re-
source will take executing a work-item. The function execT ime(w, ql, bu) uses
the the power function to model the workload relationship and this implies with
higher workload values the time of execution will be low. Moreover, the execution
times will be higher if the amount of workload is low.

execT ime(w, ql, bu) = w ∗ 0.8((ql+bu)−1) (1)

Start Execution will move the work-item from the WL Work Item place to the
Busy place. The length of work-item processing, i.e., done is given by the
DurWL(w,ql,bu) function which is expressed in the CPN model but is equiva-
lent to function shown in Equation 1. The current state for the case is updated
in the State List based on the information in the pre and post sets from the
process declaration. When Complete Execution transition fires, the resource is
removed from Busy Resources and is now made available to execute scheduled
work-items (if any). The State List is also updated with a new state for the case.
The new state will have the number of tokens increased by 1 for the input place
of task that will be executed next. If the task that has been completed is the last
one for the case (given by finaltask), the case is sent back to the Work Creation
page where its flow time is measured. Otherwise, it is added to the Queue and
sent to the Measure Workload page where a new work-item for the case is created.
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The CPN model described creates an environment where we can analyze the
impact of existing workload on the processing speeds of resources. In the next
section we discuss experiments carried out to determine the effect of varying
workload on the processing speeds of resources.

4 Simulation Experiments

Using the CPN model, experiments were carried out to investigate the effect
of workload, i.e, denoted by the busyness and queue length perspectives on
processing speeds, i.e., denoted by flow time. The monitor concept of CPN Tools
allows measurement of performance indicators without changing the model [8]
and were used to extract numerical data during the simulation experiments. The
experimental results discussed here are based on simulations with 10 subruns,
each subrun having 1,000 cases.

4.1 Experimental Results from Simulation Model

In this experiment, we compare the effect of varying arrival rates (λ) on the flow
time values while keeping the service rates, i.e., μ = 1

15 . The aim of this experiment
is to compare the effect of increasing workload in the model on the flow time values
and the utilization values. Considering the Yerkes-Dodson law shown in Fig. 2, we
expect that the resource work slower when the workload is low but will eventually
increase their speed as the workload increases in the model. Note that, although it
is also possible for a busy resource to take longer while working, in our experiments
we only focus on the notion that a busy resource works faster. This corresponds to
the first half of the Yerkes-Dodson law.

We compare the flow time values obtained from two different input param-
eters that we use to determine the processing speeds of resources. In the first
case, we consider experiments where we have assumed values for λ and μ. The
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processing speeds of resources is entirely based on μ (sampled from an exponen-
tial distribution). In this case the value of done shown in Fig. 9 depends entirely
on the sampled service rate, i.e., w. We refer to the results from this experiment
as NoWL.

For the second case, the processing speeds of resources are dependent on the
workload present in the system. The value for done (used to determine the du-
ration of execution) is calculated from the execT ime(w, ql, bu) function defined
in Equation 1. This function takes into account workload present based on the
queue length and the how busy perspectives. We refer to the results from this
experiment as WithWL.

Experiment 1: Effect of Varying Arrival Rates on the Flow Time. In the
first experiment, we measure the effect of varying arrival rates on the average flow
time. The results are shown in Fig. 10(a). In the caseNoWL, as the arrival rates in-
crease, the flow times also increase. Typically, the flow times dramatically increase
when ρ get close to 1. The second case, WithWL, as the arrival rates increase the
flow time values also increase. However, if we compare the curves for the experi-
ments from NoWL andWithWL, we see that when workload is taken into account,
initially the flow time values are higher than the situation without workload. This
is because resources work slower since the workload in the system is low based on
the lower arrival rates of cases. Moreover, as seen in Fig. 10(a) when the arrival
rate values increase the flow time values also increase and eventually the resource
works much faster and this leads to lower flow time values compared to the situa-
tion where workload is not taken into account (here the flow times are low at the
start of the experiment and increase much higher as ρ tends to 1).

Experiment 2: Effect of Varying Arrival Rates on the Utilization. The
second experiment shows the results on the average utilization values based
on varying arrival rates. The experimental results are shown in Fig. 10(b). For
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Fig. 10. The effect of varying arrival rates (λ) on (a) flow time and (b) utilization



394 J. Nakatumba, M. Westergaard, and W.M.P. van der Aalst

comparison purposes, we obtained values for two scenarios NoWL and WithWL.
Since the process model contains multiple resources, the values reported in this
experiment are average utilization values. In the first case (NoWL), the utiliza-
tion values follow a straight line because these are used as base line, for example,
if μ = 1

15 and λ = 1
18.75 , then the expected utilization value is ρ = 0.8. How-

ever, if we compare the results from the second case with workload taken into
account (WithWL), the utilization values are initially higher than the normal
values because the resources work slower. However, as the arrival rates increase,
yielding more workload in the system, the utilization values also increase but
are lower than in the situation when resource work without workload effect on
the processing speeds. This is because resources now work faster and hence will
process more work-items. Therefore, the results from the experiments confirm
that workload indeed has an effect on the processing speed of resources and
eventually the utilization.

