
M. Bajec and J. Eder (Eds.): CAiSE 2012 Workshops, LNBIP 112, pp. 159–170, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Towards Requirements and Architecture Co-evolution

João Pimentel1, Jaelson Castro1, Emanuel Santos1, and Anthony Finkelstein2

1 Universidade Federal de Pernambuco - UFPE, Centro de Informática, Recife, Brazil
{jhcp,jbc,ebs}@cin.ufpe.br

2 University College London - UCL, Department of Computer Science, United Kingdom
a.finkelstein@ucl.ac.uk

Abstract. The relationship between requirements and architectures is an impor-
tant research field on software engineering. One of its challenges is to provide
proper support for their co-evolution, i.e., how to assess the mutual impact of
requirements and architecture changes on each other, as well as how to react to
these changes in order to prevent misalignment between them. We advocate the
use of a single goal model to express both requirements and architectural con-
cerns. In this paper we put forward an approach for requirements and architec-
ture co-evolution considering such a model. Moreover, we outline the reasoning
required in order to support forward and backward co-evolution of service
oriented systems.

Keywords: System architecture, Requirements engineering, Software evolu-
tion, Self-Adaptation, Service-oriented architectures, Autonomics.

1 Introduction

Software evolution has become a key research area in software engineering [10].
Software artifacts and systems are subject to many kinds of changes, which range
from technical adjustments due to rapidly evolving technological platforms, to mod-
ifications in the software systems themselves required by the natural evolution of the
businesses and requirements supported by them. These modifications include changes
at all levels, from requirements through architecture and design, as well as source
code, documentation and test suites. For consistent evolution, all models and artifacts
should remain aligned as the software evolves.

For instance, whenever requirements change we need to assess whether the current
architectural configuration continues to meet the stakeholders’ requirements. Similar-
ly, if the properties of components in an architectural model are modified we need to
analyze if these changes affect requirements satisfaction. In both cases, when there is
a mismatch between architecture and requirements, an architectural reconfiguration
may be considered. This is particularly relevant in the case of services, since they are
very dynamic and may change in several ways (functional upgrades, varying quality-
of-service, withdrawn, so on and so forth). In contrast, when a traditional COTS
component evolves, the system using it may continue to use an older version of that
component. In the services case, evolution cannot be prevented.

160 J. Pimentel et al.

Since the abstraction level of software architecture is adequate for identifying and
analyzing the ramifications of changes [14], it could be one of the software evolution
pillars. Certainly, it is of paramount importance to identify when and why to perform
changes, as well as to assess their impacts [4]. Recent advances in the Requirements
Engineering and Software Architecture fields include methods and techniques to
address the evolution, in isolation, of requirements and of architectural models. How-
ever, there is a lack of proposals for tackling the co-evolution of requirements and
architecture.

In fact, the line that separates requirements from architecture is a blurred one, as
argued in [5]. The Twin Peaks model highlights the intertwined characteristics of
requirements and architectural models [27]. Requirements lie in the problem space,
whilst architectures are part of the solution space. Thus, investigating how to define
an architecture (solution) that satisfies the requirements (problem) is a key challenge
in software engineering. Moreover, it is important to maintain this satisfaction
throughout a system lifecycle [7].

In this paper we present a novel approach for dealing with requirements and archi-
tecture co-evolution. We define the co-evolution problem as the problem of assessing
the impact of both requirements and architectural changes and responding to these
changes.

The remainder of this paper is structured as follows. In Section 2 we present the
case study used throughout the paper. In section 3 we describe the approach itself.
Section 4 discusses related works. Lastly, Section 5 concludes the paper with a critical
discussion of our proposed approach and indicates points for improvement.

2 Case Study

In this work we are expressing requirements using the i* Framework [39]. It defines
goal-based models to describe both the system and its environment in terms of inten-
tional dependencies among strategic actors. The actors are refined using four kinds of
elements: goal, softgoal, task and resource. Goals represent the actors’ intentions,
needs or objectives to fulfill its role within the environment in which they operate.
Softgoals also represent the strategic interests of the actors, but in this case these in-
terests are of subjective nature – it is generally used to express non-functional re-
quirements. The tasks represent a way to perform some activity, i.e., they show how
to perform some action to obtain the satisfaction of a goal or softgoal. The resources
represent data, information or a physical resource that an actor may provide or re-
ceive. These elements are linked together within the actor boundaries using means-
end, task-decomposition, and contribution links. The means-end links define which
alternative tasks (means) may be performed in order to achieve a given goal (end).
The task-decomposition links describe what should be done to perform a certain task
(i.e., its sub-tasks). Finally, the contribution links suggest how a task can contribute
(positively or negatively) to satisfy a softgoal. These contributions allow the selection
of alternative tasks driven by the satisfaction of softgoals.

