
Graph-Based Pattern Identification

from Architecture Change Logs

Aakash Ahmad, Pooyan Jamshidi, and Claus Pahl

Lero - The Irish Software Engineering Research Center
School of Computing, Dublin City University, Ireland

{ahmad.aakash,pooyan.jamshidi,claus.pahl}@computing.dcu.ie

Abstract. Service-based architectures have become commonplace, cre-
ating the need to address their systematic maintenance and evolution.
We investigate architecture change representation, primarily focusing on
the identification of change patterns that support the potential reuse of
common changes in architecture-centric evolution for service software.
We propose to exploit architecture change logs - capturing traces of se-
quential changes - to identify patterns of change that occur over time.
The changes in the log are formalised as a typed attributed graph that
allows us to apply frequent sub-graph mining approaches to identify po-
tentially reusable, usage-determined change patterns. We propose to fos-
ter the reuse of routine evolution tasks to allow an architect to follow a
systematic, reuse-centered approach to architectural change execution.

Keywords: Service-driven Architecture, Change Patterns, Evolution.

1 Introduction

Software architecture represents the global system structure for designing, evolv-
ing and reasoning about the configurations of computational components and
their interconnections at higher abstraction levels. Service-Oriented Architecture
(SOA) is an architectural approach that models business processes as technical
software services. Once deployed, continuous change in business and technical
requirements leads towards frequent maintenance and evolution in service sys-
tems [12]. In order to accommodate recurring changes in the SOA lifecycle, the
solution lies in developing processes, frameworks and patterns that enable change
reuse for architectural evolution of service software [12].

We have been working on the ‘Pat-Evol’ project [2, 3] that aims at supporting
pattern-driven reuse in architecture-centric evolution for service-driven software.
Based on the taxonomy of software change [1], we believe that a systematic in-
vestigation of architecture change history could help us to discover sequences of
recurring change that occur over time. Recurring changes can be exploited to
identify change patterns that support a generic, potentially reusable solution to
recurring architecture evolution problems. Therefore, we focus on change repre-
sentation and its operationalisation by maintaining an architecture change log -

M. Bajec and J. Eder (Eds.): CAiSE 2012 Workshops, LNBIP 112, pp. 200–213, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Graph-Based Pattern Identification from Architecture Change Logs 201

tracing each individual change - for our case studies. The change log keeps a se-
quential history (as the ‘post-mortem’ data) of architectural changes, providing
us with an empirical foundation to identify patterns of change.

Although a recent emergence of evolution styles [5, 13, 6, 7] promotes the
‘build-once use-often’ philosophy in architecture and process evolution, it falls
short of addressing frequent demand-driven process-centric changes [15, 16] that
are central to maintenance and evolution of SOAs. This motivates the needs
to systematically investigate architecture change representation that goes be-
yond frequent addition or removal of individual components and connectors to
operationalise recurrent process-based architectural changes.

The proposed solution is based on formalising architectural changes from the
logs as a typed attributed graph [8] that provides formal semantics with its node
and edge attribution to operationalise architectural changes [9]. We utilise fre-
quent sub-graph mining [4] techniques to not only identify the exact instances,
but also inexact matches where only central pattern features suffice for identi-
fication. The scalability of solution beyond manual analysis is supported with
a prototype ‘G-Pride’ (Graph-based Pattern Identification) that facilitates au-
tomation and parameterised user intervention for pattern identification process.
We believe, a continuous experimental identification of patterns is the first step
towards facilitating the architect(s) to capitalise on a reuse-centered approach
to systematically accommodate recurring changes in existing software.

This paper is organised as follows. A formal specification for the change pat-
tern(s) is presented in Section 2, followed by an overview of the proposed solution
in Section 3. We elaborate on graph-based pattern identification in Section 4 and
its evaluation in Section 5. In order to justify the overall contribution, related
work is presented in Section 6 that is followed by conclusions.

2 Change Pattern

In change logs, we observed that the operationalisation of individual changes rep-
resent a parameterised procedural abstraction. This helps us to define change
pattern as a generic, first class abstraction (that can be operationalised and pa-
rameterised) to support potentially reusable architectural change execution. We
present a formal description of change pattern in terms of a meta-model of its
constituent elements in Figure 1a along with its properties in Figure 1b.

2.1 Pattern-Based Architecture Evolution

We model pattern-based evolution PatEvol = < SArch,OPR,CNS, PAT > as
4-tuple with element inter-relationships in Figure 1a as explained below.

