ZigZag: A Middleware for Service Discovery
in Future Internet

Preston Rodrigues, Yérom-David Bromberg,
Laurent Réveillere, and Daniel Négru

LaBRI — University of Bordeaux
Talence, France
{preston.rodrigues,david.bromberg,laurent.reveillere,
daniel.negru}@labri.fr

Abstract. Over the last few years, social networks, mobile devices and
personalized services have been heavily responsible for a substantial in-
crease in remote services available over Internet. Consequently, service
consumers have to discover remote services anytime, anywhere across
networks boundaries making thus service discovery, and their underlying
Service Discovery Protocols (SDPs) more important than ever.

In this paper, we introduce ZigZag, a middleware to reuse and extend
current SDP, designed for local networks, to discover available services
across network boundaries as required in Future Internet. Our approach
is based on protocol translation to enable service discovery irrespective
of their underlying SDP. Further, we provide a thorough evaluation to
validate our approach.

1 Introduction

The last decade has witnessed a tremendous growth of networked physical ob-
jects interconnected through Internet to form what is commonly named Internet
of Things (IoT). More and more objects coming from different application do-
mains such as mobile computing, handheld devices, embedded systems, sensors,
and smart spaces are becoming connected to the Internet. However, the vast
bulk of objects primarily connected to Internet have not been designed to inter-
act seamlessly all together. For instance, a user cannot make directly available
the video captured by his camera to any member of his family independently of
their devices’ characteristics, their network locations and technologies.

In the new era of IoT, one key challenge is to enable interactions anytime any-
where with an unobtrusive connectivity among all interconnected objects across
heterogeneous networks. One step towards that goal is to abstract networked
physical objects, as either service consumers or providers, to only consider how
services are discovered and accessed. However, service providers are not any-
more solely confined to servers, and may potentially travels along with users
across heterogeneous networks. Therefore, service discovery is a key bottleneck
to the envision of a global infrastructure of networked objects as foreseen by
Future Internet principles [I]. For instance, popular Service Discovery Protocols

K.M. Goschka and S. Haridi (Eds.): DAIS 2012, LNCS 7272, pp. 208 2012.
© IFIP International Federation for Information Processing 2012

ZigZag: A Middleware for Service Discovery in Future Internet 209

(SDPs) such as SLP [I1], WS-Discovery [], and UPnP [I7] do not allow a service
provider to be discovered and accessed anymore if it moves from one network to
another.

We have identified three main issues that current SDPs should resolve to
provide service discovery in the large: (i) service identification, (ii) service inter-
operability, and (iii) service aggregation. Service identification becomes an issue
since available services may appear back and forth across different networks. A
service must be identified during its life cycle independently of the network it
belongs to at a given time. However, information provided by current SDPs in
requests and responses is not sufficient to uniquely identify a service. Further-
more, since Future Internet is seen as the aggregation of highly heterogeneous
networks scattered around the globe, different SDPs may be used simultaneously.
For instance, for each aggregated network, a different SDP may be used, mak-
ing service interoperability an issue. Finally, enabling the propagation of SDP
requests to discover a remote service across many networks may produce a bulk
of answers that a legacy client is not able to manage. Hence, different strategies
may be explored and took in charge by the underlying infrastructure to provide
to legacy clients the most adequate service according to non functional prop-
erties such as geographic locations, end-to-end delays, or available bandwidth.
Therefore, aggregating SDP responses becomes an issue.

In this paper, we propose ZigZag, a middleware that enables SDPs initially
designed for local area networks, to work across highly heterogeneous networks
targeting the needs of the Future Internet and overcoming the aforementioned
issues related to service discovery in Future Internet. Our approach is based
on protocol translation to enable service discovery irrespectively of their un-
derlying SDP. We have developed a prototype to support SDPs such as SLP,
WS-Discovery, UPnP, UDDI. We have performed several experiments to assess
our approach, demonstrating its benefits.

This paper makes the following contributions:

— We propose a middleware to instantiate and integrate any existing interop-
erability system to translate, on the fly, one SDP to another in the context
of Future Internet.

— We introduce key building blocks to deploy in Future Internet. Their aim is
to operate filtering and aggregation strategies to enables service consumers
to find the most adequate remote services according to the criteria of their
requests.

