Chapter 19
Question Answering of Informative Web Pages:
How Summarisation Technology Helps

Jan De Belder, Daniél de Kok, Gertjan van Noord, Fabrice Nauze,
Leonoor van der Beek, and Marie-Francine Moens

19.1 Introduction

The DAISY (Dutch 1Anguage Investigation of Summarisation technology) project
started from a practical problem. Many companies maintain a large website with
informative content. The users of such a website (e.g., clients of the company,
business partners) want to quickly find the information that is relevant for their
information question without getting lost when navigating the company’s website,
and want immediately to be directed to the right part of information when typing an
information need. Summarisation of the informative Web texts will help in finding
the correct answer to the information need. Summarised and rhetorically classified
segments of the Web page will help to automatically map a user’s question with the
relevant information on the page.

DAISY is joint work of teams of the Katholieke Universiteit Leuven, the Rijk-
suniversiteit Groningen and the company RightNow (formerly Q-go). The aim of
DAISY is to develop and evaluate essential technology for automatic summarisation
of Dutch informative texts. Innovative algorithms for Web page segmentation,
rhetorical classification of page’s segments, sentence compression and generation
of well-formed Dutch text have been developed. In addition, a proof-of-concept
demonstrator is being developed in collaboration with the company RightNow.
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The remainder of this chapter is organised as follows. In the next section,
we define the problem at hand. In Sect. 19.3, we discuss the cleaning and the
segmentation of Web pages, which then can be used as input for further processing,
such as by the rhetorical classifier, discussed in Sect. 19.4. Then, we continue with
the sentence compression and sentence generation aspects of the project, discussed
in Sect. 19.5 and 19.6 respectively. Finally, we discuss the demonstrator, to show the
different methods, and end with the conclusion in Sect. 19.8.

19.2 Problem Definition

The general aim of the project is to develop and implement essential methods and
supporting algorithms for summarisation of informative texts written in Dutch, and
apply and evaluate them with texts in the financial and social security domain that
are currently posted on the World Wide Web.

More specifically, the aim is to develop novel and robust technologies for (1)
Segmentation and salience detection of content; (2) Single-sentence compression
and sentence generation; (3) Rhetorical classification of informative text. For testing
and evaluation purposes a demonstrator is being built that generates complementary
types of summary information: (1) A headline type summary of a single text or
text segment; (2) A short textual summary composed of compressed sentences; (3)
Metadata that describes the rhetorical role (e.g., procedure, definition) of the text or
text segment of which the summary is made.

For example, take the following text fragment:

‘'SNS Bank heeft maatregelen getroffen voor veilig Internet Bankieren’’
(SNS Bank has taken measures to perform bank transactions in a safe way).

In the context of the discourse, the sentence can be reduced to

‘‘Maatregelen voor veilig Internet Bankieren’’
(Measures to perform bank transactions in a safe way) .

Also, detected rhetorical roles can be attached as meta-data to texts and their
summaries. For example:

Example of a procedure ‘'‘Verzenden met EasyStamp’’ (Send with EasyStamp)

‘‘selecteer het adres of typ postcode en huisnummer in

kies het gewicht van het poststuk

selecteer een envelop of etiket (veel soorten en maten zijn al gedefinieerd)
kies eventueel voor een logo of afbeelding die u mee wilt printen

druk op de printknop’’

(select the address or type postcode and house number

choose the weight of the mail piece

select an envelope or label (many types and sizes are defined)
choose optionally a logo or image that you want to print

push the print button)