1. Service Architecture (SArch) refers to the architecture elements to which
a pattern can be applied during change execution. We utilise attributed
typed graphs [8] that provide formal syntax and semantics with its node and
edge attribution to model typed instances of architectural elements. We use

202 A. Ahmad, P. Jamshidi, and C. Pahl

 - name : String
 - intent : String

1..*

1..*
1..*

1..1

 - precondition : CNS
 - postcondition : CNS
 - invariant : CNS

- oprExp : String
ADD(ae : SrvArch)
REM(ae : SrvArch)
MOD(ae : SrvArch)

 in(ChangePattern: PAT)
 out(): ChangePattern

isContainedBy

1..*

isAppliedTo

constrains

ServiceArchitecture

isEvolvedBy 1..1

1..*

isComposedOf
isConstrainedBy

 - id : Integer

PatternCatalogue

ChangePattern

ChangeOperator Constraints

Configuration

Component Connector

Interface Endpoint

src

trg

a) Structural Model for Pattern-based Evolution b) Fundamental Properties of Change Patterns

Identification

Instantiation

1..* 1..*

Pattern Catalogue

1..1 1..*

Change Log

Specification

Change Pattern

Change Graph

Fig. 1. Model Representation for Reusable Architecture Evolution

the Graph Modeling Language (.GML) for an XML-based representation
of architectural instances. The architectural model is consistent with the
Service Component Architecture specifications that include configurations
(CFG) among a set service components (CMP) as the computational enti-
ties that are linked through connectors (CON), in Figure 1a. The modeling is
restricted to service-based architectures that only support composition or as-
sociation type dependencies among service composites. Thus, the structural
integrity of architecture elements and consistency of pattern-based change
beyond this architecture definition is undefined.

2. Change Operator (OPR) represents operationalisation of changes that
is fundamental to architectural evolution. Our analysis of the log goes be-
yond basic change types [1] to define a set of atomic and composite oper-
ations enabling structural evolution by adding (ADD), removing (REM)
and modifying (MOD) the architecture elements (AE). An inherent ben-
efit of graph-based modeling is the support for architectural evolution by
means of graph transformations. More specifically, during change execution
the operations could be abstracted as graph transformation rules (in our
case supported by XML transformations using XSLT). This enables a fine-
granular operationalisation OPR(ae ∈ AE) to preserve the compositional
hierarchy of architecture elements during change execution with:

- Atomic Change Operations: enable fundamental architectural changes in
terms of adding, removing or modifying the service operation (OPT), service
interface (INF), connector binding (BIN), connector endpoint (EPT) and
configuration interface (cfgINF).

- Composite Change Operations: are a set of atomic change operations, com-
bined to enable composite architectural changes. These enable adding, re-

Graph-Based Pattern Identification from Architecture Change Logs 203

moving or modifying the components (CMP), connectors (CON) and con-
figurations (CFG) with a sequential composition of architectural changes.

3. Constraints (CNS) refer to a set of pattern-specific constraints in terms of
pre-conditions (PRE) and post-conditions (POST) to ensure consistency of
pattern-based changes. In addition, the invariants (INV) ensure structural
integrity of individual architecture elements during change execution.

4. Change Patterns (PAT) represents a recurring, constrained composition
of change operationalisation on architecture elements that is specified as:

PAT<id, name> : PRE(aem ∈ AE)
INV (OPRn(aem∈AE))−−−−−−−−−−−−−−−→ POST (ae′m ∈

AE). Constraints enforcement on operational composition ensures structural
integrity of architecture elements during pattern-based change execution.

A pattern catalogue (CAT) refers to a template-based repository infrastruc-
ture to facilitate automated storage (in: once-off specification) and retrieval (out:
multiple instantiation) of change patterns during evolution.

2.2 Fundamental Properties of Change Pattern

In addition to the meta-model, the fundamental properties of change pattern
are presented in Figure 1b. In order to capitalise on pattern-driven reuse, these
properties support our argument about change pattern as a generic solution that
can be i) identified as recurrent, ii) specified once and iii) instantiated multiple
times to support potentially reusable architectural change execution.

- Identification: aims at an empirical investigation about the history of architec-
tural changes to identify recurring sequences of change that occur over time.
The motivation for architectural change investigation is to discover and anal-
yse real changes (i.e., not any assumed data sets) by extracting the implicit
evolution-centric knowledge from change logs, our focus in this paper.

- Specification: after identification, it is vital to provide a consistent (once-off)
specification for the collection of identified change patterns as pattern cata-
logue. A template-based specification facilitates flexible querying and retrieval
whenever a need for pattern usage arises.

- Instantiation: in order to realise the concept of pattern-driven change execu-
tion, it allows instantiation of appropriate pattern(s) from its abstract spec-
ification to promote the concept of ‘specify-once, instantiate-often’ approach
during architecture evolution.