— We show the applicability of our solution by evaluating our approach using
simulations.

The rest of this paper is organized as follows. Section [2lintroduces our approach
based on ZigZag. Section [presents in details the architecture of the ZigZag
middleware. Section [describes the aggregation logic performed by the aggre-
gator component of the ZigZag middleware. Section [presents the evaluation
of our approach with the help of simulations. Section [(] discusses related works.
Finally, Section [1 concludes and presents future work.

210 P. Rodrigues et al.

2 Service Discovery in Future Internet

One key cornerstone of Future Internet is to promote an architecture, split into
two main planes, decoupling services from transport infrastructure. More pre-
cisely, one plane is dedicated to upper network layers to provide functions that
control and manage service resources for service providers and consumers. The
other plane is dedicated to lower network layers to provide functions that con-
trol and manage transport resources to carry out data exchanges among service
providers and consumers across heterogeneous networks. The split of the archi-
tecture enables functions dedicated to services and the ones dedicated to trans-
port to evolve separately and independently. As a consequence, Future Internet
offers users unrestricted access to service providers outside their own network
boundaries. However, this opportunity raises an issue related to service discov-
ery. Indeed, legacy service providers rely on SDPs that have been initially de-
signed for local area networks. Therefore, making these protocols scale to Future
Internet requires a substantial effort. In addition, various protocols have been de-
veloped to cope with network characteristics and service providers needs. Thus,
enabling service discovery in the context of Future Internet requires to manage
the heterogeneity of various protocols, deployed in isolated local networks.

Network C

..................

Future
Internet

Network A

Network B

Fig. 1. ZigZag Approach

To overcome the issues of service discovery in the context of Future Internet,
we introduce the ZigZag middleware. ZigZag has been designed to enrich upper
layers of Future Internet while leveraging on the facilities available at the lower
network layers. As illustrated in Figure [Tl an instance of ZigZag is deployed in
each isolated local area network. These ZigZag nodes monitor their own network
and maintain a list of SDPs currently used. All ZigZag nodes communicate
together thanks to the functions provided by the underlying Future Internet
architecture. When a ZigZag node detects a request from a service consumer,

ZigZag: A Middleware for Service Discovery in Future Internet 211

it forwards the request to remote ZigZag nodes. These nodes then instantiate
appropriate connectors to translate requests and responses from the protocol
used by the service consumer and the one used by the service provider. Once
responses are received by the ZigZag node of the service requester, they are
aggregated prior to being returned to the client.

3 The ZigZag Middleware

ZigZag aims to be deployed in many isolated local area networks to provide a
service discovery in the large. To reach this aim, the architecture of ZigZag has
been designed in a modular way to both integrate the state of the art results in
service interoperability and our key contributions in service aggregations. ZigZag
is architectured around 4 core components, namely: (i) a SDP Monitor Com-
ponent to detect the current SDPs being used, (ii) a Connectors Management
Component to instantiate the adequate SDP translator, (iii) a Network Link
Component to maintain connections among ZigZag nodes, and (iv) an Aggrega-
tor Component to apply aggregation strategies. As depicted in Figure 2] these
components are plugged together to perform a cross network translation process
that is able to translate one SDP to another according to service providers and
consumers involved across heterogeneous networks. The core functionalities of
each component are deeply explained below:

1
Net.work EJ; @ SLP to UPnP @
Link -0
Component QE, 2
— [=1 _

o | e Gl awewn [
Y 4} SDP... | |§ & =
[B TS I N <)

\j~ “"'Monitor - E%’. \j

— Component | | 8- E <>Bonjourto UPnP@ =
\\ ‘6 81

AR %;m/’//\\
=Y o
Aggregator i*g
Component [\ Q UPnP to SLP @

Fig. 2. ZigZag Middleware Architecture

SDP Monitor Component. The SDP monitor checks the availability of dif-
ferent SDPs in one local environment, as previously introduced by INDISS [5].
The SDP monitor is designed to keep track of SDPs currently used. It lever-
ages on the fact that all SDPs use a multicast group address and a UDP/TCP
port that must have been assigned by the Internet Assigned Numbers Author-
ity (TANA). Both assigned ports and multicast group addresses are reserved and
thus act as a permanent SDP identification tag. The SDP monitor is then able to
discover a networked environment by passively listening to the well-known SDP

212 P. Rodrigues et al.

multicast group. More precisely, The SDP monitor learns the SDPs that are
currently used from both services’ multicast advertisements and clients’ multi-
cast service requests. Furthermore, service advertisements are cached locally and
are mapped to a Universally Unique IDentifier (UUID) to be identified uniquely
across different ZigZag nodes.

