
Model Driven Workflow Development with T�

Fazle Rabbi and Wendy MacCaull

Centre for Logic and Information,
St. Francis Xavier University
{rfazle,wmaccaul}@stfx.ca

Abstract. Model Driven Engineering (MDE) refers to the systematic
use of models as primary engineering artifacts throughout the engineering
lifecycle. MDE has a lot of potential to make adaptive software systems,
but it requires maturity and tool support. Here we present a domain spe-
cific language, called T� (pronounced as T-Square) for writing workflow
process specifications which allows us to write procedural statements for
tasks and branch conditions, to query an ontology and to declare user
interfaces. We apply transformation methods to generate executable soft-
ware from the abstract process specifications.

Keywords: Workflow Management System, Model Driven Engineering,
Ontology, Domain Specific Language, Adaptive System.

1 Introduction

Software researchers and developers require abstractions of their system to help
them program in terms of their design intent rather than in terms of the un-
derlying computing environments e.g., CPU, memory, and network devices [18].
Although early programming languages, such as assembly and Fortran, raised the
level of abstraction by shielding developers from complexities of programming
with machine code, they still had distinct “computing oriented” focuses. Ad-
vances in languages and platforms during the past two decades have minimized
the need to reinvent common and middleware services, such as transactions,
discovery, fault tolerance, event notification, security, and distributed resource
management, by providing libraries, APIs, etc. But programmers and developers
still need to focus on the use of those libraries, APIs, services, etc. Model Driven
Engineering (MDE) further raises the level of abstraction in program specifica-
tion and aims to increase automation in software development [18]. MDE offers
a promising approach to alleviate the complexity of platforms by expressing do-
main concepts effectively by models. A model is specified by modeling notations
or modeling languages. Since modeling languages are usually tailored to a cer-
tain domain, such a language is often called a Domain Specific Language (DSL).
A DSL can be visual (e.g., UML, BPMN [1]) or textual (e.g., CSS, regular ex-
pressions, ant, SQL). DSL helps developers focus on a problem domain rather
than on technical details [14].

M. Bajec and J. Eder (Eds.): CAiSE 2012 Workshops, LNBIP 112, pp. 265–279, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

266 F. Rabbi and W. MacCaull

Today business process models are frequently used to describe the behaviour
of large systems with characteristics like concurrency, resource sharing, and syn-
chronisation [11]. Many of today’s workflows are complex requiring a high degree
of flexibility, and massive data and knowledge management. In this paper we
present a DSL called T� (pronounced T-Square) for writing workflow process
specifications, which incorporates the following features: a) a simple syntax for
i) writing procedural statements, ii) querying and manipulating ontologies, iii)
designing rich user interfaces (UIs); b) abstraction of communication details; and
c) ease of customization.

Ontologies are used in T� for data and knowledge persistence. Software mod-
elling languages and methodologies can benefit from the integration with ontol-
ogy languages in various ways, e.g., by reducing language ambiguity, enabling
validation and automated consistency checking [21]. Moreover intelligent appli-
cations may be built based on ontology reasoning. In addition to providing a
high level syntax with an automatic translation to platform specific code, this
DSL benefits from the use of ontologies [20] which allows the user to infer knowl-
edge, further reducing the coding effort, making T� suitable for rapid application
development.

This work is part of research project, “Building decision–support through
dynamic workflow systems for healthcare”, a collaboration among academic re-
searchers, a local health authority and an industry partner [12]. The goal is to
develop tools for process, communication and information for community based
healthcare programs. Workflow tools to guide process need to interface with a
complex healthcare knowledge base and be supported by electronic forms for
capturing patient information, making it accessible and usable by a variety of
health providers, in a variety of service settings. While healthcare is generally
governed by national or provincial standards, a change in regulations or local
conditions - e.g., at the clinic, hospital or doctor’s office - requires that the work-
flow and/or task specification easily adapt to comply with the change. Forms,
in particular, are often local to a setting and may need to be modified quickly
and/or frequently, to meet the needs of clinicians or administrators wishing to
track some disease or specific aspect of care. Data must be stored, aggregated,
interpreted and reasoned with, both locally and nationally. Ontologies are be-
coming the accepted method for standardizing and storing machine computable
information. Healthcare is a safety critical process: technology to generate reli-
able software is essential.