In the example above, the fragment would be classified as a procedure, one of
the six types of rhetorical roles we detect.
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Essential in summarisation is the reduction of content to its most essential
(salient) constituents and the generation of a concise summary text or other
representation (e.g., in the form of concepts) that can be easily and efficiently
processed by humans or by machines. Research into automated summarisation
of text goes back several decades, but becomes increasingly important when
information has to be selected from or sought in large repositories of texts. For an
overview on text summarisation we refer to [11, 28], the proceedings of the yearly
Document Understanding Conference (DUC) (2000-2007), and the proceedings
of their successor, i.e. the Text Analysis Conferences (TAC) (2008-2012) Many
current summarisation systems just extract sentences that contain content terms
occurring frequently in the text, that occur at certain discourse positions, that
contain certain cue terms (e.g., “in conclusion”), or learn the importance of these
and other sentence scoring features from a training set of example texts and their
summaries. Hence, the state of the art in summarisation is still far from truly
abstractive summarisation, fusion of information from different texts, generalising
content, and producing fluent, sensible abstracts. We see a current research interest
in moving beyond extraction towards compressing and generating suitable summary
sentences (e.g., [3,8,21,31]). However, research into summarisation of Dutch texts
is limited (e.g.,[24]: summarisation of court decisions; [32, 33]: summarisation
of speech; [23]: summarisation of magazine articles). Studies that integrate into
the summarisation certain pragmatic communication roles of the content are new.
Segmentation and summarisation of informative texts that contain, for instance,
instructions and procedural content are seldom researched.

A text may fulfill various pragmatic communication roles. For instance, it may
describe a procedure, inform about a fact, or give a definition. Such roles are
signaled by certain rhetorical linguistic cues. It is important to type a text (segment)
according to its rhetorical function, as such typing has been proven a valuable part in
summarising textual content [9,30]. In this project, we use rhetorical typing in order
to answer certain types of questions with text to which a suitable role is attached
in a question answering system. Rhetorical structures of texts have been studied
by Mann and Thompson [19] and used for summarisation of expository texts by
Marcu [20].

This research extends previous work on text segmentation. After studying the
corpora, and based on the literature of discourse theories, we defined a limited, but
important set of rhetorical roles that are characteristic of the informative texts (e.g.,
definition, procedure, rule, . . .). These also correspond to the types of questions with
which people interrogate the finance and social security texts.

In Fig. 19.1, we schematically represent the different components, and how they
interact with each other.

19.3 Cleaning and Segmentation of Web Pages

A first step in analysing text on Web pages consists of extracting the text from the
Web page. For humans this is a trivial task: a single glance at a page suffices to
distinguish the main content from the less important information. However, when
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only looking at the HTML code, it is often difficult to determine exactly where the
main content starts and ends. Header, footers, menus, advertisements, ..., these are
all elements that have to be taken into account, and dealt with properly.

The segmentation of Web pages goes a step further. For many Information
Retrieval tasks a simple bag-of-words representation is sufficient, but here we also
want the structural layout of the text. This means segmenting the text into sections,
subsections, paragraphs,. .. and attaching the correct sections titles.

19.3.1 Content Extraction

The method we use for the extraction of the content performs only a very shallow
analysis of the Web page. It does not depend on strong assumptions on the structure
or content of the Web page and is fully language independent. The main idea behind
the method is that a Web page has both content text and garbage text, but that the
content texts tend to be continuous, long text with little structural markup, and that
the garbage text tends to be short texts with a lot of structural markup. We make the
following weak assumptions: The first assumption states that the text representing
the content is separated from the garbage text with one or more markup tags. The
second assumption states that no garbage text occurs in the main content, e.g. that
the main content text is continuous (not taking into account the markup tags). The
third and most important assumption states that the main content of the text contains
less structural markup tags than the garbage text.

The method first locates a subset of markup tags that modify the structure of
the Web page. These tags include, but are not limited to P, TABLE, BR, DIV, H1,
H2 and LI tags. We ignore the tags that do not modify the structure of the Web
page, such as B, A and FONT, and we also ignore data that is not content-related,
such as JavaScripts, style definitions and HTML comments. We then transform the
structured HTML page to a linear list of text strings L = {sy, ..., s, }. We parse the
structure of the Web page using a robust HTML parser, that will, when presented
with a not well-structured HTML page perform a best-effort parse. This parser visits
every node in the HTML structure. If a node containing text is encountered, this text
is added to the last text string in L. If a markup tag that modifies the structure of
the Web page is encountered, L is extended with one empty string. We continue this
process until the entire Web page is parsed.

We build a graphical representation of the array L in Fig. 19.2 where the x-axis
represents the position of the array and the y-axis represents the length of the strings
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Fig. 19.2 Example plot of the document density

at the different positions. In a second step we analyse this graph to find the main
content in the Web page. Typically, the main content for a Web page containing
news articles is located in the region of L that has the highest density. We therefore
convert the problem of extracting the main content of a Web page to the problem of
selecting the highest density region of L, for which we have designed a simple but
effective algorithm.