Connectors Management Component. A Connector translates one SDP
to another SDP. It is specific to a pair of SDPs. Thus, there exists as many
connectors as there exists different pair of SDPs between which interoperability is
required. For instance, in Figure[2] four different connectors may be instantiated
SLP-to-UPnP, SLP-to-WS-D, Bonjour-to-UPnP, UPnP-to-SLP according to the
SDPs being used by either service providers and consumers. A connector is
a third party component. Currently, the Connectors Management Component
supports on the fly instantiation of one or more 72z gateways [6] that act as
connectors. However, ZigZag is not tightly bound to z2z, and may rely on any
other translator such as, for instance, Starlink [7]. Additionally, the Connectors
Management Component collects statistics about SDPs being used to take in
charge a fine grained life cycle of instantiated connectors. It may start, stop,
pause or resume connectors according to the most often detected SDPs.

Network Link Component. ZigZag nodes are directly connected to each other
irrespectively of the underlying network infrastructure supported by the Future
Internet. Network Link Component implements a simple protocol for building a
data distribution tree among ZigZag nodes enabling them to exchange multicast
messages about discovered SDPs, and services across each isolated local area
network. The complexity of the Network Link Component implementation de-
pends on the available functions supported by lower network layers. Currently,
ZigZag supports ALICANTE [I] as the network infrastructure for the Future In-
ternet, which provides adequate primitives (join, leave, update, send) to create
and/or maintain a logical network among ZigZag nodes. Furthermore, ZigZag
can also be deployed on different network infrastructure such as P2P overlay via
the implementation of dedicated Network Link Components.

Aggregator Component. The Aggregator Component collects a bunch of mes-
sages coming back and forth from several connectors instantiated by the Con-
nectors Management Component. More specifically, the Aggregator Component
accumulates all SDPs responses coming from different remote ZigZag nodes, and
selects the one that matches best the criteria of the associated request to then
forwards it to the service requester. The aggregation logic of the Aggregator
Component is described in more details in next section.

The message flow among different components is illustrated in Figure 2l A
search request captured by ZigZag is span into as many search requests as there
are different instances of compatible connectors. For Instance, according to the
current configuration of the Connector Management Component described in
Figure 2 if a SLP request is captured by the SDP Monitor Component, it is
translated into both UPnP and WS-D requests. The different kinds of instanti-
ated connectors depend on the information about compatible SDPs collected in

ZigZag: A Middleware for Service Discovery in Future Internet 213

different isolated local networks by the SDP Monitor Component and exchanged
by Network Link Component of each interconnected ZigZag middleware. The
generated UPnP and WS-D requests are then forwarded either locally, and to
remote isolated local network through the Network Link Component. In this
example, many responses, which come from either locally and remote networks,
are forwarded to the Aggregator Component to decide, according to its policy
and the requester capabilities, to either aggregates them into one single response
or select the one that matches best the criteria of the request, to finally generate
a corresponding reply.

4 Aggregation

We now describe in more details the aggregation logic performed by the aggre-
gator component of the ZigZag middleware, as introduced in Section Bl

4.1 Importance of Aggregation

Aggregation is defined as the process of accumulating data from multiple nodes
to eliminate redundant transmission and provide value sensitive information to
the requesting entity. In broadcast/multicast scenario the requesting entity has
to wait for a fix amount of time before receiving a response for its request. If the
response does not arrive before this fix time slot the requesting entity signals a
timeout and resends the request. However, if the same request is sent to mul-
tiple nodes in parallel, response data aggregation is considered as the preferred
solution. Response data aggregation ensures that, several parallel responses of
a particular request are combined into a single response message, thereby re-
ducing the number of messages on the wire and preserving scarce bandwidth.
Several papers [I319J20] have shown the importance of aggregation in differ-
ent network environments. The authors in [I8], presented an extensive survey
on data aggregation techniques in the context of sensor networks. In a multi-
protocol environment response messages may arrive after the source protocol
signals a timeout as different protocols may have different timeouts due to their
application design. In the following subsections we show the need of aggregation
in a multi-protocol environment with the help of some use cases.

