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Abstract. The relationship between requirements and architectures is an impor-
tant research field on software engineering. One of its challenges is to provide 
proper support for their co-evolution, i.e., how to assess the mutual impact of 
requirements and architecture changes on each other, as well as how to react to 
these changes in order to prevent misalignment between them. We advocate the 
use of a single goal model to express both requirements and architectural con-
cerns. In this paper we put forward an approach for requirements and architec-
ture co-evolution considering such a model. Moreover, we outline the reasoning 
required in order to support forward and backward co-evolution of service 
oriented systems. 

Keywords: System architecture, Requirements engineering, Software evolu-
tion, Self-Adaptation, Service-oriented architectures, Autonomics. 

1 Introduction 

Software evolution has become a key research area in software engineering [10]. 
Software artifacts and systems are subject to many kinds of changes, which range 
from technical adjustments due to rapidly evolving technological platforms, to mod-
ifications in the software systems themselves required by the natural evolution of the 
businesses and requirements supported by them. These modifications include changes 
at all levels, from requirements through architecture and design, as well as source 
code, documentation and test suites. For consistent evolution, all models and artifacts 
should remain aligned as the software evolves. 

For instance, whenever requirements change we need to assess whether the current 
architectural configuration continues to meet the stakeholders’ requirements. Similar-
ly, if the properties of components in an architectural model are modified we need to 
analyze if these changes affect requirements satisfaction. In both cases, when there is 
a mismatch between architecture and requirements, an architectural reconfiguration 
may be considered. This is particularly relevant in the case of services, since they are 
very dynamic and may change in several ways (functional upgrades, varying quality-
of-service, withdrawn, so on and so forth). In contrast, when a traditional COTS  
component evolves, the system using it may continue to use an older version of that 
component. In the services case, evolution cannot be prevented. 
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Since the abstraction level of software architecture is adequate for identifying and 
analyzing the ramifications of changes [14], it could be one of the software evolution 
pillars. Certainly, it is of paramount importance to identify when and why to perform 
changes, as well as to assess their impacts [4]. Recent advances in the Requirements 
Engineering and Software Architecture fields include methods and techniques to  
address the evolution, in isolation, of requirements and of architectural models. How-
ever, there is a lack of proposals for tackling the co-evolution of requirements and 
architecture. 

In fact, the line that separates requirements from architecture is a blurred one, as 
argued in [5]. The Twin Peaks model highlights the intertwined characteristics of 
requirements and architectural models [27]. Requirements lie in the problem space, 
whilst architectures are part of the solution space. Thus, investigating how to define 
an architecture (solution) that satisfies the requirements (problem) is a key challenge 
in software engineering. Moreover, it is important to maintain this satisfaction 
throughout a system lifecycle [7]. 

In this paper we present a novel approach for dealing with requirements and archi-
tecture co-evolution. We define the co-evolution problem as the problem of assessing 
the impact of both requirements and architectural changes and responding to these 
changes. 

The remainder of this paper is structured as follows. In Section 2 we present the 
case study used throughout the paper. In section 3 we describe the approach itself. 
Section 4 discusses related works. Lastly, Section 5 concludes the paper with a critical 
discussion of our proposed approach and indicates points for improvement. 

2 Case Study 

In this work we are expressing requirements using the i* Framework [39]. It defines 
goal-based models to describe both the system and its environment in terms of inten-
tional dependencies among strategic actors. The actors are refined using four kinds of 
elements: goal, softgoal, task and resource. Goals represent the actors’ intentions, 
needs or objectives to fulfill its role within the environment in which they operate. 
Softgoals also represent the strategic interests of the actors, but in this case these in-
terests are of subjective nature – it is generally used to express non-functional re-
quirements. The tasks represent a way to perform some activity, i.e., they show how 
to perform some action to obtain the satisfaction of a goal or softgoal. The resources 
represent data, information or a physical resource that an actor may provide or re-
ceive. These elements are linked together within the actor boundaries using means-
end, task-decomposition, and contribution links. The means-end links define which 
alternative tasks (means) may be performed in order to achieve a given goal (end). 
The task-decomposition links describe what should be done to perform a certain task 
(i.e., its sub-tasks). Finally, the contribution links suggest how a task can contribute 
(positively or negatively) to satisfy a softgoal. These contributions allow the selection 
of alternative tasks driven by the satisfaction of softgoals. 
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Fig. 1. The requirements model for the Requirements Analysis Tool 

Fig. 1 presents the original requirements model of our system, which is a Require-
ments Analysis Tool. It is a web-based system that analyzes a textual requirements 
document and generates a list of candidate features. Thus, the main task of this system 
is to analyze a requirements document. In order to do so, it will need to obtain a re-
quirements document, which will be provided by a user (here we are omitting depen-
dency links to the system users). The user can either provide the document as a PDF 
file, or provide it in any usual file format (such as word processing documents and 
spreadsheets), which will be converted to PDF for our processing. 