Although the method as a whole is very simple, it incorporates several interesting
ideas. First of all, it does not depend on the structure of any particular Web site,
but uses a notion of document density which can be expected to be universal for
most Web sites containing news articles. Secondly, it does not depend in any way
on the text and is thus fully language independent. Thirdly, it relies only on a
limited amount of the HTML-markup, thus making allowances for dirty and non-
well structured Web pages. For more details including the evaluation of the method
on benchmarking corpora, see [1].

19.3.2 Segmentation

The nature of the Web pages in the corpora makes additional segmentation
straightforward. HTML formatting tags present in the source files indicate text
blocks (DIV), titles (H1, H2, H3), paragraphs (P), lists (UL, OL, DL), . .. providing
strong clues about both the structure and the content (by looking at titles) of the
text. An additional advantage is the generic nature of HTML, so the structure of
any well-formed HTML page can be determined in a uniform fashion. Blocks of
continuous text are further segmented into individual sentences.
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The structure of the text provides cues for the rhetorical classification and the
detection of the salient content in the document.

19.3.3 Corpora

The Web pages used in most of the experiments in the remainder of this chapter,
were provided by RightNow. The company contacted several of its clients for the
use of the data. Among those we have KLM,! UWV,? and SVB.3

19.4 Rhetorical Classification

For the purpose of better distinguishing parts of the Web pages, we classify the
sentences as having a rhetorical role. We made a distinction between six relevant
high level roles:

* Definition (DEF) A definition of a term, explaining its meaning.

¢ Reference (REF) A reference to another source for more background informa-
tion, or a different source with the answer to the question (e.g. a phone number).

¢ Information (INF) An explanation or clarification about something (who, where,
when, how much, which, why, ...-questions). In contrast to the commanding
undertone that is present in Rules, there is a softer informative undertone that
offers possibilities (‘you can’), and not obligations (‘you have to”).

e Meta-Information (MIN) An explanation of why, which, and to what end the
information is given on the page. It is information about the information that can
be found on the page.

* Procedure (PRO) How a certain process is executed, or the different steps that
need to be taken in order to complete something.

* Rule (RUL) A way one has to behave, i.e. an appointed or accepted norm,
obligation, right or expectation, given in a commanding voice (‘you have to’,
instead of ‘you can’).

These roles were developed by inspecting the corpora. They can be broken down
further, e.g. a rule can be subdivided in a precondition and a postcondition. However,
this could pose problems, as multiple of these more fine-grained roles can occur in a
single sentence, which makes the classification task more difficult, and the training
data will become sparse for some of the classes. We believe that these six high level
roles are sufficient for practical use, and focus on them for now.

Thttp://www.klm.com/, the Royal Dutch Airlines
Zhttp://www.uwv.nl/
Shitp://www.svb.nl/
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19.4.1 Experiments

A set of 374 documents, selected randomly from the different corpora, was
annotated with these roles. In total, we have 9,083 labelled sentences. The largest
classes are “information” (32.8 %), “rule” (29.0 %) and “reference” (24.4 %). The
other classes are smaller (8.8 % contains a “procedure”, 3.5 % is a “definition”,
and 1.6 % is “meta-information”). It was however not always clear to which role
a statement belonged. For instance, the difference between a piece of information
and a rule are subject to personal judgement.

19.4.1.1 Baseline

As a baseline, we started by treating the problem as a multiclass text classification
problem. We use unigrams and bigrams to represent the lexical aspect, and
unigrams, bigrams, and trigrams of the Part-Of-Speech tags. We also include the
POS tag of the first word as a feature, and several binary indicators for the presence
of an imperative verb, a Multi-Word Unit, a wh-word, an auxiliary verb, possessives,
and colons. The positional properties inform about the position in the paragraph,
the depth in the hierarchy, and whether the sentence is actually a title. Finally, we
include some statistics such as the number of words, the number of punctuation
marks, and the average number of characters per word. We only kept the most
significant features, according to a y? test at p < 0.05.