3 Automating Change Pattern Identification

We investigated architectural changes empirically - analysing change represen-
tation - to discover recurrent sequences in a change log. Therefore, we have
based the identification of patterns on the analysis of changes for two service-
based system evolutions we recorded in the log. These include an Electronic
Billing Presentment and Payment (EBPP) system whose specifications are pub-
lished by NACHA and an on-line Tour Reservation System (TRS). We propose
a three-phase approach to identify architecture change patterns, in Figure 2.

204 A. Ahmad, P. Jamshidi, and C. Pahl

c) Change Pattern Identificationa) Architecture Change Log

Architecture
Element

Constraints

isAppliedtTo

1..*

isConstrainedBy
1..*

isComposedOf
1..*

1..*

1..*

Invariant

Composite
Change

Atomic
Change

b) Architecture Change Graph

Change
Operation

OPR
m AE

OPR
n AE

hasSrc
Attributes

Attributes

OPR
m

OPR
n

hasElem

hasElemhasAttr

hasAttr

hasTrg

root

1..*

1...*

Candidate
Validation

1...*

Pattern Catalogue

Candidate
 Generation

Composite

Leaf

Composition

Exact Match In-exact Match

Pattern
Matching

leaf

Fig. 2. An Overview of the Proposed Pattern Identification Process

3.1 Maintaining the Architecture Change Log

As the initial step, we follow [1] to record the architecture ‘change history’. We
use a centrally manageable repository to record sequential architectural changes
that are constrained by a set of invariants. We expand on the idea of process
change logs from [16] and tailor it to record each individual architectural change
as the log tuple. The structural view for the change log is presented in Fig-
ure 2a that acts as the foundation to identify change patterns with specific
frequency thresholds. While analysing the change operationalisation, each indi-
vidual change from the case studies is manually recorded in the log that currently
comprises of more than a couple of thousands of changes. (i.e., OPR > 2000).
The primary benefits of this approach included:

- Maintaining the traces of evolution in an updated central repository.
- Analytical support with searching and querying concrete instances of change.
- Experimental analysis of change representation, patterns identification etc.

In Figure 2, the structure of change log maintains the compositional hierarchy
of elements. For example, every service component (Composition) must con-
tain at least one or more interfaces (Composite) containing one or more opera-
tions (Leaf), while connectors must have binding that contain sn endpoint. We
are specifically interested in analysing recurrent sequences that exhibit process-
centric changes (e.g. integration, replacement, decomposition etc.) that are cen-
tral to SOA evolution, as composite changes based on addition or removal of
individual components and connectors.

3.2 Graph-Based Formalisation of Architectural Changes

We formalise the architectural changes in the log as an attributed graph (AG)
with its nodes and edges typed over an attributed typed graph (ATG) [8] using
an attributed graph morphism t : AG → ATG as indicated in Figure 3. The
ATG provides formal semantics to represent atomic and composite changes with
visualisation, efficient searching and analysis of sequential changes in the log.
However, we are specifically interested in exploiting frequent sub-graph mining
to identify recurring sequences as potential change patterns.

Graph-Based Pattern Identification from Architecture Change Logs 205

Integer

Architecture
Element

Add
Component 1

hasParameter
Integer

order

ADD()

custDebt

totalParamoprName oprName

hasParameter

hasType

Add
Connector 2

totalParamoprName

1
hasParameter

order

CON

hasType

recurringPayment

2
order

CMP

hasType

(custAccount,
custDebt)

ADD()

a) ATG for Change Operation Syntax

b) AG for Change Operations typed over ATG

OPT EPT

Integer

CMP

hasType

totalOperations

Integer

totalEndPointsString

returnType

parameterList endpointBinding

INF BIN

CMP

CFG CON

Lifted ATG

nID nIDe1

1
order

ADD

MOD

REM

op
rT

yp
e

1455 1456
String

Change Operation

ID

Graph Edge -- Operator Composition Node Attribute Edge Edge Attribute Edge

Attribute Node -- MetadataGraph Node -- Change Operations Attribute Node -- {Operation, ArchElement}

totalParam

eID

ATG
(typedOver)

AG
t

hasParameter

Fig. 3. Attributed Graph to Formalise Architecture Change Operationalisation

Lifting the Change Graph - Sequential Composition: In the change
log, analysing an individual change lacks the required abstraction to exploit the
recurrent process-centric changes. Furthermore, taking into consideration the
granularity of architectural changes (OPR in Section 2) there does not exist a
unified representation for architectural evolution that satisfies the needs for all
stake-holders’ view. For example, a software developer might be more interested
in analysing the modification of a specific operation’s signature and their se-
mantics, while the architect would be exclusively concerned about the affected
component-level interconnections. The possible views could be virtually unlim-
ited depending on any specific evolutionary perspectives. However, in this paper,
instead of focusing on atomic changes we focus on sequential composition iden-
tification that exhibits process-centric aspects of change in terms of integration,
replacement, decomposition of elements. Therefore, we apply graph lifting [11]
to enable projection onto higher-level architectural composites that include con-
figurations, components and connectors, hiding low-level atomic changes.