 Towards Requirements and Architecture Co-evolution 161

Fig. 1. The requirements model for the Requirements Analysis Tool

Fig. 1 presents the original requirements model of our system, which is a Require-
ments Analysis Tool. It is a web-based system that analyzes a textual requirements
document and generates a list of candidate features. Thus, the main task of this system
is to analyze a requirements document. In order to do so, it will need to obtain a re-
quirements document, which will be provided by a user (here we are omitting depen-
dency links to the system users). The user can either provide the document as a PDF
file, or provide it in any usual file format (such as word processing documents and
spreadsheets), which will be converted to PDF for our processing.

A common constraint on natural language text analysis is that it is highly depen-
dent on the language being used. In order to enable the analysis of requirements doc-
uments in a wide range of languages, we decided to incorporate the functionality of
translating the document to a reference language (the alternative would be to adapt the
analysis algorithm for each language that we want to support). In order to reach a
large user base worldwide, we defined that this translation must support several lan-
guages. The requirements analysis itself consists of creating a list of candidate
features, and finally providing a consolidated list by removing duplicated features.
Lastly, the High Availability non-functional requirement (softgoal) is important for
our system, since it will be accessed anywhere, any time of the day. Please note that
we have not yet defined how to satisfy this softgoal, since we have not taken any arc-
hitectural decision yet. Alternatively, we could have already modeled all the different
ways of satisfying this requirement – later we would only select which ones to use.

In Fig. 2 we present a possible structural architecture for the Requirements Analy-
sis tool. In this architecture we rely on two kinds of services: Document Converter,
which are services that provide file type conversion of documents; and Text Transla-
tor services, which are able to translate a given text. On the service consumer side, the
client-server style was selected because it is well suited for web-based systems.

162 J. Pimentel et al.

Fig. 2. Architectural model for the Requirements Analysis Tool, in Acme

3 Forward and Backward Evolution of Service-Oriented
Systems

When dealing with requirements and architecture co-evolution two situations may
arise. On one hand, changes in the system requirements may happen (this includes the
system context, stakeholders’ attitudes and quality constraints). In this case, some
analysis is required to assess if these changes call for a reconfiguration, and whether
there is some reconfiguration that satisfies the new requirements. We call this forward
evolution, since it is from requirements to architecture.

On the other hand, there may also be changes in the architecture itself. For in-
stance, the performance of a component may degrade. Thus, it is now required to
check whether these architectural changes prevent requirements satisfaction. If this is
the case, and this failure is unacceptable, it is necessary to attempt to identify a possi-
ble architectural reconfiguration that improves the level of the satisfaction of the re-
quirements. However, if it is not feasible to reconfigure it, the system administrator
could be prompted to either relax the affected requirements, or to perform offline
evolution. This we call backward evolution – from architecture to requirements.

We propose to tackle the co-evolution problem by converging requirements and
architecture models, i.e., working with architectural models that also contain require-
ments information. By doing so, we are able to perform the co-evolution reasoning in
a single model. Moreover, this reduces the overhead of maintaining traceability be-
tween requirements models and architecture models.

 Towards Requirements and Architecture Co-evolution 163

In order to do so, we use a conventional requirements modeling notation to
represent architectures – namely, i*. This was preferred over modifying an Architec-
tural Description Language (ADL) because (i) we did not find an architectural lan-
guage expressive enough for presenting requirements; (ii) by using the same frame-
work for both RE and architecture we can have a seamless approach to go from re-
quirements to architecture; and (iii) i* showed to be a suitable notation for expressing
architectures.

Despite being an organizational modeling notation, i* has shown to be particularly
adequate for requirements modeling [39]. Recent works also showed that it is reason-
ably suitable for architectural modeling [16] [30]. More specifically, it has been used
to model information services [26]. In [16] there are arguments in favor of using i*
extended models for architectural modeling. It is claimed that it can be used to de-
scribe main architectural concepts, such as components, connectors, constraints, non-
functional properties and evolution. Moreover, i* has suitable composition, abstrac-
tion and analysis mechanisms. However, it lacks proper support to promote reusabili-
ty and heterogeneity, as well as it lacks proper support for configuring the models.