4.2 Analysis of Event Logs from a Real Life Process

This section is based on a real life case study taken from the CoSeLoG research
project1. In the CoSeLoG project 10 Dutch municipalities are investigated as
they execute their processes. The municipalities use workflow systems which
generate event logs. The event log we use in this section is obtained from a
process that deals with the handling of building permits. The log contains infor-
mation about 324 cases, 19805 events, 15 resources and 175 activities. The start
date of the log is “18-11-2009” and the end date is “12-01-2012”. The results
reported in this section are based on an extended implementation of a ProM
plug-in described in [11] which quantifies the relationship between workload (us-
ing the queue length and how busy notions) and processing speeds (denoted by
service and waiting times of events). Here, we use regression analysis to quan-
tify the effect of workload (as the independent variable x),i.e., denoted based on
queue length and how busy perspectives and processing speed (as the dependent
variable y), i.e., denoted as service times of activities. The results are shown in
Table 1 which include for each resource2, the correlation coefficient (r) as the
degree to which two variables are linearly related (−1 ≤ r ≤ 1) and the r-square
of the regression equation (R2, or the coefficient of determination), which is the
proportion of variation in y accounted for by x [10].

The results in the table indeed confirm the effect of workload on the processing
speeds of resources. Most of the R2 shown in the table were higher than 0.7 which
indicate that the variation in the service times is accounted for by the workload
present in the system. For example, for resource “aweijter”, “ckoets”, “bwiling”,
their r and R2 values were all high and this implies that as workload increases in
the system, the speed of execution also increases. For, resources “cpers” in the
5th row of the table, their r and R2 values were 0.97 and 0.94 respectively which
implies a relationship between workload and the speed at which they worked.

1 See http://www.win.tue.nl/coselog
2 The resource names in Table 1 have been changed to ensure confidentiality.
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Table 1. Linear regression results from real-life event log showing the relationship
between workload and execution times of resources

resource correlation R2 resource correlation R2

coefficient coefficient

aweijter 0.88 0.78 bwiling 1.00 1.00
ckoets 0.97 0.94 cokti 0.78 0.61
ejansen 0.92 0.85 spalm 0.9 0.81
phendric 1.00 1.00 brows 0.99 0.98
tjansen 0.99 0.98 cpers 0.76 0.58
mpauel 0.73 0.53 gursel 0.77 0.6

The results discussed in this section follow the first half of the Yerkes-Dodson
law. Given that the simulation model generates event logs, it is now possible to
analyse those logs using the process mining techniques that we have described
in this section and in our earlier work [11].

Although varying workload has an effect on the speed at which resources
work, when building simulation models this is rarely taken into account. From
the experimental results discussed in this section, we see that workload has an
impact on the flow times of cases, so if we assume that workload has no effect
on the processing speeds, we may get performance results not corresponding to
reality. Moreover, it is interesting that we not only show how to model such
resource aspects in simulation models, but that such phenomena also exists in
real life. Since, the event logs contains precise timestamps, we have been able to
empirically investigate and quantify the effect of workload on processing speeds.
Therefore, resources do not always work at constant speeds and there can be a
number of factors that influence their speeds and in this section we shown that
workload based queue length and the how busy perspectives indeed influences
the resource processing speeds.

5 Related Work

The work presented in this paper is related to earlier work that has been done
in the field of operations management and in simulation studies. The “Yerkes-
Dodson Law of Arousal” [16] illustrated in Fig. 2, is one of the main motivations
for this paper. Although the Yerkes-Dodson law originally related arousal to
performance, this law has been extended to incorporate workload in the place of
arousal. This law nominally depicts a low performance when the resource is over-
worked or under-worked. In operations management, substantial work has been
done to operationalize this “law” using mathematical models. Earlier work sup-
porting this law shows that there exists a relationship between work-in-process
and productivity [5,7]. The authors in [7] shows that the basis of industrial statis-
tics collected that a strong correlation exists between productivity improvement
and the speed of industry networks. In [13] queues with workload-dependent
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arrival and service rates are considered and the authors characterize the effect of
work-in-process (the number of work orders on the shop floor) on productivity
(the output per employee).

The discovery of simulation models is an approach that has been presented
in [15]. Given an event log, a simulation model can be discovered and simulated
using ProM and CPN Tools. In [9] a similar approach is presented that shows
how to redesign a business process and predict its future performance based on
simulation. The resource models used in both approaches are very simple, for
example, the authors in [9] do not say anything about resources and their in-
volvement in the simulation and redesign of business processes. However, to truly
map a business process onto a simulation model, it is crucial that the resource
perspective is modeled accurately. Although we focus on workload speeds in this
paper, our earlier work also takes into account that people are involved in mul-
tiple processes, are available only part-time, and work in batches. Experiments
show that these factors really influence performance [3].

The work in this paper is also related to earlier work presented in [11] where
process mining techniques are used to analyse the relationship between work-
load and processing speeds based on event logs. In this paper, we focus on log
generation from simulation models with workload dependent speeds.

6 Conclusion

Although organizations use simulation to analyze their business processes, the
results may be very misleading if the assumptions used are incorrect. In this
paper, we have addressed one of the problems discussed, i.e., human resources
are often modeled incorrectly in simulation models. It is shown that resources
are typically modeled in a naive manner and that this highly influences the sim-
ulation results. We have focussed in improving simulation models by providing
a better modeling of resource behavior. The fact that people do not work at
constant speeds and that workload has an effect on the processing speeds of
resources has effects on the key performance indicators of a process. We charac-
terized workload based on the queue length and how busy perspectives.

Based on a CPN model and with experiments, we show that the workload
present in a system affects the processing speeds of resources. The information
about the behavior of resources and also results from our earlier work [3, 11]
show that these characteristics should not be ignored when building simulation
models. Moreover, simulation models can generate event logs contain informa-
tion characterizing the workload relationship. This relationship is hidden, but
correlations between workload and processing speeds can be observed using pro-
cess mining techniques [11]. It is important to use both simulation and process
mining techniques to better understand, model, and improve real-life business
processes. Moreover, the relation can also be used as a basis for providing oper-
ational support where users are provided with recommendations about the next
actions to take [4, 12].
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