A common constraint on natural language text analysis is that it is highly depen-
dent on the language being used. In order to enable the analysis of requirements doc-
uments in a wide range of languages, we decided to incorporate the functionality of 
translating the document to a reference language (the alternative would be to adapt the 
analysis algorithm for each language that we want to support). In order to reach a 
large user base worldwide, we defined that this translation must support several lan-
guages. The requirements analysis itself consists of creating a list of candidate  
features, and finally providing a consolidated list by removing duplicated features. 
Lastly, the High Availability non-functional requirement (softgoal) is important for 
our system, since it will be accessed anywhere, any time of the day. Please note that 
we have not yet defined how to satisfy this softgoal, since we have not taken any arc-
hitectural decision yet. Alternatively, we could have already modeled all the different 
ways of satisfying this requirement – later we would only select which ones to use. 

In Fig. 2 we present a possible structural architecture for the Requirements Analy-
sis tool. In this architecture we rely on two kinds of services: Document Converter, 
which are services that provide file type conversion of documents; and Text Transla-
tor services, which are able to translate a given text. On the service consumer side, the 
client-server style was selected because it is well suited for web-based systems. 
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Fig. 2. Architectural model for the Requirements Analysis Tool, in Acme 

3 Forward and Backward Evolution of Service-Oriented 
Systems 

When dealing with requirements and architecture co-evolution two situations may 
arise. On one hand, changes in the system requirements may happen (this includes the 
system context, stakeholders’ attitudes and quality constraints). In this case, some 
analysis is required to assess if these changes call for a reconfiguration, and whether 
there is some reconfiguration that satisfies the new requirements. We call this forward 
evolution, since it is from requirements to architecture. 

On the other hand, there may also be changes in the architecture itself. For in-
stance, the performance of a component may degrade. Thus, it is now required to 
check whether these architectural changes prevent requirements satisfaction. If this is 
the case, and this failure is unacceptable, it is necessary to attempt to identify a possi-
ble architectural reconfiguration that improves the level of the satisfaction of the re-
quirements. However, if it is not feasible to reconfigure it, the system administrator 
could be prompted to either relax the affected requirements, or to perform offline 
evolution. This we call backward evolution – from architecture to requirements. 

We propose to tackle the co-evolution problem by converging requirements and 
architecture models, i.e., working with architectural models that also contain require-
ments information. By doing so, we are able to perform the co-evolution reasoning in 
a single model. Moreover, this reduces the overhead of maintaining traceability be-
tween requirements models and architecture models. 
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In order to do so, we use a conventional requirements modeling notation to 
represent architectures – namely, i*. This was preferred over modifying an Architec-
tural Description Language (ADL) because (i) we did not find an architectural lan-
guage expressive enough for presenting requirements; (ii) by using the same frame-
work for both RE and architecture we can have a seamless approach to go from re-
quirements to architecture; and (iii) i* showed to be a suitable notation for expressing 
architectures. 

Despite being an organizational modeling notation, i* has shown to be particularly 
adequate for requirements modeling [39]. Recent works also showed that it is reason-
ably suitable for architectural modeling [16] [30]. More specifically, it has been used 
to model information services [26]. In [16] there are arguments in favor of using i* 
extended models for architectural modeling. It is claimed that it can be used to de-
scribe main architectural concepts, such as components, connectors, constraints, non-
functional properties and evolution. Moreover, i* has suitable composition, abstrac-
tion and analysis mechanisms. However, it lacks proper support to promote reusabili-
ty and heterogeneity, as well as it lacks proper support for configuring the models. 