We experimented with several algorithms, and found multinomial naive Bayes
to be favourable compared to a maximum entropy classifier and a support vector
machine. The results (of a ten-fold cross validation) show an accuracy of up to 70 %
and a macro-averaged Fl-measure up to 52.54 %. The rest of the results can be
found in Table 19.1.

19.4.1.2 Improved Algorithm

Having exhausted the possible features and classification algorithms, we made
use of additional information to improve results. Since the role of a sentence is
dependent on the role of its surrounding sentences, and its position in the hierarchy,
we try to find a globally optimal assignment for all the sentences in a document.
We do so by building simple transition models, where we assign a probability of
a label based on the label of the previous sentences, or the label of the sentence
that is the parent in the hierarchy. Combining this with the probabilistic output
of the multinomial naive Bayes classifier, we can find an assignment for all the
sentences that maximises the probability of the document as a whole, by solving
the corresponding optimisation problem with an Integer Linear Programming
formulation.
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Table 19.1 F; scores of the different methods. The column labelled Baseline indicates the
baseline method, after applying feature selection. The second column indicates the sequential
method, and the third the hierarchical method. The last column combines the two latter methods

Sequential

Class Baseline Sequential Hierarchic + Hierarchic
DEF 46.39 % 55.81 % 54.4 % 58.06 %
DVW 82.78 % 84.03 % 83.34 % 84.4 %

INF 60.82 % 62.98 % 62.38% 64.31 %
MIN 39.55% 43.84 % 39.81 % 42.27 %
PRO 34.68 % 39.76 % 36.07 % 43.11 %
REG 51.0% 53.81 % 51.57% 53.69 %
Accuracy 70.73 % 74.06 % 72.55% 75.21 %

By using the additional information given by the segmenter, and finding a
globally optimal solution, we have obtained an average accuracy of 75 %, and a
macro-averaged 57.64 % F1 score, thereby improving the baseline accuracy with
5 %. The complete results can be found in Table 19.1.

19.4.2 Conclusions and Future Work

In this component we have looked at assigning a rhetorical role to sentences in an
informative document. This is a novel task, and there is no previous work with which
we can compare. We initially treated the problem as a text classification problem. In
order to improve the results, we combined this basic classifier with information from
the previous component, i.e. the segmentation. Now a globally optimal assignment
is found, and this led to improved results.

The obtained results are probably also the upper limit that can be reached without
annotating more data. The rhetorical classification is a difficult task, as often it is
hard to distinguish between the different roles.

Another possible line of research, is by using more data in an unsupervised set-
ting. E.g. by taking the first sentences of each Wikipedia article, it is straightforward
to obtain a corpus consisting of definitions. These can then be used to train a better
classifier for definitions. A similar approach can be followed for procedures, e.g. by
retrieving a set of instructional texts.

19.5 Sentence Compression

There exist a myriad of methods for the task of sentence compression, but the
majority of these are hard to use in this case. The majority of methods learn
how to compress sentences by learning from training data [13,21,31]. However,
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manually creating training data is a time consuming and expensive task. Moreover,
the few corpora that are available for Dutch, are from a completely different domain.
Another aspect of this project that in a way limits the range of possibilities for
sentence compression algorithms, is that Dutch is not a context free language, which
means that we can’t make use of the large number of methods for English that build
on a Probabilistic Context Free Grammar (e.g. [8, 13]). Therefore, in this research
we focused our attention on unsupervised methods, that are not too dependent on
the output format of the parser.

We view sentence compression in a word removal setting. An advantage of such
an approach is that sentence compression can be seen as a machine learning task,
and many methods can be applied to it. In the literature we find, among others,
a noisy channel model approach ([8, 13, 31]), a method based on integer linear
programming [4] and a large margin online learning approach [21].

In this section we will define a uniform framework for compressing sentences
using language models and optimisation. At the core of the algorithms lies the
following problem: choose a subset of the words that maximise the probability of
the compressed sentence in a language model. The major difference between the
methods is the type of language model that is being used. Choosing this optimal
subset of words can be done by solving an Integer Linear Programming problem.
Below we sketch the broad ideas behind the methods.

19.5.1 Constrained Language Model Optimisation

We investigated three unsupervised methods, which we modelled in a similar
fashion. Each of the methods share a similar problem formulation. They start from
binary variables a; for each word w; in the sentence to be compressed. These
variables can only have a value of 1 or O, the former indicating that the word
is included in the sentence, the latter indicating that w; is not included in the
compressed sentence.