4.2 TUse Cases

To illustrate the need of aggregation for service discovery in a multi-protocol
environment we have identified 3 use cases based on different application re-
quirements. In the following configurations, we consider a client C using SDP
Pr, and service providers §P;, SP,, SP; and SP, using SDPs P, P,, P; and 2, re-
spectively. We assume that each service provider belongs to its own local area
network and that a ZigZag node zZz; is deployed in each network.

214 P. Rodrigues et al.

Information Craving. In this scenario, the application running on client ¢ does
not have a stringent timeout constraint. Indeed, the application can wait until
all possible responses from available service providers are received. The timeout
of the client is greater than each timeout of ®;, P,, P; and ?,. Request from (is
sent to all ZigZag nodes. Received responses are then aggregated and a unique
response is sent back to C.

Time Bound. In the second scenario, the client application requires replies within
a very short period of time. Indeed, the client would signal a timeout if no
response is received before its timer expires. Once the request from C is forwarded
to all ZigZag nodes, a timer is started so that an aggregated response can be
sent on time, before the expiration of the timer of the client. Therefore, responses
that arrive too late are discard.

Best of Both Worlds. The third and last scenario is a mix of the previous ones.
In this scenario, the client C tolerates one timeout expiration and one request
re-submission. The request from the client is forwarded to all ZigZag nodes. Re-
sponses are cached once they are received and requests are submitted again if
one timer expires. Regardless of the responses received, all responses are aggre-
gated and one response is sent back to the client before the second expiration of
its timer.

4.3 Aggregation Policy

The aggregation policy describes how to aggregate value sensitive data from
different protocols having variable message timeouts until a response forward-
ing condition Fc is satisfied. A policy can consist of selecting the response that
matches the best a specific criteria or aggregating several replies from different
service providers to provide to the client the best valuable response. However,
the amount of time a ZigZag node can wait to satisfy Fc is bound by the time-
outs of the different protocols involved, the time required for translating mes-
sages from one protocol to another, and the time for exchanging messages from
ZigZag nodes. Based on these information, a ZigZag node can decide to return
a provisional response to the client to avoid a timeout expiration. Aggregation
policies are implemented using building block functions provided by the ZigZag
middleware. Our current implementation of ZigZag supports the Python and
C programming languages to define policies. We have defined the aggregation
policy for each scenario previously introduced. We present in the next section
an assessment of our approach.

5 Evaluation

We have developed a prototype implementation of ZigZag. Our current imple-
mentation relies on z2z [6] to dynamically instantiate gateways for protocol trans-
lation and ALICANTE [I] to connect ZigZag nodes to each others. ALICANTE is an

ZigZag: A Middleware for Service Discovery in Future Internet 215

on-going ICT project funded by the European Commission that propose a new
architecture to support the deployment of a networked Media Ecosystem. To this
end, it introduces two novel virtual layers on top of the traditional Network layer,
i.e. a Content-Aware Network layer (CAN) for network packet processing and
a Home-Box layer for content delivery. These virtual layers enables ALICANTE
architecture to be deployed over several geographical regions forming large scale
networks. ZigZag is being integrated in ALICANTE and we expect to perform real
world experiments in that context. Indeed, a distributed multi-domain network-
ing environment composed of pilot islands located in different countries will be
delivered during the project.

Before performing real world experiments of ZigZag, we have setup a sim-
ulation to assess how much ZigZag can both reduce the number of messages
that flow through the network, and provide value sensitive information to the
requesting entity. In the remainder of this section, we explain the simulation
parameters and discuss the results we have obtained.

5.1 Simulation Setup

To simulate various clients, service providers, network topologies and proto-
cols prior to large scale deployment, we have performed a simulation based on
SimPy [15], a network simulator written in Python. To provide the most realis-
tic result, and to outline an accurate evaluation of our prototype, we include in
our simulation an adequate model of the Internet delay space, which influence
inherently the ZigZag performance. In particular, we leverage on a real sample
of the Internet delay space among 3,997 edge networks [21] to build our overlay.
Correspondingly, we rely on a 3997x3997 delay space matrix that gives all pairs
set of static round-trip propagation delays among nodes of our overlay network.
Service providers based on either SLP, UPnP, WS-D, or Bonjour are then ran-
domly distributed uniformly over the matrix. Each node hosts only one type of
service.