It is claimed that software architecture describes a system in a high-abstraction lev-
el, defining its components, the interaction among these components, their attributes 
and their functionalities [37]. Fig. 3 presents our approach for expressing service-
oriented architectures using i*, in the context of our case study. Here, conventional 
components were mapped onto i* actors, service categories onto roles and the servic-
es themselves onto agents. A service category is a general definition of the service 
that is required, while an agent is a specific service that plays the role defined by a 
service category. E.g., Text Translator is a service category, whilst Microsoft Transla-
tor is a particular service of that category. With this mapping we are able to express 
the requirements related to each component of the architecture. Lastly, connectors are 
represented by dependencies. This allows expressing what is expected from a compo-
nent (dependum), why is it expected (from the depender’s model) and how is it going 
to be provided (from the dependee’s model). 

In Table 1 we present a summary of this mapping, considering the five major arc-
hitectural elements [38]. However, note that the rationale, i.e., the information that 
explains the architectural decisions taken, cannot be properly captured by i* elements. 
This is also the case for the majority of architectural modeling notations, where other 
artifacts are required to document the architectural diagrams [8]. 

Table 1. Mapping of architectural elements onto i* 

Architectural Element i* Element
Component Actor, role, agent
Connector Dependency links
Interface Implicitly defined by the source and target elements 

of dependency links 
Configuration The graph itself
Rationale Partially defined by internal elements (goals, soft-

goals, tasks, resources and their relationship) 
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Fig. 3. Architectural model of the Requirements Analysis tool, using i*. It replaces the former 
model presented in Fig. 2. 

Another motivation for the use of i* as an architectural description language is the 
current set of available reasoning mechanisms. Particularly relevant to our approach is 
the evaluation of the softgoals’ satisfiability [15][19]. This allows selecting the best 
alternative to achieve a goal, considering the contributions of each alternative to the 
softgoals of interest (top-down reasoning). We can also assess whether a given alter-
native properly satisfies the selected softgoals. 

3.1 Forward Evolution 

Our concern here is to handle requirements changes related to the information servic-
es being used by the proposed system. These may come in two ways: a functional 
change, i.e., we want the service to satisfy a different goal or task; or a non-functional 
change, i.e., we define different quality constraints on how the service is supposed to 
support its goals or tasks.  

When there are requirements changes, we are capable of checking whether the in-
formation service currently selected can satisfy the new requirements. For instance, 
consider that we are interested in the Document Converter service category (as de-
scribed in Fig. 3) and that the PDFm service is currently selected. Several queries can 
be performed:  
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Query 1: Can PDFm support Convert Document to PDF with high Availability? 
According to Fig 3. the service is highly available. However, if after deployment we 
notice that requirements documents are sometimes split in several documents accord-
ing to some criteria (such as by sub-system, by viewpoints, and so on), we may decide 
that we also need the capability of merging documents. Thus, we can now pose a new 
question to check if PDFm provides this functionality as well, which is expressed in 
Query 2. 

Query 2: Can PDFm support Convert Document to PDF and Merge Documents? 
Since PDFm is unable to perform the Merge Documents task (Fig. 3), the answer to 
Query 2 is negative. Thus, we may ask the same question to other services of the 
same category. If one is found (eg. PDFt), we could then perform the required archi-
tectural reconfiguration, i.e., use PDFt instead of PDFm. 

The same reasoning presented so far can be performed with softgoals as well. For 
instance, we may decide to go only for PDF conversion, as long as it is performed at 
low cost. In order to check whether PDFm satisfy this new requirement, we may ask 
Query 3:  

Query 3: Can PDFm support Convert Document to PDF with low cost? 
The assessment of softgoal satisfaction is trivial in the PDFm model (Fig. 3): since 
there is only one contribution link towards Low Cost, and it is a ++ contribution. 
Hence, the Low Cost softgoal is satisfied. For more complex cases, with different 
contribution links, one may refer to [15][19]. 

3.2 Backward Evolution 

On the other hand, when there is a change in properties of the information services, or 
when new candidate services are identified, a similar reasoning may follow. In this 
case, we may use a monitoring framework in order to retrieve updated information on 
the services’ properties. For instance, the SALMon tool [28] is able to provide up-to-
date data on web services’ response time and availability, among others. With such 
monitoring capabilities, we are able to assess both at design time and at runtime the 
quality of the information services being used. 