Creating the Change Session Graph: Once the graph is lifted, we provide
a utility method as sessionGraph(uID, strTime, endTime) to automatically create
the change graph based on a particular change session in the log. The change
session is determined by the identification of the user (uID) who applied the
change(s) in a specific time interval (endT ime - strT ime). For experimental
purposes, we consider all the changes in the log as a single session to extract
the attributes of change instances that, we generate the lifted change graph
(Figure 3a - dotted blue square) with a concrete represention using the Graph
Modeling Language (.GML) format. The result is a directed graph representing
sequential composition of change operationalisation, illustrated in Fig. 3b.

206 A. Ahmad, P. Jamshidi, and C. Pahl

For clarity of presentation, some additional attributes (like date, time, com-
mitter of change etc.) from the actual graph are hidden to focus on the se-
quencing of operations on architecture elements. The attributed graph morphism
t : AG → ATG is defined over graph nodes with t(MetaData) = ChangeData
that results in t(ChangeOperation) = ADD(), t(ArchitectureElement) = cust-
Debt, recurringPayment, custAccount and t(hasType) = CMP, CON in Figure 3.
The change operationalisation as a typed attributed graph is expressed as 5-
tuple: GC = < NG, NA, EG, ENA, EEA >, with:

1. Graph Nodes NG = {n(gi)|i = 1, ..., k} is the set of graph nodes. Each
node represents a single change operation (i.e., add a component, remove a
connector etc.), where t(NG) = ADD(), REM(), MOD().

2. Attributed Nodes NA = {n(ai)|i = 1, ..., l} is the set of attribute nodes.
Attribute nodes are of two types: i) attribute nodes with change metadata,
e.g. change operation, name, number of parameters and ii) attribute nodes
representing architecture elements (and their compositions) e.g. configura-
tion, component, connector etc, where t(NA) = (AE : hasType).

3. Graph Edges EG = {e(gi)|i = 1, ..., k − 1} is the set of graph edges which
connect source n(g)src and target n(g)trg nodes. It represents the sequencing
of change operations in the graph, where t(EG) = eID(NGisrc , NGitrg).

4. Node Attributed Edges ENA = {e(nai)|i = 1, ...,m} is the set of node
attribute edges which join a graph node n(g) to an attribute node n(a),
where t(ENA) = nodeAttr(String), e.g. nID, oprName, totalParam.

5. Edge Attributed Edges EEA = {e(eai)|i = 1, ..., n} is the set of edge
attribute edges which join a node attribute edge e(na) to an attribute node
n(a), where t(EEA) = edgeAttr(String), e.g. eID, eName.

For example in Fig. 3b, the attributed graph represents two change operations
extracted from EBPP architectural changes. It illustrates the addition of a new
service component (custDebt hasType CMP) that is connected to an existing
component (custAccount hasType CMP) with a connector (recurringPayment
hasType CON). The graph nodes are linked to each other using graph edges
e(g) having edge id (e1) along with the ids of its source and target nodes (1455,
1456) representing the applied sequence of change operations.

4 Graph-Based Identification of Change Patterns

Once architectural changes in the log are formalised as an architecture change
graph GC , the final step involves graph-based identification of change patterns.
We exploit one of the classical approaches for pattern mining with sub-graph
isomorphism [4] from recurring sub-graphs GP to GC , where GP ⊆ GC .

4.1 Properties and Types of Change Sequences

Operationalising the change representation is particularly beneficial to define se-
quential composition of change operations on architecture elements. This allows

Graph-Based Pattern Identification from Architecture Change Logs 207

Table 1. Change Sequences (Sx and Sy) as Extracted from the Change Log

Sequence 1 (Sx) Sequence 2 (Sy)

cID OPR Architecture Elements cID OPR Architecture Elements

77 REM() getInvoice ∈ CMP 312 ADD() paymentType ∈ CMP

78 ADD() custBill ∈ CMP 313 REM() custPayment ∈ CMP

79 REM() payInvoice ∈ CON 314 REM() getBillData ∈ CON

80 ADD() payBill ∈ CON - - -

us to abstract the individual changes into a sequence of recurring change oper-
ations representing potential patterns determined by the following properties.

In order to exemplify the properties, Table 1 represents two change sequences
(Sx and Sy) extracted from the change log. The sequences contain change id
(cID), change operation (OPR) and the affected architecture element (AE).
Note, that for space reasons we do not explicitly represent the parameters for
connectors as they are insignificant during sequence matching. Sequence 1 (Sx)
represents the replacement of the existing component getInvoice with custBill
and the corresponding connectors payInvoice, payBill. Sequence 2 (Sy) represents
the addition of a new component paymentType that is followed by removal of an
existing component custPayment and a connector getBillData.