It is claimed that software architecture describes a system in a high-abstraction lev-
el, defining its components, the interaction among these components, their attributes
and their functionalities [37]. Fig. 3 presents our approach for expressing service-
oriented architectures using i*, in the context of our case study. Here, conventional
components were mapped onto i* actors, service categories onto roles and the servic-
es themselves onto agents. A service category is a general definition of the service
that is required, while an agent is a specific service that plays the role defined by a
service category. E.g., Text Translator is a service category, whilst Microsoft Transla-
tor is a particular service of that category. With this mapping we are able to express
the requirements related to each component of the architecture. Lastly, connectors are
represented by dependencies. This allows expressing what is expected from a compo-
nent (dependum), why is it expected (from the depender’s model) and how is it going
to be provided (from the dependee’s model).

In Table 1 we present a summary of this mapping, considering the five major arc-
hitectural elements [38]. However, note that the rationale, i.e., the information that
explains the architectural decisions taken, cannot be properly captured by i* elements.
This is also the case for the majority of architectural modeling notations, where other
artifacts are required to document the architectural diagrams [8].

Table 1. Mapping of architectural elements onto i*

Architectural Element i* Element
Component Actor, role, agent
Connector Dependency links
Interface Implicitly defined by the source and target elements

of dependency links
Configuration The graph itself
Rationale Partially defined by internal elements (goals, soft-

goals, tasks, resources and their relationship)

164 J. Pimentel et al.

pla
ys pla

ys

pla
ys

D

D

D

D

D

D

-

-

+

Fig. 3. Architectural model of the Requirements Analysis tool, using i*. It replaces the former
model presented in Fig. 2.

Another motivation for the use of i* as an architectural description language is the
current set of available reasoning mechanisms. Particularly relevant to our approach is
the evaluation of the softgoals’ satisfiability [15][19]. This allows selecting the best
alternative to achieve a goal, considering the contributions of each alternative to the
softgoals of interest (top-down reasoning). We can also assess whether a given alter-
native properly satisfies the selected softgoals.

3.1 Forward Evolution

Our concern here is to handle requirements changes related to the information servic-
es being used by the proposed system. These may come in two ways: a functional
change, i.e., we want the service to satisfy a different goal or task; or a non-functional
change, i.e., we define different quality constraints on how the service is supposed to
support its goals or tasks.

When there are requirements changes, we are capable of checking whether the in-
formation service currently selected can satisfy the new requirements. For instance,
consider that we are interested in the Document Converter service category (as de-
scribed in Fig. 3) and that the PDFm service is currently selected. Several queries can
be performed:

 Towards Requirements and Architecture Co-evolution 165

Query 1: Can PDFm support Convert Document to PDF with high Availability?
According to Fig 3. the service is highly available. However, if after deployment we
notice that requirements documents are sometimes split in several documents accord-
ing to some criteria (such as by sub-system, by viewpoints, and so on), we may decide
that we also need the capability of merging documents. Thus, we can now pose a new
question to check if PDFm provides this functionality as well, which is expressed in
Query 2.

Query 2: Can PDFm support Convert Document to PDF and Merge Documents?
Since PDFm is unable to perform the Merge Documents task (Fig. 3), the answer to
Query 2 is negative. Thus, we may ask the same question to other services of the
same category. If one is found (eg. PDFt), we could then perform the required archi-
tectural reconfiguration, i.e., use PDFt instead of PDFm.

The same reasoning presented so far can be performed with softgoals as well. For
instance, we may decide to go only for PDF conversion, as long as it is performed at
low cost. In order to check whether PDFm satisfy this new requirement, we may ask
Query 3:

Query 3: Can PDFm support Convert Document to PDF with low cost?
The assessment of softgoal satisfaction is trivial in the PDFm model (Fig. 3): since
there is only one contribution link towards Low Cost, and it is a ++ contribution.
Hence, the Low Cost softgoal is satisfied. For more complex cases, with different
contribution links, one may refer to [15][19].

3.2 Backward Evolution

On the other hand, when there is a change in properties of the information services, or
when new candidate services are identified, a similar reasoning may follow. In this
case, we may use a monitoring framework in order to retrieve updated information on
the services’ properties. For instance, the SALMon tool [28] is able to provide up-to-
date data on web services’ response time and availability, among others. With such
monitoring capabilities, we are able to assess both at design time and at runtime the
quality of the information services being used.