We run our experiments 50 times with three different client instances: C; that
uses UPnP, ¢, that uses Bonjour, and C; that uses SLP randomly located in
one node of the overlay. At each run, clients are located in a different node. A
request from a client is generated according to the Poisson process with a rate
of 5 requests per seconds for a simulation period of 200 seconds. The processing
time Pyne of a service provider, to send responses upon the reception of a re-
quest, is Prime = k X (round trip delay/2) where k is a factor randomly chosen
from 2 to 3.6 according to SDPs specification [I1/16]. An infinite response time
means that the service provider is overloaded and that the request has been
dropped. The time required by a ZigZag node to translate a message from one
protocol to another depends of protocols used by both the client and the tar-
geted service provider. Table [Tl shows the different possible translation time. To
define these time values, we computed the average time consumed by z2z con-
nectors [0] to perform the translation. In the remaining, we always assume that
a ZigZag node is deployed in the local area network of the requesting clients,
thus the round-trip propagation delay among requesting clients and its closest

216 P. Rodrigues et al.

ZigZag node corresponds to the round-trip delay of a 100 Mb/s LAN network.
The forwarding of SDP requests from clients to one or more adequate remote
service providers across the overlay is provided by a service provider selection
algorithm that should redirects SDP requests from clients to an appropriate
remote service provider, based on factors such as the client location, network
conditions, processing load, service search criteria and other parameters dedi-
cated to ALICANTE [I] network substrate. However, such model for ALICANTE
is not yet available. Thus, we use a selection algorithm that picks up required
service providers randomly in the delay space matrix to get their round trip de-
lay. A more accurate algorithm is planed to be used and will give more efficient
simulation results.

Table 1. Average translation time (in seconds)

SLP UPnP WS-D Bonjour
SLP 0 0.78 0.84 0.59
UPnP 0.78 0 0.65 0.89
WS-D 0.84 0.65 0 0.90
Bonjour 0.59 0.89 0.90 0

We now present the results of our simulation using the uses cases described
in Section

5.2 Simulation Results

The median results of our simulations are shown below. In the simulation results,
the x coordinate indicate the number of services that have been reached by clients
during the simulation whereas the y coordinate gives the number of generated
messages.

Information Craving. Figure[3] shows the results of our simulation for the Infor-
mation craving scenario. In this scenario, as the timeout of one client is greater
than each timeout of SLP, UPnP and Bonjour, only one client is required to
generate requests, and the simulation result corresponds to the best case as the
client timeout is high. 82% of the received responses are aggregated, with at
least 2 or more responses per message. About 16% of non aggregated messages
are received. About 2% of the messages are lost due to errors in the network or
replies that did not arrive on time.

Time Bound. Figure d shows the results of our simulation for the Time bound
scenario. In this scenario, three different client has been used, one for each SDP,
i.e. SLP, UPnP and Bonjour. Each client uses therefore a different timeout.
In average, 62% of received responses are aggregated with at least 2 or more

ZigZag: A Middleware for Service Discovery in Future Internet

I
e
e

80

60

% Messages

40|

20| /

Lost Messages=2%

/ Aggregated Messages=82%
/ Non Aggregated Messages=16%

pra—

40 60 80
Service Providers

100

217

ol Aggregated Messages=62%
Non Aggregated Messages=28%
Lost Messages=10%

60

% Messages

40|

20

a—a Client_3 (SLP Timeout=2s)

x
+— Client_1 (UPnP Timeout=3.6s)
+«— Client_2 (Bonjour Timeout=3s)

40 60 80
Service Providers

100

Fig. 3. Scenario 1 — Information craving Fig. 4. Scenario 2 — Time bound

responses per message. Further, about 28% of non aggregated messages are re-
ceived and 10% of the messages are lost due to errors in the network or replies
that did not arrive on time. The increase of both non aggregated messages, and
lost messages comes from the fact that some replies arrived after the client has
signaled a timeout, and are thus ignored. Compared to the previous results, the
simulation results obtained in this scenario corresponds to the worst case.