In section 2 we propose the model driven approach for workflow development;
in section 3 we give details of the proposed language, T�; in section 4 we include
some related work, and in section 5 we conclude the paper with some directions
for future work.

2 Model Driven Workflow Development

Workflow systems are often designed with graphical workflow modeling lan-
guages such as Business Process Modeling Notation (BPMN) [1], Yet Another

Model Driven Workflow Development with T� 267

Workflow Language (YAWL) [23], Compensable Workflow Modeling Language
(CWML) [16], etc. These languages use the abstract notation of process and
control flow in the model to visualize the workflow; however to describe the
detailed specification of a process, more is needed. Some workflow systems use
XML based languages, while others use general-purpose programming languages
(GPLs) such as C++, Java, etc. A control flow consists of two artefacts: i) the
flow relation, and ii) branching conditions. When a workflow executes, it follows
the flow relation as described in the graphical model and executes the processes
(i.e., specifications written in XML or a GPL). During execution, the branching
conditions are evaluated to guide the control flow.

We propose T� for describing processes and branching conditions: T� is a
procedural language with declarative feature. For defining the flow relation and
visualizing a workflow, existing workflow languages may be used. While T� was
designed so that it can be used with many workflow systems, we incorporated
it into the NOVA Workflow Workbench [13]. The NOVA Workbench consist of
several modules, including the NOVA Editor and the NOVA Engine. The NOVA
Editor uses a graphical workflow modeling language called CWML. CWML is a
block structured workflow modeling language [16] which has compensable com-
ponents along with common workflow components (e.g., atomic tasks, control
flow operators: XOR, OR, AND, etc.). Each atomic task in CWML is associated
with a process description file (written in T�) containing procedures. XOR, OR,
and Internal Choice control flow operators require that branching conditions be
specified to route the flow; these branching conditions are specified in T� as
procedures which take branch numbers and return decisions.

Fig. 1. Overview of the NOVA Workflow Workbench

Fig. 1 shows the overall architecture of the NOVAWorkflowWorkbench, which
incorporates the T� editor, developed using Xtext. Specifications written in T�
are automatically transformed to executable Java programs, using Xtend [2]. In

268 F. Rabbi and W. MacCaull

NOVA Workflow, if a process description file contains a procedure named view,
the view procedure is transformed to a client side Java application. All other
procedures are transformed to executable Java server side programs. A view

method may invoke other procedures; this will initiate an asynchronous data
communication to the server by a Web Service (RESTful message). If a process
(task) executes, meaning the execution of a procedure named either action or
abort at the server side, the NOVA Workflow engine updates the control flow
of the workflow according to the graphical workflow model. As the workflow
executes, various operations on the ontology may be required. For example, data
may be stored, removed or updated or answeres to queries may be needed. We
used Pellet [19], a sound and complete OWL-DL reasoner with extensive support
for reasoning. In T�, ontology queries are written in the SQWRL (Semantic
Query-enhanced Web Rule Language) [15] format. SQWRL is a query language
for OWL [5] built on SWRL [4], a rule language which includes a high-level
abstract syntax for Horn-like rules. We chose SQWRL because of its simplicity.

3 The T� Language

Workflow management systems often deal with many users and resources. In
this section, we present a real life problem to solve with a workflow system, we
introduce the T� functionality and syntax and we demonstrate the use of T� to
solve the problem.

We designed a graphical workflow model from the ‘Guidelines for the man-
agement of cancer-related pain in adults’ [7]. The guideline suggests the use
of Opioids for cancer patients. Opioids are very useful in cancer care to allevi-
ate the severe, chronic, disabling pain but there are common side effects which
include nausea and vomiting, drowsiness, itching, dry mouth, miosis, and con-
stipation. The proper use of opioid dosage is important. Fig. 2 shows the tasks

Fig. 2. Pain Management Workflow

Model Driven Workflow Development with T� 269

for a Pain Management workflow modeled in CWML. A patient is admitted into
the system and after that, pain is assessed. The ‘Assessment’ task assesses all
causes of pain, determines pain location, pain intensity, and documents all pre-
vious analgesics. A patient is administered his prescribed medicine in one of the
‘Strong Opioid Regimen’, ‘Weak Opioid Regimen’, and ‘Non Opioid Regimen’
tasks; the ‘Re Assessment’ task executes concurrently with these tasks. The
‘Strong Opioid Regimen’ is a composite task which is unfolded to a subnet work-
flow. This subnet workflow deals with any opioid toxicity or side effects found
during the treatment procedure.