In our case study, consider that we require documents to be converted to PDF with
a high availability service. Recall that before deployment we certified that the PDFm
service satisfied this query; for this reason, we had selected it for use in our system.
Nonetheless, after deployment we may have noticed a degradation of its availability.
Thus, we need to check whether this service is still able to meet our requirements –
i.e., we need to check if there is a possible solution for Query 1. I.e., the same query
would be performed, now with the model updated for the new availability value. Pro-
vided that automated monitoring is available, this reasoning can be completely per-
formed without human intervention. Hence, it is suitable for adaptive and autonomic
systems, which could perform this checking at regular time intervals. Foresight me-
thods may be used to define which requirements/architectural elements to monitor and
at what time intervals [33].

166 J. Pimentel et al.

If the experienced change prevents the information service from satisfying its re-
lated requirements, we may check if other services of the same service category are
able to meet the requirements – in this case, PDFt.

3.3 Tolerance, Relaxation and Manual Evolution

On the last two sub-sections we outlined how we can reason to identify a mismatch
between system requirements and information services. Moreover, we showed how
we can attempt to solve this mismatch by searching for a possible reconfiguration.
There are two questions that arise when performing this reasoning: (i) all mismatches
must be solved or can we live with some mismatches? (ii) What happens when no
reconfiguration is able to solve this mismatch?

In previous works we argued that not every failure requires compensation [32], ac-
knowledging that distinct failures may have different impacts. In our specific case, we
could rephrase it: not every mismatch between service and requirements (failure to
satisfy requirements) demands a reconfiguration (compensation). We tackle this issue
by allowing system administrators to define tolerance policies, using our previous
framework [32]. Thus, the system administrator will be able to define different crite-
ria to assess when a failure in satisfying requirements, resulting from architectural
changes, needs to trigger a reconfiguration.

A main element in that framework is the tolerance policy, which consists of toler-
ance rules. These rules may be related to the system context as well as to a particular
element of the goal model, or to the amount of failures that happened. With this
framework we may decide to ignore when a service fails to support a given element of
the architectural model (e.g., a quality constraint), in particular conditions. Hence,
instead of searching for a possible reconfiguration, we will continue to use the same
service.

Regarding the second question, if it is not possible to reconfigure to satisfy the
evolved requirements, and assuming that the tolerance policy in place does not allow
for that failure to be ignored, we envision two scenarios. On one hand, the system
administrator will be prompted to adjust (relax) the current requirements so that there
is at least one possible reconfiguration. Alternatively, manual (offline) evolution of
the system may take place.

4 Related Works

The area of Software evolution has been largely studied. More recently, terms such as
autonomics, self-adaptation and self-management have been used to describe systems
that are able to dynamically evolve at runtime. Regarding requirements evolution,
some approaches (such as Lapouchnian and Mylopoulos [23] and Ali et al. [2]) use
the notion of context in order to identify which elements of the requirements model
are active/enabled. Pimentel et al. builds on that to derive architectures that support
requirements activation/deactivation [31]. Jian et al. [21] proposes mechanisms to
allow the insertion of goals in the requirements model at runtime. The system is only
capable to satisfy these new requirements by developing new modules for the system.
Qureshi et al. [35] also allows the changing of goal models at runtime. It proposes a

 Towards Requirements and Architecture Co-evolution 167

service lookup mechanism to identify services that may satisfy the new requirements.
Franch et al. [13] define metrics related to non-functional requirements. In turn, the
metrics are linked to service categories and services. Thus, its reconfiguration is based
solely on the measurements of these metrics.

Similarly, there are several research works regarding architectural evolution. For
instance, [9] defines adaptation conditions based on architectural properties as well as
reconfiguration operations. Control events based on components’ states are used in
[3] to reconfigure the architecture connectors. Composition rules are deployed in [34]
to dynamically define connections between components and aspects. Some of pre-
vious work also allowed the addition, removal, change and reconfiguration of compo-
nents [32]. These works may have broader and more sophisticated mechanisms for
architecture evolution than ours. However, they fail to relate this evolution to system
requirements.

There are also works on the requirements and architecture relationship such as
[12][17][20][22]. However, they do not tackle this problem as we do, i.e. by consider-
ing the architecture model as a refinement of the requirements model, along the lines
of what was developed for problem frames in [17].