Type Equivalence (TypeEqu) refers to the equivalence of two change op-
erations given by the utility function TypeEqu(OPR1(aei : AE), OPR2(aej :
AE)) : returns < boolean >. It depends on the type of change operation and
the architecture element for a change operation to categorised as type equivalent
(return true) or type distinct (returns false). For example, the change operation
REM(getInvoice ∈ CMP) is only equivalent to REM(custPayment ∈ CMP)
and TypeEqu(77, 313) returns true, as in Table 1.

Length Equivalence (LenEqu) refers to the equivalence of length of two
change sequences where length of a change sequence is defined by the number of
change operation contained in it. It is given by the function LenEqu(Sx, Sy) :
returns < integer >. Therefore, the length equivalence of two change sequences
Sx and Sy is determined by the numerical value (0 imples Sx == Sy, -n implies
Sx < Sy by n nodes and +n implies Sx > Sy by n nodes). For example, in
Table 1 the length of Sx > Sy by one operation so TypeEqu(Sx, Sy) returns 1.

Order Equivalance (OrdEqu) refers to the equivalence in the order of
change operations of two sequences. Analysing the change log based on a given
change session, we observed that it is normal for same user to perform simi-
lar changes using different sequencing of change operations. The semantics and
impact of change operation remains the same even if sequencing of change
operations is varied. It is given by the function OrdEqu(Sx, Sy) : returns <
boolean >. We distinguish different types of identified sequences, in Table 2.

- Exact Sequence: Two given sequences are exact subsequences if they match
on operational types, length equivalence and the ordering of the change opera-
tions. In Table 1, Sx and Sy are not the exact sequences because in both the
sequence length and the order of operation do not match.

208 A. Ahmad, P. Jamshidi, and C. Pahl

Table 2. The Types of Identified Sequences in the Change Log

Sequence Type TypeEqu LenEqu OrdEqu

Exact Sequence true 0 true

Inexact Sequence true 0 false

Partial Exact Sequence true ± n true

Partial inexact Sequence true ± n false

- Inexact Sequence: Two given sequences are inexact matching sequences if
their operational types and lengths are equivalent, but order of change operation
varies. In Table 1 Sx and Sy are not the inexact matching sequences as Sx > Sy.

- Partial Exact Sequence: Two given sequences Sx and Sy are partially exact
such that (if n > 0 than Sy ⊂ Sx, or if n < 0 than Sx ⊂ Sy) - however, the
types and ordering of the change operations in the matched sequences must be
equivalent. In Table 1 Sx and Sy are not partial exact matching sequences as
the order of operations in both the sequences do not match.

- Partial Inexact Sequence: Two given sequences Sx and Sy are partial and
inexact if (if n > 0 than Sy ⊂ Sx, or if n < 0 than Sx ⊂ Sy); in addition, the
operations within both sequences must be type equivalent, while the order of
change operations in both sequences varies. In Table 1 Sx and Sy are partial
inexact match. Although Sx > Sy, still Sy ⊂ Sy as cID(77, 78, 79) matches
cID(312, 313, 314) (OrdEqu(Sx, Sy) returns true).

4.2 Pattern Identification Process

The properties in Table 2 are vital to not only identify exact instances, but
also inexact matches and possible variants of a change pattern where only some
pattern features suffice for identification. We introduce the pattern identification
problem1 as a modular solution. This enables automation along with appropriate
user intervention and customisation through parameterisation in Table 3 for
pattern identification. We follow an apriori-based approach that proceeds in a
generate-and-test manner using a Breadth First Search strategy during each
iteration to i) generate and ii) validate pattern candidates from GC and finally,
(iii) determine the occurrence frequency of exact and inexact candidates in GC .

Candidate Generation. The initial step of pattern identification generates a
set of candidate sequences SC from change graph GC . A candidate consists of a
number of nodes representing change operationalisation on architecture elements
as a potential pattern depending on its occurrence frequency Freq(SC) in GC .
Input(s) is the change graph GC and user specified minimum minLen(SC) and
maximum maxLen(SC) candidate sequence lengths. Output(s) is a list of gener-
ated candidates List(SC) such that minLen(SC) ≤ Len(SCi) ≤ maxLen(SC).

Candidate Validation. We observed that during candidate generation, there
may exist some false positives in terms of candidates that violate the struc-

1 The algorithms along with the developed prototype can be accessed at:
http://www.computing.dcu.ie/~aaakash/ChangePattern.html

http://www.computing.dcu.ie/~aaakash/ChangePattern.html

Graph-Based Pattern Identification from Architecture Change Logs 209

Table 3. List of User Specified Parameters for Pattern Identification

Parameter Description

GC Change session graph created from change Log.