During the execution of this workflow, caregivers need to interact with the
system via user interfaces. The workflow system needs to store and read infor-
mation to and from a database/ontology. The workflow has decision points (e.g.,
Select Opioid Regimen determines which branch to follow) to guide the control
flow. These requirements are articulated using T�.

3.1 Writing Procedural Statements

Variables in T� are inferred variables: variable types are determined from their
use. Variables in T� may be indexed as array indexes but a declaration of the
size is not required. The size is adjusted dynamically at execution time. If no
index is used, it refers to the 0th index of a variable. In T�, procedures may
be invoked by ‘call by value’ or ‘call by reference’. The ‘call by reference’ of a
variable is indicated by a leading ‘&’ . Syntax for Assignment operations, If-
Else statements, For-loops, etc., in T� are similar to the C family languages.
In T� every procedure returns a value, and return types are not required for
procedures. In T� some utility procedures such as size, today, currentTime,
date, month, year, time, and tokenize have been incorporated to deal with
string, array, date and time data.

3.2 Querying and Manipulating Ontologies

In many systems, Create, Read, Update, and Delete (CRUD) operations are
performed on databases. We use statements with C,R,U,D tags to perform anal-
ogous operations on an ontology Abox and refer to the relevant T� statements
as OntAssertion, OntRead, OntUpdate, and OntDel statements.

T� allows us to write queries, both for task description and for branch condi-
tion, in the SQWRL format. One can perform queries combining Tbox and/or
Abox syntax. The Tbox contains concepts and assertions about concepts such
as subsumption (Man � Person). The Abox contains role assertions between
individuals (hasChild(John,Mary)) and membership assertions (John : Man).
Similar to the ‘select’ operator of SQWRL, the ‘select’ operator in T� takes one
or more arguments, which must be variables occuring in the body of the query.
A particular value may be passed as a query criterion; if a variable is used in an
ontology query without a leading question mark,?, then the value is read by the
query engine. The following query retrieves all persons from an ontology with a
pain intensity that is greater than 5, together with their pain intensities:

270 F. Rabbi and W. MacCaull

var p, pain, v = 5;
{R$ Patient(?p), hasPain(?p, ?pain), greaterThan(?pain, v) →

select(?p, ?pain) $R}

The query engine will populate the variables passed as arguments of the ‘se-
lect’ operator. Selected results may be sorted in ascending or descending order
by the ‘orderBy’ or ‘orderByDescending’ operators respectively. The following
OntAssertion statements create a new ‘Patient’ individual and inserts a data
property for the relation ‘hasPain’.

var p;
{C$ p := Patient(“Alex”) $C}
{C$ hasPain(p, 6) $C}

Note that a reference of the newly created Patient individual is assigned to the
variable ‘p’. An individual may be created with an auto-incremented identity
(as below) if in the ontology there exists a data property named ‘hasId’, where
the domain of ‘hasId’ is ‘Thing’ and the range is the ‘Long’ data type.

{C$ p := Patient(newid) $C}

OntDel statements are used to delete an individual or instance of a relation from
an ontology Abox. The following code shows a delete operation of a Patient
individual with id=1010.

var p, pid = 1010;
{R$ Patient(?p), hasId(?p, pid) → select(?p) $R}
{D$ Patient(p) $D}

In this code fragment, a search operation is performed on an ontology for a
Patient individual with id=1010 and a reference is retrieved; the Patient indi-
vidual’s reference is then passed as an argument to the delete operation. On-
tUpdate statements are used to update a data property or object property of an
individual. The following code fragment updates the ages of all patients whose
birthday is today.

var p, P, bDate, Age, age, newAge, cDate = today();
{R$ Patient(?P), hasBirthDate(?P, ?bDate), isEqual(?bDate, cDate),

hasAge(?P, ?Age) → select(?P, ?Age) $R}
foreach(p in P, age in Age){

newAge = age + 1;
{U$ hasAge(p, age => p, newAge) $U}

}

3.3 Designing User Interfaces

In many workflow applications, forms are used which need many UI view com-
ponents such as ‘Label’, ‘Text Field’, ‘Text Area’, ‘Check box’, ‘Drop down’,

Model Driven Workflow Development with T� 271

‘Date time picker’, etc., to capture user input. When a user finishes entering
information in a form, the information collected is submitted to the server for
processing. Sometimes client side processing on this input is required. The client
side processing may involve client server communication for further information,
calculation on the provided input, etc. We provide a simple syntax to develop
UI forms to deal with these general requirements for client side applications.