Pahl et al. [29] proposes to dynamically define service collaboration through a
coordination space, on which a service consumer expresses its need for a particular
kind of service, which may be satisfied by a service provider. However, it does not
consider the other elements of the software architecture.

5 Discussion

Considering the architecture as a reification of the system under consideration, and
the increasing adoption of technologies that facilitate architectural changes (such as
the technologies behind web services and cloud computing), it is of utmost impor-
tance to understand and reason on the relationships between requirements and archi-
tectural models. This calls for systems that are able to react to changes in require-
ments (i.e. according to the stakeholders expectations), as well as dealing with
changes in the system itself (architecture). Architectural changes include structural
changes – e.g., replacing a component (due to a new update) – and properties changes
– e.g., the performance of a component may have degraded.

Throughout this paper we outlined our approach for requirements and architecture
co-evolution. The main contribution of this approach is that it provides proper reason-
ing to handle the reciprocal impact between requirements and architecture – i.e., the
requirements and architecture co-evolution. In the particular case of information ser-
vices we are able to assess the impact of such changes, as well as to identify whether
and which reconfiguration is possible to react to a given change. Given that proper
monitoring tools are set up, this reasoning can be used at runtime to enable autonomic
and self-adaptive behaviors.

In order to provide such reasoning, we advocate the use of architectural models
enriched with requirements data. Such model may be derived from requirements
models through a series of decision/transformations steps (e.g., [6]). In this research

168 J. Pimentel et al.

we propose the use of i* for both requirements and architecture modeling [16][30].
This approach has some drawbacks, as follows:

Lack of familiarity – software architectures are already accustomed to conventional
ADL. Thus, the need to learn a new notation would be a barrier for the adoption of
this approach.

Poor readability – architectural models may become more difficult to handle in our
approach due to the additional requirements information.

Lack of tools – there are several tools to support conventional ADL – e.g., for au-
tomatic code generation. The lack of similar tools to support i* may prevent some
architects to adopt it.

The first two drawbacks may be mitigated by using the i* information hiding me-
chanism, by improving the i* visual syntax [25] and by using modularization mechan-
isms [1][11]. The third problem may be softened by developing new tools for i*, or by
translating the i* models to a conventional ADL as described in [6][24].

We believe that our approach is suited not only to service-driven architectures, but
also for any kind of architecture on which components have some degree of intentio-
nality. This is the case for socio-technical systems, on which some responsibilities are
delegated not only to software and hardware components, but also to organizations
and human participants. This is also the case for agent-based systems, on which each
agent has its own goals, that may or may not converge to the overall system goals.

A key limitation of our approach is that we only consider the structural view of the
architecture. Thus, an important advance in future works would be to include other
views [36], as well as behavioral concerns. It is also important to notice that we intend
to support only the derivation of architectural models – detailed design, class dia-
grams, code, and so on, are currently out of the scope of our approach. Thus, we do
not define some service details, such as protocols, publishing mechanisms, and so on.

A major improvement for our approach would be to use Artificial Intelligence (AI)
mechanisms in order to enhance the reasoning here proposed – for instance, simula-
tion techniques [18]. This would be an important step towards Intelligent Software
Engineering, i.e., Software Engineering that makes use of AI techniques.

Acknowledgments. This work was partially supported by Brazilian agencies CAPES
and CNPq.

References

1. Alencar, F., Castro, J., Lucena, M., Santos, E., Silva, C., Araújo, J., Moreira, A.: Towards
modular i* models. In: 25th ACM Symposium on Applied Computing, pp. 292–297
(2010)

2. Ali, R., Dalpiaz, F., Giorgini, P.: A Goal Modeling Framework for Self-Contextualizable
Software. In: Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Soffer, P., Ukor,
R. (eds.) BMMDS 2009 and EMMSAD 2009. LNBIP, vol. 29, pp. 326–338. Springer,
Heidelberg (2009)

 Towards Requirements and Architecture Co-evolution 169

3. Allen, R., Douence, R., Garlan, D.: Specifying and Analyzing Dynamic Software Archi-
tectures. In: Astesiano, E. (ed.) ETAPS 1998 and FASE 1998. LNCS, vol. 1382, pp. 21–
37. Springer, Heidelberg (1998)