With these a; variables, and other variables depending on the model, we create a
linear objective function. An optimal solution for the sentence compression problem
is then found by finding an assignment for the variables that maximises the objective
function. The difference between the methods lies in how they fill in this objective
function.

19.5.1.1 Optimising an n-Gram Language Model

For a bigram language model, this roughly translates to assigning values of 0 or 1 to
variables x;;, each x;; meaning that the bigram w; w; is present in the compressed
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sentence.* An optimal solution is then found by maximising:

D> xip Pwlwi) (19.1)

i=0 j=i+1

with P (wj|w;) the probability that the word w; is followed by the word wj,

To ensure that the output is grammatically correct, and doesn’t lose semantic
information, an additional set of rules is applied, that are enforced in the form of
constraints. These are based on a syntactic analysis of the sentence. The constraints
state for example that when a verb is included in the compressed sentence, its subject
and object also have to be included, and that a negation can not simply be removed
from the word it modifies, etc.

19.5.1.2 Optimising a Dependency Language Model

A disadvantage of the previous method, is that the n-gram language model only
finds fluent sentences locally. By using a language model defined over dependency
trees, such as in [7], this problem is alleviated. In a dependency tree represen-
tation, words that are syntactically close together, are also close together in the
model.

For each dependency ending in word a; we have the parent word #;, and /;, the
label of the dependency relation between a; and h;. The goal is then to maximise
the following equation:

> ai P(ilhi) (192)

with P(I|h) the probability that a certain word /4 has a child with the dependency
label . This latter is estimated as P(I/|h) = CC”;‘L’Z%I)) , where the counts are
obtained by parsing a sufficiently large corpus. E.g. most verbs have a subject, so
P(subj|have) will be high.

19.5.1.3 Optimising an Unfactored Dependency Language Model

A disadvantage of the method in [7], is that the probability of the children of a
word are estimated separately (P (/|h), the probability of word 4 having a child
with label / between them). Our parsed corpus is however large enough, so that we
can estimate P(ly,[,,..|h): the probability of a word having a set of children (e.g.
the probability of a verb having a subject and an object, instead of the individual
probabilities.

“In practice we use a trigram model, but for simplicity this is left out.
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Additional Constraints

One of the most important functions of the constraints is to ensure that the problem
is solved correctly. E.g. in equation 19.1, x;3 can only have value 1 ifa; = 1,a; =
0,a3 = 1. Other possibilities with these constraints are stating that Z?=1 a; >
lowerbound, to specify a minimum number of words.

Significance Model

To ensure that the compressed sentence contains the most important information, we
modify the objective function, so that an additional ‘bonus’ is given for including
a specific word. For each word, we calculate the importance with the following
equation:

Fa
F;
where f; and F; are the frequencies of word w; in the document and a large corpus
respectively, F, the sum of all topic words in the corpus. / is based on the level of
embedding of w;: it is the number of clause constituents above w;, with N being the
deepest level in the sentence

I(w;) = %filog (19.3)

19.5.2 Evaluation and Results

Using current evaluation measures, we can show that our unsupervised methods
perform comparably with supervised methods. We not only evaluated on our own
annotated small subset of the corpus, the results of which are available in Table 19.2,
but also on existing corpora for sentence compression, of which our findings are in
preparation. From Table 19.2, we can see the difference between the methods. Using
only the n-gram language model and grammaticality constraints, the output is not
so grammatical, but contains the most important information. When using language
models based on the dependency trees, the output becomes more grammatical, but
the score for the importance goes down, despite the longer sentences. The difference
lies in the fact that the last two methods don’t take into account the lexical items in
the leaves of the dependency tree.

We also correlated different automatic evaluation measures with human judge-
ment. Our results show that for Dutch, the evaluation measure based on the parse
tree is the most correlated. This measure also takes the grammaticality into account,
because if a sentence is ungrammatical, the parser will not be able to capture the
dependencies between the words.