In our case study, consider that we require documents to be converted to PDF with 
a high availability service. Recall that before deployment we certified that the PDFm 
service satisfied this query; for this reason, we had selected it for use in our system. 
Nonetheless, after deployment we may have noticed a degradation of its availability. 
Thus, we need to check whether this service is still able to meet our requirements – 
i.e., we need to check if there is a possible solution for Query 1. I.e., the same query 
would be performed, now with the model updated for the new availability value. Pro-
vided that automated monitoring is available, this reasoning can be completely per-
formed without human intervention. Hence, it is suitable for adaptive and autonomic 
systems, which could perform this checking at regular time intervals. Foresight me-
thods may be used to define which requirements/architectural elements to monitor and 
at what time intervals [33]. 
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If the experienced change prevents the information service from satisfying its re-
lated requirements, we may check if other services of the same service category are 
able to meet the requirements – in this case, PDFt. 

3.3 Tolerance, Relaxation and Manual Evolution 

On the last two sub-sections we outlined how we can reason to identify a mismatch 
between system requirements and information services. Moreover, we showed how 
we can attempt to solve this mismatch by searching for a possible reconfiguration. 
There are two questions that arise when performing this reasoning: (i) all mismatches 
must be solved or can we live with some mismatches? (ii) What happens when no 
reconfiguration is able to solve this mismatch? 

In previous works we argued that not every failure requires compensation [32], ac-
knowledging that distinct failures may have different impacts. In our specific case, we 
could rephrase it: not every mismatch between service and requirements (failure to 
satisfy requirements) demands a reconfiguration (compensation). We tackle this issue 
by allowing system administrators to define tolerance policies, using our previous 
framework [32]. Thus, the system administrator will be able to define different crite-
ria to assess when a failure in satisfying requirements, resulting from architectural 
changes, needs to trigger a reconfiguration. 

A main element in that framework is the tolerance policy, which consists of toler-
ance rules. These rules may be related to the system context as well as to a particular 
element of the goal model, or to the amount of failures that happened. With this 
framework we may decide to ignore when a service fails to support a given element of 
the architectural model (e.g., a quality constraint), in particular conditions. Hence, 
instead of searching for a possible reconfiguration, we will continue to use the same 
service. 

Regarding the second question, if it is not possible to reconfigure to satisfy the 
evolved requirements, and assuming that the tolerance policy in place does not allow 
for that failure to be ignored, we envision two scenarios. On one hand, the system 
administrator will be prompted to adjust (relax) the current requirements so that there 
is at least one possible reconfiguration. Alternatively, manual (offline) evolution of 
the system may take place. 

4 Related Works 

The area of Software evolution has been largely studied. More recently, terms such as 
autonomics, self-adaptation and self-management have been used to describe systems 
that are able to dynamically evolve at runtime. Regarding requirements evolution, 
some approaches (such as Lapouchnian and Mylopoulos [23] and Ali et al. [2]) use 
the notion of context in order to identify which elements of the requirements model 
are active/enabled. Pimentel et al. builds on that to derive architectures that support 
requirements activation/deactivation [31]. Jian et al. [21] proposes mechanisms to 
allow the insertion of goals in the requirements model at runtime. The system is only 
capable to satisfy these new requirements by developing new modules for the system. 
Qureshi et al. [35] also allows the changing of goal models at runtime. It proposes a 
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service lookup mechanism to identify services that may satisfy the new requirements. 
Franch et al. [13] define metrics related to non-functional requirements. In turn, the 
metrics are linked to service categories and services. Thus, its reconfiguration is based 
solely on the measurements of these metrics.  

Similarly, there are several research works regarding architectural evolution. For 
instance, [9] defines adaptation conditions based on architectural properties as well as 
reconfiguration operations. Control events based on components’ states are used in 
[3] to reconfigure the architecture connectors. Composition rules are deployed in [34] 
to dynamically define connections between components and aspects. Some of pre-
vious work also allowed the addition, removal, change and reconfiguration of compo-
nents [32]. These works may have broader and more sophisticated mechanisms for 
architecture evolution than ours. However, they fail to relate this evolution to system 
requirements. 

There are also works on the requirements and architecture relationship such as 
[12][17][20][22]. However, they do not tackle this problem as we do, i.e. by consider-
ing the architecture model as a refinement of the requirements model, along the lines 
of what was developed for problem frames in [17].  

Pahl et al. [29] proposes to dynamically define service collaboration through a 
coordination space, on which a service consumer expresses its need for a particular 
kind of service, which may be satisfied by a service provider. However, it does not 
consider the other elements of the software architecture.  