To print text or a number in the UI, the getLabel procedure may be used.
The getLabel procedure produces a ‘Label’ view component in the UI. One
can either pass a string literal or a variable as the argument of the getLabel

procedure. If a variable is passed to the getLabel procedure, then the variable
is bound to a ‘Label’ view component. Whenever this variable is updated, the
change is reflected in the ‘Label’. The following code fragment produces two
labels; during execution, the first label will display the text “Workflow Instance:”
and the second label will display the number ‘112’.

var wid = 112;
getLabel(“WorkflowInstance : ”);
getLabel(wid);

The getText procedure produces a ‘Text Field’ view component. A ‘Text
Field’ is a common UI component to take user input. The getText procedure
can take one or two arguments: i) a string to produce a label, and ii) a variable
(optional) to display the initial text in a ‘Text Field’. A destination variable
name after the symbol ‘>>’ is required for the getText where the user input is
captured. Optionally, some statements (also known as action statements) may
be written inside curly braces after the destination variable name of a getText

procedure. These action statements will be executed when a user finishes her
entry into the ‘Text Field’. The following code fragment shows an example use
of the getLabel and getText procedures:

var hospitalName, displayText = “NoInput”;
getText(“EnterHospitalName : ”) >> hospitalName{

displayText = “Hospital : ” + hospitalName; };
getLabel(“EnteredText : ”, displayText);

This will produce a ‘Text Field’ where the user will enter text as input; the
entered text will be stored in a variable named ‘hospitalName’. As soon as the
user finishes entering text into the ‘Text Field’ the action statement (enclosed
with curly braces) will execute and sets a value entered by the user to the variable
named ‘displayText’. Since the variable ‘displayText’ is bound with a ‘Label’,
when its value changes, the ‘Label’ view component will be updated and will
display the hospital name entered in the ‘Text Field’.

The getInteger procedure is similar to the getText procedure; this also
produces a ‘Text Field’ to take input from the user; the difference is that only
numbers are allowed here. The following code fragment gives an example:

272 F. Rabbi and W. MacCaull

var basicPay = 14, hourlyPay, totalHr = 0, totalSalary = 0;
getInteger(“Hourlypayment : $”, basicPay) >> hourlyPay {

totalSalary = hourlyPay ∗ totalHr; };
getInteger(“TotalHourWorked : ”) >> totalHr {

totalSalary = hourlyPay ∗ totalHr; };
getLabel(“TotalSalary : $”, totalSalary);

The first ‘Text Field’ will display the value of the ‘basicPay’ variable which is
‘14’. The user may change it by entering a different number; the entered number
will be stored in the variable named ‘hourlyPay’. The user enters the total hours
worked in the second ‘Text Field’. When the user finishes entering numbers in
the ‘Text Fields’, the total salary is calculated and displayed in the UI by a
‘Label’.

The getDouble procedure is similar to the getInteger procedure; the only
difference is the user can enter a floating point number in the ‘Text Field’. The
getDate procedure is similar to the getInteger procedure but here the user
enters a date in a ‘Text Field’ or in a ‘Date Time Picker’. The getBoolean

procedure takes one argument as input to display a title for a ‘Check box’ (a
view component to select or de-select an item). The user may select or de-
select the ‘Check box’ and a true or false value is assigned to the associated
destination variable of a getBoolean procedure. If action statements are written
for a getBoolean procedure, they will be executed after the user selects or de-
selects a check box item. The following code will display a ‘Check box’.

var painCrisis;
getBoolean(“PainCrisis”) >> painCrisis;