4. Andersson, J.: Issues in Dynamic Software Architectures (2000)
5. Boer, R., Vliet, H.: On the Similarity between Requirements and Architecture. The Journal

of Systems and Software 82(3), 544–550 (2009)
6. Castro, J., Lucena, M., Silva, C., Alencar, F., Santos, E., Pimentel, J.: Changing attitudes

towards the generation of architectural models. Journal of Systems and Software 85(3),
463–479 (2012)

7. Cleland-Huang, J., Marrero, W., Berenbach, B.: Goal Centric Traceability: Using Virtual
Plumblines to Maintain Critical Systemic Qualities. IEEE Transactions on Software Engi-
neering 34(5) (2008)

8. Dermeval, D., Soares, M., Alencar, F., Santos, E., Pimentel, J., Castro, J., Lucena, M., Sil-
va, C., Souza, C.: Towards an i*-based Architecture Derivation Approach. In: Proceedings
of the 5th International i* Workshop, Italy, pp. 66–71 (2011)

9. Dowling, J., Cahill, V.: The K-Component Architecture Meta-model for Self-Adaptive
Software. In: Matsuoka, S. (ed.) Reflection 2001. LNCS, vol. 2192, pp. 81–88. Springer,
Heidelberg (2001)

10. Fernandez-Ramil, J., Perry, D., Madhavji, N.H. (eds.): Software Evolution and Feedback:
Theory and Practice. Wiley, Chichester (2006)

11. Franch, X.: Incorporating Modules into the i* Framework. In: Pernici, B. (ed.) CAiSE
2010. LNCS, vol. 6051, pp. 439–454. Springer, Heidelberg (2010)

12. Franch, X., Botella, P.: Putting Non-functional Requirements into Software Architecture.
In: 9th International Workshop on Software Specification and Design (1998)

13. Franch, X., Grünbacher, P., Oriol, M., Burgstaller, B., Dhungana, D., López, L., Marco, J.,
Pimentel, J.: Goal-driven Adaptation of Service-Based Systems from Runtime Monitoring
Data. In: 5th IEEE Workshop on Requirements Engineering for Services, Germany (2011)

14. Garlan, D., Perry, D.: Introduction to the Special Issue on Software Architecture. Journal
IEEE Transactions on Software Engineering 21(4) (1995)

15. Giorgini, P., Mylopoulos, J., Nicciarelli, E., Sebastiani, R.: Formal Reasoning Techniques
for Goal Models. In: 21st International Conference on Conceptual Modeling (2002)

16. Grau, G., Franch, X.: On the Adequacy of i* Models for Representing and Analyzing
Software Architectures. In: Hainaut, J.-L., Rundensteiner, E.A., Kirchberg, M., Bertolotto,
M., Brochhausen, M., Chen, Y.-P.P., Cherfi, S.S.-S., Doerr, M., Han, H., Hartmann, S.,
Parsons, J., Poels, G., Rolland, C., Trujillo, J., Yu, E., Zimányie, E. (eds.) ER Workshops
2007. LNCS, vol. 4802, pp. 296–305. Springer, Heidelberg (2007)

17. Hall, J., Jackson, M., Laney, R., Nuseibeh, B., Rapanotti, L.: Relating software require-
ments and architectures using problem frames. In: IEEE Joint International Requirements
Engineering Conference (2002)

18. Hill, T., Supakkul, S., Chung, L.: Confirming and Reconfirming Architectural Decisions
on Scalability: A Goal-Driven Simulation Approach. In: Meersman, R., Herrero, P., Dil-
lon, T. (eds.) OTM 2009 Workshops. LNCS, vol. 5872, pp. 327–336. Springer, Heidelberg
(2009)

19. Horkoff, J., Yu, E.: Qualitative, Interactive, Backwards Analysis of i* Models. Computer,
43–46 (2008)

20. Inverardi, P., Muccini, H., Pelliccione, P.: Checking consistency between architectural
models using SPIN. In: Workshop From Software Requirements to Architectures (2001)

21. Jian, Y., Li, T., Liu, L., Yu, E.: Goal-Oriented Requirements Modelling for Running Sys-
tems. In: 1st International Workshop on Requirements at Run-Time (2010)

170 J. Pimentel et al.

22. Pohl, K., Sikora, E.: The Co-Development of System Requirements and Functional Archi-
tecture. In: Conceptual Modeling in Information Systems Engineering, pp. 229–246 (2007)

