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Abstract. Data breaches represents a major source of worries (and eco-
nomic losses) for customers and service providers. We introduce a data
breach model that recognizes that breaches can take place on the cus-
tomer’s premises as well as on the service provider’s side, but the cus-
tomer bears the economic loss. In order to induce the service provider into
investing in security, a regulatory policy that apportions the money loss
between the customer and the service provider is introduced. A game-
theoretic formulation is given for the strategic interaction to the customer
and the service provider, where the former sets the amount of personal
information it releases and the latter decides how much to invest in se-
curity. The game’s outcome shows that shifting the burden of the money
loss due to data breaches towards the service provider spurs its invest-
ment in security (though up to moderate levels) and leads the customer
to be more confident, but the apportionment must not be too unbal-
anced for a Nash equilibrium to exist. On the other hand, changes in
the probability of data breach of both sides do not affect significantly
the service provider’s behaviour, but cause heavy consequences on the
customer’s confidence.

Keywords: Privacy, Data breach, Game theory, Security economics,
Security investments.

1 Introduction

Customers of networks and information systems are continually asked to provide
their personal data, often in return for enhanced services or discounts. However,
those data may fall prey to malicious users. Data breaches occur everyday on
any link of the information chain: on the customer’s premises, over the network,
on the legitimate information recipient. Security is therefore an outstanding
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concern in today’s networks and information systems. The personal data may
be used by malicious third parties for frauds, causing significant losses of money
to customers.

Service providers can reduce data breaches by investing in security. The rela-
tionship between incremental investments and data breaches has been explored
in [1], where the possibility of identifying an optimal level of investment has been
determined. The relevance of choosing an optimal level of investment has been
shown in [2] also, where it has been recommended that future research should
explore what will happen with changes in consumer demand.

But service providers may have no incentives to invest in security. In a peer-
to-peer context, where the presence of a service provider is not considered, it
has been shown that the presence of negative externalities requires a regulatory
intervention to avoid a large social cost [3]. In more general terms, ICT security
can be regarded as a public good, and its provision has to be safeguarded through
regulatory intervention at some superseding level of governance [4].

In this paper, we propose an ex-ante regulatory intervention, which apportions
the expected money loss resulting from a data breach between the customer and
the service provider. Such damage sharing policy may represent an incentive for
the service provider to invest in security, so as to limit the charge resulting from
the damage sharing policy. We formulate a game-theoretic model, where the
interaction between the service provider and the customer includes the damage
sharing policy, with the service provider acting on the investment in security,
and the customer acting on the amount of personal information released. We
find that a single Nash equilibrium is reached for a wide range of cases, and that
the quota of loss apportioned to the service provider acts as an incentive both
for the service provider to invest and for the customer to release its data. But, if
the service provider is charged too high a quota, no Nash equilibrium is reached.
Instead, the service provider is largely unaffected by variations in the maximum
probability of data breach.

The paper is organized as follows. We describe the behaviour of the service
provider and the customer in Section 2, and the damage sharing policy in Section
3. The resulting surplus functions for both stakeholders are derived in Section 4,
and are employed in Section 5 to formulate a game between them. The results
are analysed in Section 6.

2 Stakeholders and Information Release

The release of personal information by the customer brings both benefits and
disadvantages. The service provider rewards the customers by offering discounts
or an enhanced service. On the other hand, releasing personal data exposes the
customer to data breach risk (and the ensuing money loss). In this section, we
provide models for the positive and negative effects of the release of personal
data.

We start by considering a simple model for the interaction between the cus-
tomer and the service provider.
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We recall that the service provider sells services at a unit price p; the customer
buys a quantity q of such services, represented, e.g., by minutes of phone traffic,
bytes of data traffic volume, digital units, CPU time, bytes of storage capacity.
The relationship between p and q is the demand curve [5]. For sake of simplicity,
we assume here that in our case the relationship is linear. When no personal
information is disclosed, those quantities are related by the expression

q

q∗
+

p

p∗
= 1 q < q∗, p < p∗, (1)

where q∗ is the maximum quantity of service that the service provider can pro-
vide, and p∗ is the maximum unit price that the customer can sustain (its
willingness-to-pay). When the service is free (p = 0), the customer asks for
the maximum quantity that the service provider can supply (q = q∗). When
the price is larger than the willingness-to-pay (p ≥ p∗), the customer does not
buy the service, and the quantity of service sold is q = 0. In the following, we
treat both the quantity of service q and the unit price p as continuous vari-
ables (though their variation is actually discrete), since we assume that their
granularity is extremely small with respect to the values at hand.