Best of Both Worlds. Figure [l shows the results of our simulation for the Best
of both worlds scenario. In this scenario, in average, clients get 70% of aggregated
responses with at least 2 or more responses per message and about 23% of non
aggregated messages. About 7% of messages are lost due to errors in the network or
replies that did not arrive on time. The successful increase of aggregated responses
comes from the fact that clients tolerates one timeout expiration plus one request
re-submission. It means that ZigZag nodes are caching all responses in order to
aggregate them to reduce the number of requests sent back to the client.

Table 2 gives a summary of our simulation results. Our experiments have
demonstrated that ZigZag enables between 57% to 80% of received messages
to be the aggregation of at least two service provider replies. This high rate of
aggregated messages implies a significant reduction in the number of messages
exchanged through the network and more valuable answers to the client. Figure[d
shows a comparison of all the three use cases. In addition, various policies can be
easily implemented and deployed using ZigZag to cope with user expectations
and network constraints.

Table 2. Simulation summary

Average number of messages received by a client

Aggregated Non-aggregated Lost/Dropped
Information craving 82 % 16 % 2%
Time bound 62 % 28 % 10 %
Best of both worlds 70 % 23 % 7%

218 P. Rodrigues et al.

IR |
/ T
ol Aggregated Messages=70% ,«/ 20
Non Aggregated Messages=23% /
Lost Messages=7% e _
r
g 60 g 60 A
g g
3 3
= =
£ 40 £ 40
/
//
20 +— Client_1 (UPnP Timeout=3.6s) 20 / +— Use Case 1
Client_2 (Bonjour Timeout=3s)) Use Case 2
4—a Client_3 (SLP Timeout=2s) a—a Use Case 3
o 20 20 60 80 100 o 20 20 60 80 100
Service Providers Service Providers
Fig. 5. Scenario 3 — Best of both worlds Fig. 6. Use Case Comparison

6 Related Work

Service discovery is a mechanism that enables service consumers to find remote
services without having any previous knowledge of either their locations or their
characteristics. There are many Service Discovery Protocols (SDPs) available
each having a specific discovery technique to discover services in the network.
SDPs rely on either centralized, decentralized or hybrid service directories to
store their service information. An extensive literature survey [3/I4] gives an in
depth analysis of different service discovery protocols.

SDPs for Local Area Networks. In a local area network, SDPs that do not
rely on any central service directory, such as SLP |1 [11], WS—DiscoveryE [4]
and UPnP [I7], can be discovered using two different modes: active or passive.
In an active mode, a service consumer that wants to interact with a specific
service provider, needs to broadcast/multicast a search query on the network.
Any service providers capable of providing the requested service, respond to this
query with its location information. The service consumer then makes a unicast
request to the service provider to retrieve the information necessary to consume
the service. In a passive mode, a service provider broadcasts/multicasts service
announcements into the network. A service consumer interested in a particular
service: (i) first listens for its announcements, and then (ii), once it gets a cor-
responding announcement, makes a unicast request to the service provider to
retrieve the information necessary to consume the service. Alternatively, the ser-
vice consumer may also cache the service announcements for future use. Concern-
ing SDPs that rely on a central directory to stores service information, such as
Jini [12], Salutation [2] and Bonjour [8/9]; both service consumers and providers
need to multicast requests to find an available service directory. On completion
of the above process, service providers are able to register their services using a

! SLP can also be configured to rely on a central service directory (Directory Agent).
2 WS-D can dynamically configures itself to rely on a central service directory (Dis-
covery proxy).

ZigZag: A Middleware for Service Discovery in Future Internet 219

unicast request, and service consumers can now make a unicast request to search
for available services.