The annotation process of the informative texts was very enlightening. Annota-
tors found it very difficult to compress sentences without the proper context. When
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Table 19.2 Human ratings for each of the three methods, on a five point scale (5 being the highest
score, 1 the lowest), grading the grammaticality and importance aspect. The last column indicates
the average number of words in the compressed sentence

Method Grammaticality Importance AvgNbWords
n-gram LM 2.60 3.23 12.1
Dependency LM 3.28 2.95 12.7
Joint dependency LM 3.67 2.62 12.9

faced with the complete text, this posed less of a problem, although it was still harder
in comparison to texts containing a lot of redundant information.

In a practical setting, it is often faster to use a method with a language model
based on dependency trees, rather than one with an n-gram language model. The
disadvantage is that this yields a lower importance score, but this can be alleviated
by using the Significance model. The trade-off between the two models then has to
be estimated on a small validation set.

We refer the interested reader to other publications for more information [6].

19.6 Sentence Generation

19.6.1 Introduction

Since the sentence compression component deletes words, it is possible that the
word order has to be changed. In order to reorganise the ordering of the words, we
use a sentence realiser that, given the dependencies required in a sentence, arranges
them for a fluent result.

Sentence realisers have been developed for various languages, including English
and German. While the generation algorithms used in sentence realisers are very
generic, the implementation of a realiser is quite specific to the grammar formalism
and input representation. We developed a sentence realiser for the wide-coverage
Alpino grammar and lexicon.

Alpino [25] is a parser for Dutch which includes an attribute-value grammar
inspired by HPSG, a large lexicon, and a maximum entropy disambiguation
component. Dependency structures are constructed by the grammar as the value
of a dedicated attribute. These dependency structures constitute the output of the
parser.

In generation, the grammar is used in the opposite direction: we start with a
dependency structure, and use the grammar to construct one or more sentences
which realise this dependency structure. Dependency structures that we use in
generation contain less information than the dependency structures that are the
output of parsing. For instance, information about word adjacency, separable
particles and punctuation are removed. The user can also decide to underspecify
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certain lexical information. We call such dependency structures abstract dependency
structures [16].

In the general case, a given dependency structure can be realised by more than
a single sentence. For instance, the sentence Na de verkiezingen beklijfden de
adviezen echter niet (After the elections the advises did, however, not persist.) is
mapped to a dependency structure which can also be realised by variants such as
Na de verkiezingen beklijfden de adviezen niet echter, or echter beklijfden na de
verkiezingen de adviezen niet. Therefore, a maximum entropy fluency ranker is part
of the generator. The fluency ranker selects the most appropriate, ‘fluent’, sentence
for a given dependency structure.

19.6.2 Chart Generation

In the Alpino generator, we use chart generation [12,29]. This algorithm closely
resembles bottom-up chart parsing, however guidance is provided by semantics
rather than word adjacency.

For details of our sentence realiser, we refer to [16]. However, one interesting
aspect of our realiser is that it implements top-down guidance differently than
in previous work that we know of. Since the Alpino grammar is semantically
monotonous [29], we could use a semantic filter that constrains generation. Such
a filter excludes derivations where the semantics of the derivation do not subsume
a part of the goal semantics. In our system, we use an even stronger approach: we
instantiate each lexical item that represents a head in the dependency structure with
its expected dependency structure. In this manner, it is not possible to construct
partial derivations with dependency structures that do not subsume a part of the
input dependency structure.

19.6.3 Fluency Ranking

A sentence realiser can often produce many different sentences for a given input.
Although these sentences are normally grammatical, they are not all equally fluent.
We developed a fluency ranker that attempts to select the most fluent sentence from
a list of sentences.

Different statistical models have been proposed for fluency ranking in the past,
such as n-gram language models, maximum entropy models, and support vector
machines [34]. As [34] shows, maximum entropy models perform comparably to
support vector machines for fluency ranking, while having a shorter training time.
For this reason, we use a conditional maximum entropy model in our fluency ranker.

In our model probability of a realisation r given the dependency structure d is
defined as:
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Table 19.3 General Text Model GTM
Matcher scores for fluency

ranking using various models Random 3372
B B Trigram 67.66
Fluency 71.90
(r1d) = ——exp Y i fi(d. ) (19.4
r = ex i fild,r .
p Z(d) V4 ,- iJi

Where f;(f,r) is the value of feature f; in the realisation r of d, A; the
weight of that feature, and Z(d) normalises over all realisations of the dependency
structure d. Training the model gives a set of feature weights A that predicts the
training data, but has as few other assumptions as possible.