If the customer is willing to release some personal information, the service
provider eases the provision of services, e.g., by providing personalized services or
automatic login. In fact, the more the service provider knows about the customer,
the better it can shape and direct its offer to achieve a sale. The release of
personal data can help reduce the product/service search costs for both parties:
the time employed by customers when looking for that product/service, and the
effort spent by sellers trying to reach out to their customers. Varian has shown
that customers rationally want some of their personal information to be available
to sellers [6]. Hence, the customer is incentivized to supply its personal data and
increase its consumption. Though the information is actually released in discrete
increments (e.g., first the family name, then the birthday, and so on), we assume,
for mathematical convenience, that the information is a continuous quantity.

Each release of information by the customer is rewarded by a new offer by
the service provider, which at the same time incentivizes the consumption. The
demand curve correspondingly changes as in Figure 1, where we can observe how
the working point moves onto the new demand curve. For example, in Figure 1,
the point (q1, p1) on the pre-release demand curve, represented by Eq. (1), moves
to the working point (q2, p2) on the after-release demand curve.

If we assume the willingness-to-pay to stay unchanged and the demand curve
to be linear, the change in the demand curve is equivalent to a translation of
the maximum amount of service, as illustrated in Figure 1. When the customer
releases the personal information both the marginal demand (i.e., the increase in
demand for a decreasing unit change in price) and the maximum consumption
increase by the factor (1 + α), where α > 0 is the marginal demand factor and
is related to the amount of information released. The new demand curve passes
through the points (0, p∗) and (q∗(1 + α), 0), so that its equation is now

q

q∗(1 + α)
+

p

p∗
= 1. (2)
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Unit price
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p∗

Fig. 1. The demand curve before and after the release of personal data

Since the release of information exposes the customer to the risk of data breach
and the resulting money loss, which is an observable quantity, we can relate the
marginal demand factor to the money loss. Namely, if we indicate the potential
money loss by L, and assume that both the information and the money loss
are upper bounded by the quantities αmax and Lmax respectively, we can use a
power law to describe the relationship between information and money loss

α = αmax

(
L

Lmax

)ν

0 < ν < 1. (3)

In addition to its well known property of scale invariance and its appearance in
a number of contexts (see, e.g., [7][8]), the choice of a power law allows us to
describe a variety of behaviours by acting on the single parameter ν. If we make
the assumption that the information is released starting with the most poten-
tially damaging, the additional risk associated to further releases is a decreasing
function of the information released, and we may postulate a law of diminishing
risks, which leads to ν < 1. Within the range ν ∈ [0, 1] we can describe different
degrees of ability of the service provider to profile its customers. We call ν the
privacy parameter. If ν � 1 (i.e., the service provider is privacy-friendly), the
customer gains a large benefit (a large extension of the maximum quantity of
services) even a for small amount of information released (i.e., small potential
losses). If ν = 1 we have instead a linear relationship between the information
released and the associated economical loss.

The surplus obtained by the customer is the cumulative difference between the
price deriving from the demand law and the price p̂ set by the service provider,
which determines the demand q̂ through (2):

Ŝc =

∫ q̂

0

(p− p̂)dq. (4)

By solving the integral (4), we get the final expression for the surplus

Ŝc =
(p∗ − p̂)2

2p∗
q∗

[
1 + αmax

(
L

Lmax

)ν]
. (5)
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3 Ex-ante Regulation of Damage Sharing

Amajor justification for ex-ante regulation is that the service provider is partially
responsible for the overall level of security, and should be held liable for data
breaches impacting on the customer. Formulating the regulation policy requires
the a priori evaluation of the risk incurred by the customer and its relationship
to security investments by the service provider. In this section, we review the
risk model associated to data breaches and define the ex-ante regulation policy.