SDP Interoperability. The proliferation of SDPs to discover various services
across different networks is the source of a major heterogeneity issue. Service con-
sumers must be able to discover anytime anywhere remote services irrespectively
of their underlying SDPs. Over the past decade, many solutions have emerged to
provide interoperable service discovery such as ReMMoc [10], INDISS [5], z2z [6]
and Starlink [7]. ReMMoc is a reflective middleware that provides a specific API
to hide to applications the underlaying SDPs currently used in the local network
environment. However, ReMMoC requires from developers to redesign all exist-
ing applications to make them compliant with the ReMMoC API, which is quite
a daunting task. This particular constraint is overcome with INDISS that is a
transparent middleware that provides interoperability to existing applications
without altering them. However, extending INDISS to support new protocols
is a challenging task as it requires both a deep knowledge of the protocols in-
volved, and also a substantial understanding of low-level network programming.
Although INDISS and ReMMoC could be considered as one step forward in the
challenge of interoperable service discovery, these last years have seen two other
approaches, z2z and Starlink, that have brought many facilities to enable trans-
parent translation of one protocol to another. More precisely, z2z and Starlink
provide an optimized runtime system and facilities for describing network pro-
tocol behaviors, message structures, and translation logics. Such facilities come
from the fact that they rely on a high-level definition language that hides low
level network details and highlights only key properties of protocols to translate.

However, all the aforementioned solutions do not address SDPs interoperabil-
ity crossing local network boundaries and are hence unusable in the context of
Future Internet. To address this issue, we provide ZigZag that leverages on the
state of art to provide a large scale service discovery.

7 Conclusion and Future Work

In this paper, we propose ZigZag, a middleware that enables SDPs initially de-
signed for local area networks, to work across highly heterogeneous networks
targeting the needs of Future Internet. Our approach is based on protocol trans-
lation to enable service discovery irrespectively of their underlying SDP. We have
developed a prototype implementation of ZigZag that instantiates on the fly z2z
as connectors and supports Alicante as the network infrastructure for the Future
Internet.

We have performed several experiments using service discovery protocols such
as SLP, UPnP, WS-Discovery or Bonjour. We have performed a simulation to
assess our approach, demonstrating its benefits. Our experiments have demon-
strated that ZigZag enables between 57% to 80% of messages to be aggregated,
thus reducing network usage and increasing valuable responses for users.

We are currently investigating a number of research avenues. We plan to
extend the ZigZag middleware to support both service invocation and service

220 P. Rodrigues et al.

delivery, taking full architectural advantage of Future Internet. We are also ex-
ploring the definition of a domain-specific language to describe a user-specific
aggregation policy. This language approach should raise the level of abstrac-
tions, enabling users to specify themselves how they would like responses to
their requests to be aggregated. This approach should also enable verification
and optimization to be performed by ZigZag, to take into account non-functional
properties of each ZigZag node.

Acknowledgements. This work is supported by the European research project
ALICANTE within the framework of the EU FP7 in ICT, under grant agreement
No. 248652/ /ICT-ALICANTE/ http://www.ict-alicante.cu

References

1. Alicante: media ecosystem deployment through ubiquitous content-aware network
environments, http://www.ict-alicante.eu/

2. The Salutation Consortium: Salutation Architecture Specification,
http://systems.cs.colorado.edu/ grunwald/MobileComputing/Papers/
Salutation/SA20E1D2.pdf

3. Ahmed, R., Limam, N., Xiao, J., Iraqi, Y., Boutaba, R.: Resource and service
discovery in large-scale multi-domain networks. IEEE Communications Surveys
Tutorials 9(4), 2-30 (2007)

4. Beatty, J., Kakivaya, G., Kemp, D., Kuehnel, T.: Web Services Dynamic Discovery
(WS-Discovery),
http://docs.oasis-open.org/ws-dd/discovery/1.1/wsdd-discovery-1.1-spec
.htmll, http://docs.oasis-open.org/ws-dd/discovery/2009/01

5. Bromberg, Y.-D., Issarny, V.: INDISS: Interoperable Discovery System for Net-
worked Services. In: Alonso, G. (ed.) Middleware 2005. LNCS, vol. 3790, pp. 164—
183. Springer, Heidelberg (2005)

6. Bromberg, Y.-D., Réveillere, L., Lawall, J.L., Muller, G.: Automatic Generation
of Network Protocol Gateways. In: Bacon, J.M., Cooper, B.F. (eds.) Middleware
2009. LNCS, vol. 5896, pp. 21-41. Springer, Heidelberg (2009)

7. Bromberg, Y.D., Grace, P., Réveillere, L.: Starlink: Runtime interoperabil-
ity between heterogeneous middleware protocols. In: Proceedings of the
2011 31st International Conference on Distributed Computing Systems,
ICDCS 2011, pp. 446-455. IEEE Computer Society, Washington, DC (2011),
http://dx.doi.org/10.1109/ICDCS.2011.65