Features are automatically extracted from the training data using feature tem-
plates. Our fluency ranker works with the following classes of features:

» Word adjacency is modelled using trigram language models of words and part-
of-speech tags.

* Shallow syntactic features record rule applications and combinations of rule
applications.

» Syntactic features describe various syntactic aspects of a realisation, such as
fronting, depth and parallelism in conjunctions, and orderings in the middle-field.

19.6.4 Evaluation and Results

To evaluate the fluency ranker, we first trained a fluency ranking model using the
cdbl part of the Eindhoven corpus® (7,154 sentences). Syntactic annotations are
available from the Alpino Treebank® [2].

We then evaluated this model using a part of the Trouw newspaper of 2001 from
the Twente Nieuwscorpus. ’ Syntactic annotations are part of Lassy 8 [26], part WR-
P-P-H (2,267 sentences). For each pair of a sentence and dependency structure in the
treebank, we consider the sentence to be the gold standard, and use the dependency
structure as the input to the generator. We then use the General Text Matcher method
[22] to compute the similarity of the most fluent realisation and the gold standard
sentence.

Table 19.3 compares random selection, a word trigram model, and our fluency
ranking model. As we can see in this table, our maximum entropy fluency ranking
model outperforms both the random selection baseline and the word trigram model.

Shttp://www.inl.nl/corpora/eindhoven-corpus
Shttp://www.let.rug.nl/~vannoord/trees/
http://hmi.ewi.utwente.nl/TWNC
8http://www.inl.nl/corpora/lassy-corpus
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19.6.5 Further Research

In [14] we have compared various feature selection methods to reduce the size of
the fluency ranking model and to get more insight into the discriminative features.
We also developed the Reversible Stochastic Attribute-Value Grammar (RSAVG)
formalism, that uses one model for both parse disambiguation and fluency ranking
[17]. Subsequently, we have RSAVG to be truly reversible [15].

19.7 Proof-of-Concept Demonstrator

The developed technology is made publicly available through the demonstrator. This
demonstrator is a Web-based interface that allows users to summarise sample texts,
uploaded documents, or shorts texts, which the user enters in a textbox. A screenshot
of the interface is shown in Fig. 19.3. For testing and evaluation purposes the
demonstrator generates three complementary types of summary information: (1) A
headline type summary of a single text or text segment; (2) A short textual summary
composed of compressed sentences; (3) Metadata that describes the rhetorical role
(e.g., procedure, definition) of the text or text segment of which the summary is
made. The combination of the summaries and the metadata discriminate a text in a
document base by the description of topics and the role of the text (segment) in the
discourse.

Two lines of evaluation of the demonstrator will be pursued: an intrinsic and
an extrinsic one. With intrinsic evaluation, the system’s output is compared with
humans’ output and their congruence is computed. Extrinsic evaluation on the other
hand, measures the quality as needed for other information tasks (e.g., filtering and
retrieval).

We have performed an intrinsic evaluation with some common metrics from the
Document Understanding Conference, namely ‘Pyramid’ [10] and ‘Rouge’ [18]
and. When evaluating the demonstrator, the system output is compared against
hand-made abstracts of the documents. Because of the problem of subjectivity of
human summarisation, wherever possible three or more model summaries of the
same text were collected. It is expected that good system-made summaries have a
sufficient amount of congruence with at least one of the human-made summaries.
The model summaries have been created by the company RightNow. Very often
variant summaries made by different persons are available. In each step, both a
baseline summary and the summaries generated by the demonstrator were compared
with the model summary.

The effect of adding system-generated headline abstracts on retrieval will
be measured. The summaries are used to assist the question answering system
developed by RightNow in the search for precise answers to information queries
posed by end-users. This extrinsic evaluation is very important. RightNow monitors
the recall and precision of its question answering system. This data can be reused in
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order to test whether recall and precision of the retrieval can be improved by adding
automatically generated summaries to the system, or by replacing the hand-made
abstracts with system summaries.