SC Candidate sequences generated from change graph: SC ⊆ GC .

GP Identified Pattern instance from change graph: GP ⊆ GC .

Len(SC) Candidate length representing number of change operations in SC .

minLen(SC) Minimum candidate length that is specified by the user:
minLen(SC) ≤ Len(sc) : sc ∈ SC .

maxLen(SC) Maximum candidate length that is specified by the user:
maxLen(SC) ≥ Len(sc) : sc ∈ SC .

Freq(SC) Frequency threshold that is specified by the user for SC to be iden-
tified as a pattern GP .

List(param : GC) The list of candidates SC or patterns GP as param ⊆ GC .

tural integrity of architecture elements when identified and applied as patterns.
Therefore, it is vital to eliminate such candidates through validation for each
generated candidate sequence sc against architectural invariants before pattern
matching. Input(s) is a candidate sc ∈ GC (called from candidateGeneration(),
each time a candidate is generated). Output(s) a boolean value indicating either
valid (true) or invalid (false) candidate sequence sc.

Pattern Matching. The last step identifies exact and inexact instances of
change patterns based on a user specified frequency threshold. This is achieved
by structural matching using sub-graph morphism [4] among the nodes of
List(SC) to corresponding nodes in GC . Input(s) is a list of (validated) can-
didates vList(SC), specified frequency threshold Freq(SC) and GC . Output(s)
is a list of identified patterns consisting of pattern instance GP and its frequency
Freq(GP). A given candidate is an identified pattern (exact or inexact) if its fre-
quency is greater or equal to the user specified threshold: freq(GP) ≥ Freq(CP).

5 Experimental Analysis and Illustration

The identified pattern types are generally classified as Inclusion, Exclusion and
Replacement types depending on the impact of change as addition, removal or
modification of elements from existing architecture.

5.1 Identified Pattern Instance - Component Integration

In Table 5, we present an identified instance of the co-related Inclusion pattern
that is specified as Integrate (CNS, OPR, AE). Such a declarative specification
facilitates the retrieval of appropriate patterns from a catalogue, consisting of the
syntactical context that contains pattern pre- and post-conditions (CNS), the
applied change operations (OPR) and the affected architecture elements (AE).
The co-related Inclusion pattern aims at integration of mediator services among

210 A. Ahmad, P. Jamshidi, and C. Pahl

Table 4. Template-based Specification of Change Pattern Instance

Name = Corelated Inclusion, Id = 3, CLS = 1, Intent =“...”, Frequency = 8

Precondition(s): as in Figure 4a, PostCondition(s): as in Figure 4c

cID OPR Architecture Elements Parameters

1454 ADD() CustomerAccount ∈ CMP “ ”

1455 ADD() CustomerDebt ∈ CMP “ ”

1456 ADD() recurringPayment ∈ CON CustomerAccount, CustomerDebt ∈ CMP

1457 ADD() billAmount ∈ CON Biller CRM, CustomerAccount ∈ CMP

1458 ADD() paidAmount ∈ CON Biller CRM, CustomerDebt ∈ CMP

1459 REM() customerTariff ∈ CON Biller CRM, CustomerPayment ∈ CMP

1460 REM() paymentInvoice ∈ CON Biller CRM, CustomerInvoicing ∈ CMP

1461 ADD() makePayment ∈ CON CustomerAccount, CustomerPayment ∈ CMP

1462 ADD() getReceipt ∈ CON CustomerDebt, CustomerInvoicing ∈ CMP

two or more directly connected service components. The column cID represents
the sequences of change as it is captured in the change log and later as individual
graph nodes. Figure 4 represents a partial architecture view for the EBPP case
study (integrate direct debit to customer accounts and adjust customer debt)
captured as a recurring sequence (Freq(SC) = 8) in Table 4.

For example, in Figure 4 the preconditions specify the components
(Biller CRM, CustomerPayment, CustomerInvoicing) and connectors (cus-
tomerTariff, paymentInvoice) must exist in the architecture before a pattern
can be applied. In addition, the post-conditions specify the addition of new
components (CustomerAccount, CustomerDebt) and connectors (makePayment,
recurringPayment, getReceipt) as a result of pattern-driven change execution.
The change operations specify the execution aspects in terms of addition or
removal of specified elements from the architecture, illustrated in Figure 4b.