8. Cheshire, S., Krochmal, M.: DNS-based service discovery (2011),
http://tools.ietf.org/pdf/draft-cheshire-dnsext-dns-sd-10.txt

9. Cheshire, S., Krochmal, M.: Multicast dns (2011),
http://tools.ietf.org/html/draft-cheshire-dnsext-multicastdns-14

10. Grace, P., Blair, G.S., Samuel, S.C.: ReMMoC: A Reflective Middleware to
Support Mobile Client Interoperability. In: Meersman, R., Schmidt, D.C. (eds.)
CoopIS/DOA/ODBASE 2003. LNCS, vol. 2888, pp. 1170-1187. Springer, Heidel-
berg (2003)

11. Guttman, E., Perkins, C., Veizades, J., Day, M.: Service Location Protocol (SLP),
http://www.ietf.org/rfc/rfc2608.txt

http://www.ict-alicante.eu/
http://systems.cs.colorado.edu/~grunwald/MobileComputing/Papers/Salutation/SA20E1D2.pdf
http://systems.cs.colorado.edu/~grunwald/MobileComputing/Papers/Salutation/SA20E1D2.pdf
http://docs.oasis-open.org/ws-dd/discovery/1.1/wsdd-discovery-1.1-spec.html
http://docs.oasis-open.org/ws-dd/discovery/1.1/wsdd-discovery-1.1-spec.html
http://docs.oasis-open.org/ws-dd/discovery/2009/01
http://dx.doi.org/10.1109/ICDCS.2011.65
http://tools.ietf.org/pdf/draft-cheshire-dnsext-dns-sd-10.txt
http://tools.ietf.org/html/draft-cheshire-dnsext-multicastdns-14
http://www.ietf.org/rfc/rfc2608.txt

12.

13.

14.
15.
16.
17.
18.

19.

20.

21.

ZigZag: A Middleware for Service Discovery in Future Internet 221

Joy, W.: JINI-Architecture, http://www.jini.org/, http://www.jini.org/
wiki/Jini Architecture Specification

Khanna, S., Naor, J., Raz, D.: Control Message Aggregation in Group Communi-
cation Protocols. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eiden-
benz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 135-146. Springer,
Heidelberg (2002)

Mian, A., Baldoni, R., Beraldi, R.: A survey of service discovery protocols in mul-
tihop mobile ad hoc networks. IEEE Pervasive Computing 8(1), 66-74 (2008)
Muller, K.: SimPy Simulator, http://simpy.sourceforge.net/

Plug, U.: Play (UPnP). Internet (April 17, 2007), http://www.upnp.org

Presser, A., Farrell, L., Kemp, D., Lupton, W.: Upnp device architecture 1.1,
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.1.pdf
Rajagopalan, R., Varshney, P.: Data-aggregation techniques in sensor networks: a
survey. IEEE Communications Surveys & Tutorials 8(4), 48-63 (2006)

Raya, M., Aziz, A., Hubaux, J.: Efficient secure aggregation in vanets. In: Proceed-
ings of the 3rd International Workshop on Vehicular Ad Hoc Networks, pp. 67-75.
ACM (2006)

Saleet, H., Basir, O.: Location-based message aggregation in vehicular ad hoc net-
works. In: IEEE Globecom Workshops, pp. 1-7. IEEE (2007)

Zhang, B., Ng, T.S.E., Nandi, A., Riedi, R., Druschel, P., Wang, G.: Measurement
based analysis, modeling, and synthesis of the internet delay space. In: Proceedings
of the 6th ACM SIGCOMM Conference on Internet Measurement, IMC 2006, pp.
85-98. ACM (2006)

http://www.jini.org/
http://www.jini.org/wiki/Jini_Architecture_Specification
http://www.jini.org/wiki/Jini_Architecture_Specification
http://simpy.sourceforge.net/
http://www.upnp.org
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.1.pdf

	ZigZag: A Middleware for Service Discovery
in Future Internet
	Introduction
	Service Discovery in Future Internet
	The ZigZag Middleware
	Aggregation
	Importance of Aggregation
	Use Cases
	Aggregation Policy

	Evaluation
	Simulation Setup
	Simulation Results

	Related Work
	Conclusion and Future Work
	References