The release of personal information exposes the same customer to the risk of
a data breach, quantified through the probability of data breach Pdb.

We consider that a data breach may take place because of deficiencies on
either side of the customer-service provider relationship. The data theft may
be due either to an attack on the service provider’s information system or to
the customer’s data repository (e.g., its computer). We assume that the failures
on the two sides are independent of each other, and that a data breach takes
place as either of the two sides fail. Under these hypotheses, a suitable model
for the overall data breach phenomenon is the classical series combination of
two systems that we can borrow from the reliability field (see Ch. 3.2 in [9]).
The data breach probability Pdb is then related to the individual data breach

probabilities P
(s)
db (service provider) and P

(c)
db (customer) by the formula

Pdb = P
(s)
db + P

(c)
db − P

(s)
db · P (c)

db . (6)

As to the probability of data breach on the customer’s side, we consider it to be
a growing function of the amount of personal information that the customer has
divulged. We assume a simple power law function to hold, and, by exploiting
again the money loss as a proxy for the amount of information released, we
obtain the following function:

P
(c)
db = P (c)

max

(
L

Lmax

)θ

, (7)

where P
(c)
max is the probability of breach corresponding to the maximum release

of information. The security parameter θ ∈ (0, 1) describes the balance between
the probability of breach and the quantity of personal information released (for
which the economical loss represents a proxy): if θ � 1 (reckless customer)
the probability of data breach is close to its maximum even for the smallest
amount of released information; if θ � 1 (privacy-aware customer), the customer
has to release a substantial amount of information before it suffers a significant
probability of data breach.

On the other hand, the probability that a data breach occurs on the ser-
vice provider’s side is related to the amount of investments on security spent
by the service provider. Namely, we expect that probability to decrease as the
investment grows. Again, we assume the following power law to hold

P
(s)
db = P (s)

max

[
1−A

(
I

Imax

)k
]
, (8)
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where I and Imax are respectively the actual investment and that corresponding
to the maximum achievable security, both expressed per customer. On the service

provider’s side, the probability of data breach ranges then between P
(s)
max(1−A)

and P
(s)
max.

Under the probability Pdb of data breach, the expected loss for the customer
is PdbL. The model for data breach risk we have just introduced shows that
the service provider may be responsible for that data breach. If it is not held
liable for the resulting damage to the customer, it has no incentives to invest in
security and reduce the probability of data breach.

Those incentives may be set through a regulation policy. A distinction com-
monly employed is between ex-ante and ex-post regulation. In ex-ante regulation,
the regulator’s intervention takes place before the socially undesirable outcome.
Instead, in ex-post regulation, the regulator’s intervention is spurred by a claim
coming from the parties involved (one or both) after the undesirable event has
taken place.

In this paper, we consider an ex-ante policy, where the regulator sets the policy
beforehand. Since the result of an unsatisfactory security management is a loss
of money for the customer, the ex-ante regulation policy consists in the proper
apportionment of that damage. A simple damage sharing mechanism consists in
attributing a fraction ηL of the money loss to the service provider, while the
remaining portion (1−η)L is left to the customer. We call η the damage sharing
factor: the larger it is, the more the service provider bears the consequences of
careless security management.

4 Surplus Functions

In Section 2, we have evaluated the surplus gained by the customer when buying
the service at the price set by the service provider (the customer acts as a price
taker). In Section 3 we have evaluated the risk deriving from releasing personal
information, and have introduced a damage sharing policy that the regulator
can put into place to induce the service provider into investing in security. In
this section, we make use of that information to compute the net surplus for
the customer and the service provider, which will allow us to define the best
strategies for both stakeholders.