The destination variable ‘painCrisis’ is associated with the ‘Check box’. If the
‘Check box’ is checked, a ‘true’ value will be set to the variable, otherwise a
‘false’ value will be set to the variable. Since the ‘painCrisis’ variable is bound
to a ‘Check box’ view component, if the value is changed from another portion
of the procedure, it will be reflected in the UI. This feature may be useful to
display a UI form to update existing information. For example, if we want to
display a patient’s existing Pain Crisis information and allow the user to modify
it, then the following code may be used:

var painCrisis, id = 1010;
getBoolean(“PainCrisis”) >> painCrisis;
{R$ Patient(?p), hasId(?p, id), hasPainCrisis(?p, ?painCrisis) →

select(?painCrisis) $R}

The getOne procedure is used to select one item from a list of items. This
procedure will either display a ‘Drop down’ view component (if one source vari-
able is provided as argument) or a ‘Table’ with ‘Radio buttons’ (if more than
one source variable is provided). A destination variable name is required for a
getOne procedure. Optionally another destination variable name may be spec-
ified to store the position of the item selected from the drop down. If action

Model Driven Workflow Development with T� 273

statements are given for a getOne procedure, they will be executed as soon as
the user selects an item. In the following example, a list of countries is retrieved
from an ontology by performing a read operation. A getOne procedure is used
to display the list of countries in a ‘Drop down’. Another getOne procedure is
used to display a list of provinces in another ‘Drop down’. Since the provinces
are different from one country to another, on the selection of a country, a further
query was performed on the ontology to retrieve related province information;
this was done in the action statements. The ‘province’ variable is bound to the
source variable with the second getOne procedure; as a result, if a province’s
information was updated it will be reflected in the ‘Drop down’.

var c, country, province, selectedProvince;
{R$ Country(?c) → select(?c) $R}
getOne(“Country : ”, c) >> country {

{R$ Province(?province), hasCountry(?province, country) →
select(?province) $R}

};
getOne(“Province : ”, province) >> selectedProvince;

Note that the ‘source’ variable fills a ‘Drop down’ view component but if we
want to display one item from the items available in the ‘Drop down’ we may use
the ‘destination’ variable. For instance, in a patient’s admission record update
form, we want to display the patient’s existing province in the ‘Drop down’;
this can be achieved by assigning the province information to the destination
variable.

The getMultiple procedure is similar to the getOne procedure but here the
user may select more than one item from the source variable(s). The getButton
procedure produces a button in the UI. When a button is pressed, the statements
associated with it are executed. For example, if we want to calculate the strength
of a given password then a button may be used to do this.

var password, result;
getPassword(“EnterPassword”) >> password;
getButton(“CheckPasswordStrength”) {

result = checkPwStrength(password);
print(result); };

When the button “Check Password Strength” is pressed it invokes a proce-
dure named checkPwStrenth at the server with ‘password’ as argument and
prints the result in the UI. T� provides two procedures to arrange the view com-
ponents in the UI: openLayout and closeLayout. The openLayout procedure
takes an integer parameter which indicates the number of columns. All view
components specified after an openLayout procedure will follow this arrange-
ment. A closeLayout procedure stops putting view components in the layout
format begun by an openLayout procedure. An openLayout procedure can be
nested within another openLayout procedure allowing the user to implement a
complicated table layout structure.

274 F. Rabbi and W. MacCaull

Now we use T� to design a user interface for a task from the Pain Management
Workflow in Fig. 2. The code below shows the view procedure of the ‘Assessment’
task.

01. func view(){
02. var wInstance, pc;
03. . . .//Other variable declaration

04. wInstance = getCurrentInstance(); // Get current workflow instance id

05. {R$ PainCourse(?pc), hasName(?pc, ?pcName) → select(?pcName)$R}
06. . . .// Read other pain assessment information from ontology

07. {R$ Drug(?drug) → select(?drug)$R}
08. . . .// Read Frequency, Route, Unit information from ontology

09. openLayout(2); openLayout(2); // Nested Table Layout

10. getMultiple(“PainLocation”, pLocation) >> painLocation;
11. getMultiple(“PainTimeOfDay”, pTime) >> painTime;
12. closeLayout();openLayout(2);
13. getOne(“PainDuration”, pDuration) >> painDuration;
14. . . .// Code to display other view components