5 Discussion 

Considering the architecture as a reification of the system under consideration, and 
the increasing adoption of technologies that facilitate architectural changes (such as 
the technologies behind web services and cloud computing), it is of utmost impor-
tance to understand and reason on the relationships between requirements and archi-
tectural models. This calls for systems that are able to react to changes in require-
ments (i.e. according to the stakeholders expectations), as well as dealing with 
changes in the system itself (architecture). Architectural changes include structural 
changes – e.g., replacing a component (due to a new update) – and properties changes 
– e.g., the performance of a component may have degraded. 

Throughout this paper we outlined our approach for requirements and architecture 
co-evolution. The main contribution of this approach is that it provides proper reason-
ing to handle the reciprocal impact between requirements and architecture – i.e., the 
requirements and architecture co-evolution. In the particular case of information ser-
vices we are able to assess the impact of such changes, as well as to identify whether 
and which reconfiguration is possible to react to a given change. Given that proper 
monitoring tools are set up, this reasoning can be used at runtime to enable autonomic 
and self-adaptive behaviors. 

In order to provide such reasoning, we advocate the use of architectural models 
enriched with requirements data. Such model may be derived from requirements 
models through a series of decision/transformations steps (e.g., [6]). In this research 
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we propose the use of i* for both requirements and architecture modeling [16][30]. 
This approach has some drawbacks, as follows: 

Lack of familiarity – software architectures are already accustomed to conventional 
ADL. Thus, the need to learn a new notation would be a barrier for the adoption of 
this approach. 

Poor readability – architectural models may become more difficult to handle in our 
approach due to the additional requirements information. 

Lack of tools – there are several tools to support conventional ADL – e.g., for au-
tomatic code generation. The lack of similar tools to support i* may prevent some 
architects to adopt it. 

The first two drawbacks may be mitigated by using the i* information hiding me-
chanism, by improving the i* visual syntax [25] and by using modularization mechan-
isms [1][11]. The third problem may be softened by developing new tools for i*, or by 
translating the i* models to a conventional ADL as described in [6][24]. 

We believe that our approach is suited not only to service-driven architectures, but 
also for any kind of architecture on which components have some degree of intentio-
nality. This is the case for socio-technical systems, on which some responsibilities are 
delegated not only to software and hardware components, but also to organizations 
and human participants. This is also the case for agent-based systems, on which each 
agent has its own goals, that may or may not converge to the overall system goals. 

A key limitation of our approach is that we only consider the structural view of the 
architecture. Thus, an important advance in future works would be to include other 
views [36], as well as behavioral concerns. It is also important to notice that we intend 
to support only the derivation of architectural models – detailed design, class dia-
grams, code, and so on, are currently out of the scope of our approach. Thus, we do 
not define some service details, such as protocols, publishing mechanisms, and so on. 

A major improvement for our approach would be to use Artificial Intelligence (AI) 
mechanisms in order to enhance the reasoning here proposed – for instance, simula-
tion techniques [18]. This would be an important step towards Intelligent Software 
Engineering, i.e., Software Engineering that makes use of AI techniques. 
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and CNPq. 

References 

1. Alencar, F., Castro, J., Lucena, M., Santos, E., Silva, C., Araújo, J., Moreira, A.: Towards 
modular i* models. In: 25th ACM Symposium on Applied Computing, pp. 292–297 
(2010) 

2. Ali, R., Dalpiaz, F., Giorgini, P.: A Goal Modeling Framework for Self-Contextualizable 
Software. In: Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Soffer, P., Ukor, 
R. (eds.) BMMDS 2009 and EMMSAD 2009. LNBIP, vol. 29, pp. 326–338. Springer, 
Heidelberg (2009) 



 Towards Requirements and Architecture Co-evolution 169 

3. Allen, R., Douence, R., Garlan, D.: Specifying and Analyzing Dynamic Software Archi-
tectures. In: Astesiano, E. (ed.) ETAPS 1998 and FASE 1998. LNCS, vol. 1382, pp. 21–
37. Springer, Heidelberg (1998) 

4. Andersson, J.: Issues in Dynamic Software Architectures (2000) 
5. Boer, R., Vliet, H.: On the Similarity between Requirements and Architecture. The Journal 

of Systems and Software 82(3), 544–550 (2009) 
6. Castro, J., Lucena, M., Silva, C., Alencar, F., Santos, E., Pimentel, J.: Changing attitudes 

towards the generation of architectural models. Journal of Systems and Software 85(3), 
463–479 (2012) 