Currently, RightNow processes user questions based upon a lexical, syntactic
and semantic analysis, which results in a formal representation. The application
matches such representations against similar representations in a database. These
database entries are the result of the linguistic analysis of “template questions”. The
template questions are created manually, and each question is associated with an
answer, which may be a piece of content on the customer website, or a brief textual
answer and a link to the relevant Web page.

We have manually crafted template questions and the short textual answers as
one or more summarisations reflecting the gist of the target document, which is why
we think that an applied summarisation system can replace or at least help a large
part of the editorial procedure needed in the current setup. Furthermore, we hope to
improve the retrieval by associating automatically created summaries to templates
as an alternative for matching.

The obtained pyramid and rouge results of the DAISY summaries are comparable
with what we see in the state-of-the-art literature of the DUC [27] and TAC [5]
competitions organised by the National Institute of Standards and Technology
(NIST) for the English language (where other types of texts such as news stories
were summarised). Compared to uncompressed HTML text of the Web pages, there
are few matching LCS (lowest common sub-sequences). This is mainly caused by
three factors:

1. Even though the knowledge base content is linked to external Webpages, the
match questions in the database try to model the way end-users formulate
questions about the web content, it is not a model of the content itself.

2. The segmentation of the html text does not handle links and lists correctly.

3. The compression used for the evaluation is quite aggressive which has a great
impact on matching sub-sequences.

This result was to be expected as content on informative Web pages is always
important for a certain user and summarisation or compression is not always the
correct answer to improve the matching in a question answering task.

We also evaluated whether summaries can replace match questions within the
Intent Guide (IG) without loss in quality and whether the summaries can improve
the current quality of the IG implementation. We run two experiments. In the first
one only summaries were used for matching, in the second summaries were added
to the model questions as match questions (the customer would therefore still need
to create model questions — the questions displayed to the end-user as answer to
his/her query).

The results of the first run show a match percentage of 30 % which is too low
to replace the IG match question. However we do get new matches with the second
test set which is positive. The second run shows that the addition of model questions
improves the results greatly and that the summaries might be used as extra matching
questions (improving the system but invisible to the end-user).
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Select an option:

@ Sample texts -Make a selection- v

O Upload textfile Browse...

O Tw wur gwntext Schrijf uzelf zo snel mogelijk in bij CVWI als wverkzoekende. Dit kan a

online op www.wark.nl. Elik op 'Inschrijven bij CWI'. U kunt zich al
vier masnden voor uv ontslag inschrijven als werkzoekende. Hoe
eerder u zich inschrijft, hoe eerder CWI u kan helpen met het wvinden
van een nieuve baan en hoe eerder uw Wi- aanvraay kan worden gestart.
Uiterlijk één werkdag nadat u werkloos bent geworden, moet u zich
hebben ingeschreven bij CWI.

Ha sen online inschriiving most u binnen 2 werkdauen telefonisch een

Generated data:
Meta information procedue
Headline inschiiven CW

Summa[y Schrijf uzelf snel in bij CWI op www.werk.nl, vier maanden voo
ontslay. Hoe eerder ingeschreven, hoe eerder CWI kan helpen. S:hn)t u
uiterlijk een werkdag nadat u werkloos wordt in.

HMask binnen 2 werkdagen na inschrijving een afsprask met een CWI
adviseur. Neem een geldig identiteitsbewijs mee. Het de adviseur zoekt
u een baan. Hierna kijkt hij of u W¥W kunt krijgen. U kunt ¥W ook zelf
via internet aanvragen. CWI stuurt de aanvraag door naar UWV.

Fig. 19.3 Demonstrator interface

19.8 Conclusions

The novelty of our approach lies in (1) Classification of the rhetorical role of a
text segment or sentence, using text automatically extracted from Dutch informative
Web pages; (2) Improvements of current sentence compression technologies for
Dutch texts; (3) Development of standard text generation technology for Dutch —
integrated with the standard Dutch text analysis tools.

These tasks regard essential tasks in summarisation of informative content. The
summarisation demonstrator can already be considered as an application. Because
in informative Web pages any content is important in a certain circumstance for
some user, it is difficult to compress this content. But, DAISY has contributed
to generating additional paraphrases to the ones already used by RightNow for
matching questions and answers.

Open Access. This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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