15. getButton(“(+)”) {
16. drugList[size(drugList)] = selDrug; // Adding a new drug into drugList

17. . . .// Add frequency, route, dose information into list

18. };
19. getButton(“(−)”){
20. clear(drugList, medPos); // Removing selected item from list (Table)
21. . . .// Remove frequency, route, dose information from list

22. };
23. closeLayout(); openLayout(1);
24. getOne(“MedicationInformation”, drugList “DrugName”, freqList

25. “Frequency”, routeList “Route”, unitList “Unit”, doseList “Dose”)
26. >> destDrug, medPos; // Showing medications in a table

27. closeLayout();
28. // make a submit button to send information to server

29. submit(wInstance, painLocation, painTime, painDuration, . . .); }

T� generates code for client side applications using the Android [3] platform.
The output of this simple 29 lines of code is shown in Fig. 3; this is a screen-
shot from a Tablet device (operating on an ‘Android’ operating system). The
transformation method automatically produced 1160 lines of Java code, and a
few xml configuration files to manage the Android UI, and to deal with network
operations. The ‘Pain Location’, ‘Pain Duration’, ‘Drug Name’ etc., information
comes from the ontology and is displayed in the UI. The clinician selects a drug
name, frequency, route, and unit from ‘Drop down’ view components and inserts
dose in a ‘Text Field’ and adds them into the ‘Medication Information’ table
by clicking the (+) button. A medication may be removed from the table by
selecting it and clicking the (−) button. A patient’s opioid regimen is selected
after the execution of the ‘Assessment’ task. We used ontology reasoning to clas-
sify medications into opioids. The rules for different opioids (e.g., strong, weak
opioid) were incorporated into the ontology. In this way, complex rules of do-

Model Driven Workflow Development with T� 275

Fig. 3. Assessment form: Output of the view procedure of the ‘Assessment’ task

main knowledge can be effectively handled by using the reasoning power of an
ontology.

3.4 Specifying Branch Conditions

During execution of the Pain Management Workflow (Fig. 2) only one outgoing
branch of the XOR task ‘Select Opioid Regimen’ is activated. A patient goes
into strong opioid regimen if he is currently on a strong opioid or he is on a
weak opioid with moderate, severe or unstable pain. A patient goes into the
weak opioid regimen if he experiences mild but unstable pain. Otherwise he goes
into the non opioid regimen. The code for the task ‘Select Opioid Regimen’ is
provided below:

01. xorsplittask Select Opioid Regimen;
02. func getBranchCondition(wInstanceId, brNo){
03. var p, pid, pIntensity, pUnderStrong, pUnderWeak, pc, painCourse;
04. {R$ Patient(?p), hasWfInstance(?p, wInstanceId), hasId(?p, ?pid),
05. hasPainIntensity(?p, ?pIntensity) → select(?p, ?pid, ?pIntensity) $R}
06. {R$ PatientUnderStrongOpioid(?pUnderStrong), hasId(pid)
07. → select(?pUnderStrong) $R}
08. {R$ PatientUnderWeakOpioid(?pUnderWeak), hasId(pid)
09. → select(?pUnderWeak) $R}
10. {R$ Patient(p), hasPainCourse(p, ?pc), hasName(?pc, ?painCourse)
11. → select(?painCourse) $R}
12. if(brNo = 1){
13. if(pUnderStrong �= null || (pUnderWeak �= null && pIntensity ≥ 4) ||

276 F. Rabbi and W. MacCaull

14. (pUnderWeak �= null && painCourse = “GettingWorse”) ||
15. (pIntensity ≥ 4 &&
16. (painCourse = “Fluctuating” ||painCourse = “Getting Worse”)))
17. return true; }
18. else if(brNo = 2){
19. if((pIntensity ≥ 2 && (painCourse = “Fluctuating” ||
20. painCourse = “GettingWorse”)) || (painCourse = “Getting Worse”))
21. return true; }
22. else if(brNo = 3)
23. return true;
24. return false; }

The procedure getBranchCondition takes two parameters: a workflow in-
stance id and a branch number and returns true for the branch that should be
activated for that instance. Lines 4–11 query the ontology.