7. Cleland-Huang, J., Marrero, W., Berenbach, B.: Goal Centric Traceability: Using Virtual 
Plumblines to Maintain Critical Systemic Qualities. IEEE Transactions on Software Engi-
neering 34(5) (2008) 

8. Dermeval, D., Soares, M., Alencar, F., Santos, E., Pimentel, J., Castro, J., Lucena, M., Sil-
va, C., Souza, C.: Towards an i*-based Architecture Derivation Approach. In: Proceedings 
of the 5th International i* Workshop, Italy, pp. 66–71 (2011) 

9. Dowling, J., Cahill, V.: The K-Component Architecture Meta-model for Self-Adaptive 
Software. In: Matsuoka, S. (ed.) Reflection 2001. LNCS, vol. 2192, pp. 81–88. Springer, 
Heidelberg (2001) 

10. Fernandez-Ramil, J., Perry, D., Madhavji, N.H. (eds.): Software Evolution and Feedback: 
Theory and Practice. Wiley, Chichester (2006) 

11. Franch, X.: Incorporating Modules into the i* Framework. In: Pernici, B. (ed.) CAiSE 
2010. LNCS, vol. 6051, pp. 439–454. Springer, Heidelberg (2010) 

12. Franch, X., Botella, P.: Putting Non-functional Requirements into Software Architecture. 
In: 9th International Workshop on Software Specification and Design (1998) 

13. Franch, X., Grünbacher, P., Oriol, M., Burgstaller, B., Dhungana, D., López, L., Marco, J., 
Pimentel, J.: Goal-driven Adaptation of Service-Based Systems from Runtime Monitoring 
Data. In: 5th IEEE Workshop on Requirements Engineering for Services, Germany (2011) 

14. Garlan, D., Perry, D.: Introduction to the Special Issue on Software Architecture. Journal 
IEEE Transactions on Software Engineering 21(4) (1995) 

15. Giorgini, P., Mylopoulos, J., Nicciarelli, E., Sebastiani, R.: Formal Reasoning Techniques 
for Goal Models. In: 21st International Conference on Conceptual Modeling (2002) 

16. Grau, G., Franch, X.: On the Adequacy of i* Models for Representing and Analyzing 
Software Architectures. In: Hainaut, J.-L., Rundensteiner, E.A., Kirchberg, M., Bertolotto, 
M., Brochhausen, M., Chen, Y.-P.P., Cherfi, S.S.-S., Doerr, M., Han, H., Hartmann, S., 
Parsons, J., Poels, G., Rolland, C., Trujillo, J., Yu, E., Zimányie, E. (eds.) ER Workshops 
2007. LNCS, vol. 4802, pp. 296–305. Springer, Heidelberg (2007) 

17. Hall, J., Jackson, M., Laney, R., Nuseibeh, B., Rapanotti, L.: Relating software require-
ments and architectures using problem frames. In: IEEE Joint International Requirements 
Engineering Conference (2002) 

18. Hill, T., Supakkul, S., Chung, L.: Confirming and Reconfirming Architectural Decisions 
on Scalability: A Goal-Driven Simulation Approach. In: Meersman, R., Herrero, P., Dil-
lon, T. (eds.) OTM 2009 Workshops. LNCS, vol. 5872, pp. 327–336. Springer, Heidelberg 
(2009) 

19. Horkoff, J., Yu, E.: Qualitative, Interactive, Backwards Analysis of i* Models. Computer, 
43–46 (2008) 

20. Inverardi, P., Muccini, H., Pelliccione, P.: Checking consistency between architectural 
models using SPIN. In: Workshop From Software Requirements to Architectures (2001) 

21. Jian, Y., Li, T., Liu, L., Yu, E.: Goal-Oriented Requirements Modelling for Running Sys-
tems. In: 1st International Workshop on Requirements at Run-Time (2010) 



170 J. Pimentel et al. 

22. Pohl, K., Sikora, E.: The Co-Development of System Requirements and Functional Archi-
tecture. In: Conceptual Modeling in Information Systems Engineering, pp. 229–246 (2007) 