5.2 Algorithmic Analysis

Pattern identification from change logs, which can potentially be significant in
size, requires an efficient solution. In our trials, we observed that the preprocess-
ing for a significant graph size (i.e, GC .size() = OPR ≥ 2278) remains constant
with average complexity time = 888.9 ms. However, such pre-processing is fun-
damental to our approach and the benefit for candidate validation lies in elimi-
nating the potential patterns (false positives) that may violate the structural in-
tegrity of an architecture. We customise the input parameters as:minLen(SC) =
2,maxLen(SC) = 9 with total change operations: GC .size() = 2278. In addi-
tion, we increase the pattern frequency threshold Freq(SC) by 2 in each trial,
where T ime ∝ Freq(SC) and Freq(SC) ∝ 1/Instances. The technical differ-
ence between the exact and inexact pattern matching is detailed in Section 4.
The summary of comparison (on average): time (exact : inexact) in milliseconds
= T(564:1214) ms and identified patterns instances (exact : inexact) = I(21:38),
for GC .size() = 2278.

Graph-Based Pattern Identification from Architecture Change Logs 211

Customer
Account

Customer
Debt

Biller_CRM

<<Domain Services>>

Customer
Payment

Customer
Invoicing

recurringPayment

customerTariff

paymentInvoice

b) definition

Biller_CRM

Customer
Payment

<<Domain Services>>

Customer
Invoicing

customerTariff

paymentInvoice

a) pre-conditions

Customer
Account

Customer
Debt

Biller_CRM

<<Domain Services>>
Customer
Payment

Customer
Invoicing

makePayment

getReceipt

c) post-conditions

1454

1455 1456

1457

1458

1459

1460

1461

1462

billAmount

paidAmount

makePayment

getReceipt

billAmount

paidAmount
recurringPayment

A B

C

A B

c1

c3c2

c1P
at

te
rn

 T
em

pl
at

e

Change
Operation

Addition

Removal

Fig. 4. An Example of the Identified (Co-related Change) Pattern Instance

Possible Limitations: The proposed approach falls short of capturing dynamic
dependencies in terms of service compositions that correspond to the behav-
ioral aspects in SOAs. These dynamic dependencies go beyond structural graph
matching and is out of the scope for this research. The limitation is inherent in
the change log that only captures association type connectors that correspond
to structural changes. In addition, change patterns do not necessarily support
an optimal solution to architecture evolution problem; instead they promote an
alternative and potentially reusable solution.

6 Related Work

Two areas - pattern-driven change reuse and graph-based pattern identification -
play a role in our research. The solutions for pattern-based architecture evolution
utilise evolution styles [5] and more specifically “evolution shelf” [13] as a generic
infrastructure to achieve for-reuse and by-reuse techniques for software architec-
ture evolution. It aims at supporting refactoring patterns (i.e., add a component,
move a component etc.) that can be composed into further advanced evolution
styles (add a client, move a client etc.). In contrast to the evolution styles [5, 13]
for more conventional component architectures, we observe that operationalisa-
tion of changes in the log exhibits process-centric patterns of change unlike the
frequent addition or removal of individual components and connectors.

A catalog of process change patterns [15] can guide change in process-aware in-
formation systems. In contrast, we exclusively focus on change operationalisation
for architectural abstraction. This allows us to argue about change patterns as
generic, first class abstraction that can be specified once and instantiated multi-
ples times to support potential reuse in architecture-based change execution. We

212 A. Ahmad, P. Jamshidi, and C. Pahl

follow ideas in [16] that utilise process change logs to gain an empirical insight
into the context and scope for process instance changes. Our solution focuses on
fostering the common architectural changes that could guide the architects to
follow a reuse-centered approach for architectural change execution.

The solution to our pattern identification problem is similar to other graph-
based pattern identification techniques based on frequent sub-graph mining tech-
niques [4]. We use an apriori-based approach with Breadth First Search strategy
for iterative graph matching. In this context, Graph X-Ray (G-Ray) [10] works
on attributed graphs to find subgraphs that either match the desirable query
pattern exactly, or as close as possible based on pre-defined criteria. We are
specifically concerned with identifying patterns in medium to large attributed
graphs where graph nodes and edges may have multiple attributes that contain
instances of architecture elements and pattern-specific constraints.

7 Conclusions

Service software evolves as a consequence of business and technical change cycles.
Scalability beyond manual evolution and change support is required to enable a
systematic change reuse during architecture evolution. Investigating the history
of sequential architectural changes allows post-mortem analysis to identify pat-
terns as generic, potentially reusable solution for software architecture evolution.
The contribution of this paper is a graph-based formalism for architecture change
representation that allows automation along with parameterised customisation
to identify change patterns.

In the future, we will focus on developing a pattern catalogue as a repos-
itory infrastructure to support an automated storage and retrieval of change
patterns. We utilise an XML pattern template that allows for once-off abstract
specification for identified patterns [17] that can be queried and instantiated with
concrete pattern instances to support potentially reusable architecture evolution.