23. Lapouchnian, A., Mylopoulos, J.: Modeling Domain Variability in Requirements Engi-
neering with Contexts. In: Laender, A.H.F., Castano, S., Dayal, U., Casati, F., de Oliveira,
J.P.M. (eds.) ER 2009. LNCS, vol. 5829, pp. 115–130. Springer, Heidelberg (2009)

24. Lucena, M., Castro, J., Silva, C., Alencar, F., Santos, E., Pimentel, J.: A Model Transfor-
mation Approach to Derive Architectural Models from Goal-Oriented Requirements Mod-
els. In: Meersman, R., Herrero, P., Dillon, T. (eds.) OTM 2009 Workshops. LNCS,
vol. 5872, pp. 370–380. Springer, Heidelberg (2009)

25. Moody, D., Heymans, P., Matulevicius, R.: Visual syntax does matter: improving the cog-
nitive effectiveness of the i* visual notation. Requirements Engineering Journal 15(2),
141–175 (2010)

26. Morales, E., Franch, X., Martinez, A., Estrada, H.: Considering Technology Representa-
tion in Service-Oriented Business Models. In: 5th IEEE Workshop on Requirements Engi-
neering for Services, Germany, pp. 482–487 (2011)

27. Nuseibeh, B.: Weaving the Software Development Process Between Requirements and
Architectures. IEEE Computer 34(3), 115–117 (2001)

28. Oriol, M., Franch, X., Marco, J., Ameller, D.: Monitoring Adaptable SOA-Systems using
SALMon. In: Workshop on Service Monitoring, Adaptation and Beyond, pp. 19–28 (2008)

29. Pahl, C., Gacitua-Decar, V., Wang, M., Bandara, K.Y.: A Coordination Space Architecture
for Service Collaboration and Cooperation. In: Salinesi, C., Pastor, O. (eds.) CAiSE Work-
shops 2011, Part VI. LNBIP, vol. 83, pp. 366–377. Springer, Heidelberg (2011)

30. Pimentel, J., Franch, X., Castro, J.: Measuring Architectural Adaptability in i* Models. In:
14th Ibero-American Conference on Software Engineering, CIBSE, April 27-29 (2011)

31. Pimentel, J., Lucena, M., Castro, J., Silva, C., Alencar, F., Santos, E.: Deriving Adaptable
Software Architectures from Requirements Models: The STREAM-A approach. Require-
ments Engineering Journal (2011) (published online)

32. Pimentel, J., Santos, E., Castro, J.: Conditions for ignoring failures based on a require-
ments model. In: 22nd International Conference on Software Engineering and Knowledge
Engineering, USA, pp. 48–53 (2010)

33. Pimentel, J., Santos, E., Castro, J.: Anticipating Requirements Changes – Using Futurolo-
gy in Requirements Elicitation. International Journal of Information System Modeling and
Design 3(2), 89–111 (2012)

34. Pinto, M., Fuentes, L., Troya, J.M.: DAOP-ADL: An Architecture Description Language
for Dynamic Component and Aspect-Based Development. In: Pfenning, F., Macko, M.
(eds.) GPCE 2003. LNCS, vol. 2830, pp. 118–137. Springer, Heidelberg (2003)

35. Qureshi, N., Perini, A., Ernst, N., Mylopoulos, J.: Towards a Continuous Requirements
Engineering Framework for Self-Adaptive Systems. In: 1st RE @ Run-Time (2010)

36. Razavizadeh, A., Cîmpan, S., Verjus, H., Ducasse, S.: Software System Understanding via
Architectural Views Extraction According to Multiple Viewpoints. In: Meersman, R., Her-
rero, P., Dillon, T. (eds.) OTM 2009 Workshops. LNCS, vol. 5872, pp. 433–442. Springer,
Heidelberg (2009)

37. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline.
Prentice Hall (1996)

38. Taylor, R., Medvidovic, N., Dashofy, I.: Software Architecture: Foundations, Theory, and
Practice. John Wiley & Sons (2009)

39. Yu, E., Giorgini, P., Maiden, N., Mylopoulos, J. (eds.): Social Modeling for Requirements
Engineering. The MIT Press, Cambridge (2011)

	Towards Requirements and Architecture Co-evolution
	Introduction
	Case Study
	Forward and Backward Evolution of Service-Oriented
Systems
	Forward Evolution
	Backward Evolution
	Tolerance, Relaxation and Manual Evolution

	Related Works
	Discussion
	References