23. Lapouchnian, A., Mylopoulos, J.: Modeling Domain Variability in Requirements Engi-
neering with Contexts. In: Laender, A.H.F., Castano, S., Dayal, U., Casati, F., de Oliveira, 
J.P.M. (eds.) ER 2009. LNCS, vol. 5829, pp. 115–130. Springer, Heidelberg (2009) 

24. Lucena, M., Castro, J., Silva, C., Alencar, F., Santos, E., Pimentel, J.: A Model Transfor-
mation Approach to Derive Architectural Models from Goal-Oriented Requirements Mod-
els. In: Meersman, R., Herrero, P., Dillon, T. (eds.) OTM 2009 Workshops. LNCS, 
vol. 5872, pp. 370–380. Springer, Heidelberg (2009) 

25. Moody, D., Heymans, P., Matulevicius, R.: Visual syntax does matter: improving the cog-
nitive effectiveness of the i* visual notation. Requirements Engineering Journal 15(2), 
141–175 (2010) 

26. Morales, E., Franch, X., Martinez, A., Estrada, H.: Considering Technology Representa-
tion in Service-Oriented Business Models. In: 5th IEEE Workshop on Requirements Engi-
neering for Services, Germany, pp. 482–487 (2011) 

27. Nuseibeh, B.: Weaving the Software Development Process Between Requirements and 
Architectures. IEEE Computer 34(3), 115–117 (2001) 

28. Oriol, M., Franch, X., Marco, J., Ameller, D.: Monitoring Adaptable SOA-Systems using 
SALMon. In: Workshop on Service Monitoring, Adaptation and Beyond, pp. 19–28 (2008) 

29. Pahl, C., Gacitua-Decar, V., Wang, M., Bandara, K.Y.: A Coordination Space Architecture 
for Service Collaboration and Cooperation. In: Salinesi, C., Pastor, O. (eds.) CAiSE Work-
shops 2011, Part VI. LNBIP, vol. 83, pp. 366–377. Springer, Heidelberg (2011) 

30. Pimentel, J., Franch, X., Castro, J.: Measuring Architectural Adaptability in i* Models. In: 
14th Ibero-American Conference on Software Engineering, CIBSE, April 27-29 (2011) 

31. Pimentel, J., Lucena, M., Castro, J., Silva, C., Alencar, F., Santos, E.: Deriving Adaptable 
Software Architectures from Requirements Models: The STREAM-A approach. Require-
ments Engineering Journal (2011) (published online) 

32. Pimentel, J., Santos, E., Castro, J.: Conditions for ignoring failures based on a require-
ments model. In: 22nd International Conference on Software Engineering and Knowledge 
Engineering, USA, pp. 48–53 (2010) 

33. Pimentel, J., Santos, E., Castro, J.: Anticipating Requirements Changes – Using Futurolo-
gy in Requirements Elicitation. International Journal of Information System Modeling and 
Design 3(2), 89–111 (2012) 

34. Pinto, M., Fuentes, L., Troya, J.M.: DAOP-ADL: An Architecture Description Language 
for Dynamic Component and Aspect-Based Development. In: Pfenning, F., Macko, M. 
(eds.) GPCE 2003. LNCS, vol. 2830, pp. 118–137. Springer, Heidelberg (2003) 

35. Qureshi, N., Perini, A., Ernst, N., Mylopoulos, J.: Towards a Continuous Requirements 
Engineering Framework for Self-Adaptive Systems. In: 1st RE @ Run-Time (2010) 

36. Razavizadeh, A., Cîmpan, S., Verjus, H., Ducasse, S.: Software System Understanding via 
Architectural Views Extraction According to Multiple Viewpoints. In: Meersman, R., Her-
rero, P., Dillon, T. (eds.) OTM 2009 Workshops. LNCS, vol. 5872, pp. 433–442. Springer, 
Heidelberg (2009) 

37. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline. 
Prentice Hall (1996) 

38. Taylor, R., Medvidovic, N., Dashofy, I.: Software Architecture: Foundations, Theory, and 
Practice. John Wiley & Sons (2009) 

39. Yu, E., Giorgini, P., Maiden, N., Mylopoulos, J. (eds.): Social Modeling for Requirements 
Engineering. The MIT Press, Cambridge (2011) 


	Towards Requirements and Architecture Co-evolution
	Introduction
	Case Study
	Forward and Backward Evolution of Service-Oriented 
Systems
	Forward Evolution
	Backward Evolution
	Tolerance, Relaxation and Manual Evolution

	Related Works
	Discussion
	References