4 Related Work

ADEPT2 [17] is an adaptive process management system which supports dy-
namic change of process schema and definition. The main difference between
ADEPT2 and NOVA Workflow is their underlying persistent technology and
data structure; ADEPT2 does not support ontologies and the activities in
ADEPT2 are written in a GPL. In ADEPT2 web forms are automatically gen-
erated from the workflow model although ADEPT2 does not allow action state-
ments for the UI operations. ADEPT2 performs a dynamic validation of process
schema change which makes the workflow system consistent. In NOVA Workflow
a consistency check is performed whenever any record is inserted into or updated
from an ontology Abox.

In [9], the authors presented an evolutionary approach for the model-driven
construction of Web service based Web applications on the basis of workflow
models which is founded on DSLs and a supporting technical framework. The
Workflow DSL is an executable specification language for workflow based Web
applications which allows the use of various graphical notations taken from the
Business Process Modeling field, e.g., BPMN, Petri Nets, UML activity diagrams
etc., as well as custom notations. This model driven approach makes development
faster by reusing components but this approach is not ontology based.

In [10], the author worked on an ontology oriented programming and pro-
posed a compiler which produces a traditional object-oriented class library that
captures the declarative norms of an ontology. With this approach the developer
is required to use a GPL, and the approach is not model driven. In [8], the au-
thors described the Go! language and its use for ontology oriented programming,
comparing its expressiveness with OWL. Go! allows knowledge to be represented
as a set of labeled theories incrementally constructed using multiple-inheritance.
This is related to our work since the authors also proposed a language for build-
ing executable ontologies. But the syntax proposed for T� is simple and abstract,
and T� provides syntax for procedural statements and UI design.

Model Driven Workflow Development with T� 277

In [6], Baker et. al., surveyed a large number of existing workflow systems and
listed their features considering different problem aspects. None, however, follow
an ontology based model driven approach as in T�. Ontology integration and
UI form generation may be specified in different ways using existing approaches
but they are very easy to specify using T�.

5 Conclusion

In this paper we presented a new domain specific language, called T�, for writing
specifications for tasks in workflow models. The intension of the language is
reflected in the pronounciation “T-Square” – signifying speedy development of
tasks (tasks to the power of 2). A developer may learn the simple syntax of T�
and start developing applications without detailed knowledge of the complex
API’s for Ontologies, Web Services, Android platforms, etc. Code is generated
automatically, allowing the developer to fully concentrate on the domain model
and system analysis. If there is a change in user requirements, the developer can
make the change using T� and the NOVA workflow system will automatically
update the software accordingly. The output of NOVA Workflow is currently an
Android application which runs on mobile devices but different transformations
may be applied to generate other applications, for iPad, the Web, etc. End users
interact with the client application.

Workflow development with T� can benefit from customizing existing and
comprehensive ontologies, e.g., SNOMED–CT, ICNP, etc., already in use in
healthcare. Since reasoning over a large ontology is time consuming, in future
we will work on a bigger case study and deal with the complexity of ontology
reasoning where there is a large Abox and complex rules. One approach is to
use a relational database and materialize an ontology into a database [22] but
this requires further research to speed up the materialization so it can support
the necessary frequent updates. This will allow us to retain the benefit of using
an ontology to structure and maintain complex relationships. NOVA Workflow
with T� is currently being evaluated as part of a pilot application with our local
health authority. Further T� functionalities are under development including a
means to safeguard security of (patients’) information through task-based access
control, and a means to specify dynamic task scheduling.

Acknowledgments. We acknowledge support from the Atlantic Canada Op-
portunities Agencies, the Natural Sciences and Engineering Research Council of
Canada, the Canadian Foundation for Innovation, and the Nova Scotia Research
and Innovation Trust. We are grateful for the enthusiastic support of clinicians
and administrators from the Guysborough Antigonish Strait Health Authority.