References

1. Buckley, J., Mens, T., Zenger, M., Rashid, A., Kniesel, G.: Towards a Taxonomy of
Software Change. Jrnl of Software Maintenance and Evolution 17, 309–332 (2005)

2. Ahmad, A., Pahl, C.: Pat-Evol: Pattern-drive Reuse in Architecture-based Evolu-
tion for Service Software. ERCIM News 88 (January 2012)

3. Ahmad, A., Pahl, C.: Customisable Transformation-Driven Evolution for Ser-
vice Architectures. In: Europ. Conf. on Software Maintenance and Reengineering,
CSMR 2011. Doct. Consort. (2011)

4. Jiang, C., Coenen, F., Zito, M.: A Survey of Frequent Subgraph Mining Algorithms
(2004)

5. Garlan, D., Barnes, J., Schmerl, B., Celiku, O.: Evolution Styles: Foundations and
Tool Support for Software Architecture Evolution. In: Proceedings of the Joint
Working IEEE/IFIP Conference on Software Architecture (2009)

6. Gruhn, V., Pahl, C., Wever, M.: Data Model Evolution as Basis of Business Process
Management. In: 14th International Conference on Object-Oriented and Entity
Relationship Modelling O-O ER 1995. LNCS Series. Springer (1995)

Graph-Based Pattern Identification from Architecture Change Logs 213

7. Javed, M., Abgaz, Y.M., Pahl, C.: A Pattern-Based Framework of Change Opera-
tors for Ontology Evolution. In: Meersman, R., Herrero, P., Dillon, T. (eds.) OTM
2009 Workshops. LNCS, vol. 5872, pp. 544–553. Springer, Heidelberg (2009)

8. Ehrig, H., Prange, U., Taentzer, G.: Fundamental Theory for Typed Attributed
Graph Transformation. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg,
G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 161–177. Springer, Heidelberg (2004)

9. Pahl, C.: A Formal Composition and Interaction Model for a Web Component Plat-
form. In: ICALP 2002 Workshop on Formal Methods and Component Interaction.
ENTCS (2002)

10. Tong, H., Faloutsos, C., Gallagher, B., Eliassi-Rad, T.: Fast Best-Effort Pattern
Matching in Large Attributed Graphs. In: 13th ACM International Conference on
Knowledge Discovery and Data Mining, KDD 2007, pp. 737–746 (2007)

11. Fahmy, H., Holt, R.C.: Using Graph Rewriting to Specify Software Architectural
Transformations. In: 15th Intl. Conf. on Automated Software Engineering (2000)

12. Lewis, G., Smith, D.B., Kontogiannis, K.: A Research Agenda for Service-Oriented
Architecture (SOA): Maintenance and Evolution of Service-Oriented Systems.
Technical report, Software Engineering Institute (2010)

13. Goaer, O.L., Tamzalit, D., Oussalah, M., Seriai, A.D.: Evolution Shelf: Reusing
Evolution Expertise within Component-Based Software Architectures. In: 32nd
Annual IEEE Intl. Computer Software and Applications Conference (2008)

14. Ng, R., Lakshmanan, L., Han, J., Pang, A.: Exploratory Mining and Pruning
Optimizations of Constrained Associations Rules. In: SIGMOD 1998 Conference
(1998)

15. Weber, B., Rinderle, S., Reichert, M.: Change Patterns and Change Support Fea-
tures in Process-Aware Information Systems. In: Krogstie, J., Opdahl, A.L., Sin-
dre, G. (eds.) CAiSE 2007 and WES 2007. LNCS, vol. 4495, pp. 574–588. Springer,
Heidelberg (2007)

16. Günther, C.W., Rinderle, S., Reichert, M., van der Aalst, W.: Change Mining in
Adaptive Process Management Systems. In: Meersman, R., Tari, Z. (eds.) OTM
2006, Part I. LNCS, vol. 4275, pp. 309–326. Springer, Heidelberg (2006)

17. Barrett, R., Patcas, L.M., Murphy, J., Pahl, C.: Model Driven Distribution Pattern
Design for Dynamic Web Service Compositions. In: International Conference on
Web Engineering, ICWE 2006. ACM Press (2006)

	Graph-Based Pattern Identification from Architecture Change Logs
	Introduction
	Change Pattern
	Pattern-Based Architecture Evolution
	Fundamental Properties of Change Pattern

	Automating Change Pattern Identification
	Maintaining the Architecture Change Log
	Graph-Based Formalisation of Architectural Changes

	Graph-Based Identification of Change Patterns
	Properties and Types of Change Sequences
	Pattern Identification Process

	Experimental Analysis and Illustration
	Identified Pattern Instance - Component Integration
	Algorithmic Analysis

	Related Work
	Conclusions
	References