References

1. BPMN: Business Process Model and Notation (BPMN),
http://www.omg.org/spec/BPMN/ (last accessed, January 2012)

http://www.omg.org/spec/BPMN/

278 F. Rabbi and W. MacCaull

2. Eclipse xtend, http://www.eclipse.org/xtext/xtend/ (last accessed, January
2012)

3. Google android, http://www.android.com/ (last accessed, January 2012)

4. SWRL, http://www.w3.org/submission/swrl/ (last accessed, January 2012)

5. Web Ontology Language (OWL), http://www.w3.org/2004/owl/ (last accessed,
January 2012)

6. Barker, A., van Hemert, J.: Scientific Workflow: A Survey and Research Directions.
In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM
2007. LNCS, vol. 4967, pp. 746–753. Springer, Heidelberg (2008)

7. Broadfield, L., Banerjee, S., Jewers, H., Pollett, A., Simpson, J.: Guidelines for
the Management of Cancer-Related Pain in Adults. Supportive Care Cancer Site
Team, Cancer Care Nova Scotia (2005)

8. Clark, K.L., McCabe, F.G.: Ontology oriented programming in Go!. Appl. In-
tell. 24(3), 189–204 (2006)

9. Freudenstein, P., Nussbaumer, M., Allerding, F., Gaedke, M.: A domain-specific
language for the model-driven construction of advanced web-based dialogs. In:
Proceedings of the 17th International Conference on World Wide Web, WWW
2008, Beijing, China, April 21-25, pp. 1069–1070. ACM (2008)

10. Goldman, N.M.: Ontology-Oriented Programming: Static Typing for the Inconsis-
tent Programmer. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003.
LNCS, vol. 2870, pp. 850–865. Springer, Heidelberg (2003)

11. Jørgensen, J., Lassen, K., van der Aalst, W.: From task descriptions via colored
petri nets towards an implementation of a new electronic patient record work-
flow system. International Journal on Software Tools for Technology Transfer
(STTT) 10, 15–28 (2008)

12. MacCaull, W., Jewers, H., Latzel, M.: Using an interdisciplinary approach to de-
velop a knowledge-driven careflow management system for collaborative patient-
centred palliative care. In: ACM International Health Informatics Symposium, IHI
2010, Arlington, VA, USA, pp. 507–511. ACM (2010)

13. MacCaull, W., Rabbi, F.: NOVA Workflow: A Workflow Management Tool Target-
ing Health Services Delivery. In: The Proceedings of 1st International Symposium
on Foundations of Health Information Engineering and Systems (FHIES 2011)
(2011); Revised version to appear. LNCS (2012)

14. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4), 316–344 (2005)

15. O’Connor, M.J., Das, A.K.: SQWRL: A query language for OWL. In: Proceedings
of the 5th International Workshop on OWL: Experiences and Directions, OWLED
2009, vol. 529 (2009)

16. Rabbi, F., Wang, H., MacCaull, W.: Compensable WorkFlow Nets. In: Dong, J.S.,
Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp. 122–137. Springer, Heidelberg
(2010)

17. Reichert, M., Rinderle, S., Kreher, U., Acker, H., Lauer, M., Dadam, P.: ADEPT2
- next generation process management technology. In: Proceedings Fourth Heidel-
berg Innovation Forum, Aachen, D.punkt Verlag (April 2007)

18. Schmidt, D.C.: Guest editor’s introduction: Model-driven engineering. IEEE Com-
puter 39(2), 25–31 (2006)

19. Sirin, E., Parsia, B., Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-
DL reasoner. Web Semantics: Science, Services and Agents on the World Wide
Web 5(2), 51–53 (2007)

http://www.eclipse.org/xtext/xtend/
http://www.android.com/
http://www.w3.org/submission/swrl/
http://www.w3.org/2004/owl/

Model Driven Workflow Development with T� 279

20. Staab, S., Studer, R.: Handbook on Ontologies. International Handbooks on Infor-
mation Systems. Springer (2004)

21. Tetlow, P., Pan, J.Z., Oberle, D., Wallace, E., Uschold, M., Kendall, E.: Ontology
driven architectures and potential uses of the semantic web in systems and software
engineering. History, W3C, 1–17 (2006)

22. Uddin Faruqui, R.: Scalable reasoning over large ontologies. MSc thesis, St. Francis
Xavier University (expected, 2012)

23. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: yet another workflow lan-
guage. Information Systems 30(4), 245–275 (2005)

	Model Driven Workflow Development with T

	Introduction
	Model Driven Workflow Development
	The T Language
	Writing Procedural Statements
	Querying and Manipulating Ontologies
	Designing User Interfaces
	Specifying Branch Conditions

	Related Work
	Conclusion
	References