4.1 The Customer

When the customer chooses the personal information to release and buys ser-
vices from the service provider at the price p̂, it gets the surplus expressed by
Equation (5). The same release of personal information exposes the customer
to the risk of losing money, as described in Section 3. If the regulator adopts
the damage sharing policy described in that section, the customer suffers just a
fraction of the actual loss, since the rest is charged to the service provider.
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The net surplus is the difference between the surplus gained, by purchasing
the service at a price lower than the willingness-to-pay, and the fraction of the
incurred loss. Its complete expression is

Sc =
(p∗ − p̂)2

2p∗
q∗

[
1 + αmax

(
L

Lmax

)ν]
− (1− η)LPdb. (9)

4.2 The Service Provider

By setting the unit price p̂ and spending the unit cost ĉ, the service provider
cashes p̂ − ĉ for each unit of service sold. But that profit is reduced by the
security investment I (per customer) and the fraction of the loss suffered by the
customer, as set by the damage sharing policy issued by the regulator.

Its net surplus is then

Ssp =
p∗ − p̂

p∗
q∗

[
1 + αmax

(
L

Lmax

)ν]
(p̂− ĉ)− I − ηLPdb. (10)

5 A Game Formulation for Investments and Risk

In Section 4, we have seen that both the service provider and the customer derive
a gain, respectively from the sale and from the purchase of services. But they
also share the risk associated to information release, through the damage sharing
policy enforced by the regulator. In addition, the service provider is induced into
investing in security to reduce the loss deriving from the damage sharing policy.
The surplus functions of both stakeholders present both positive and negative
components. And both stakeholders are called to act on strategic leverages to
maximize their profit. Each move by either stakeholder influences the outcome
for the other. Their interaction may be modelled as a non-cooperative game.
Namely, each player can derive its best response (i.e., the optimal value of its
strategic leverage) to the move of its opponent (i.e., to the value the opponent
has set for its strategic leverage). In this section, we derive the best response
functions for both players.

5.1 Customer’s Best Response Function

The customer can act on the amount of personal information that it releases,
as a strategic leverage. When releasing more personal information, the customer
receives a benefit and a disadvantage at the same time. Its surplus grows because
of the movement of the demand curve, due to unit price reductions or demand
increase for the same price or both. But the release of information also increases
the customer’s exposure to the risk of information leak and the subsequent money
loss.

We can obtain the best response function, by looking for the value of the
amount of information released that maximizes the net surplus. However, rather
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than resorting to the information amount, we adopt again the money loss as
a proxy. In addition, in order to obtain parametric expressions, we normalize
both strategic leverages to their maximum value: we introduce the variables
X = L/Lmax and Y = I/Imax.

By adopting such normalization, the customer’s surplus function (9) can be
expressed as follows.

Sc =
(p∗ − p̂)2

2p∗
q∗ [1 + αmaxX

ν ]− (1 − η)XLmaxPdb. (11)

Since ∂Sc/∂X = Lmax∂Sc/∂L, zeroing the derivative ∂Sc/∂L is tantamount to
zeroing ∂Sc/∂X . We obtain the best value of the amount of information released

Xopt = X : ∂Sc/∂X = 0. (12)

In deriving Equation (11), it is convenient to obtain the inverse of the customer’s
best response function, where the service provider’s strategic leverage (the level
of investments) is expressed as a function of the customer’s strategic leverage
(the amount of money loss). We obtain

Y =

[
1

A
− ΔXν−1

opt − Lmax(1− η)ΛXθ
opt

Υ (1− ΛXθ
opt)

]1/k

, (13)

where we have used the following positions

Δ =
(p∗ − p̂)2

2p∗
q∗αmaxν

Λ = P (c)
max(1 + θ)

Υ = P (s)
maxALmax(1− η)

(14)

We remark that, when using Equation (13), we should use just those values for
which the following condition holds

1

A
− ΔXν−1

opt − Lmax(1− η)ΛXθ
opt

Υ (1− ΛXθ
opt)

> 0. (15)

5.2 Service Provider’s Best Response Function

The service provider’s strategic leverage is the amount of investments in security.
The more it spends on security, the less it has to cover for data breaches through
the damage sharing policy.

By adopting the normalization introduced in Section 5.1, the service provider’s
surplus function is expressed as

Ssp =
p∗ − p̂

p∗
q∗ [1 + αmaxX

ν ] (p̂− ĉ)− Y Imax − ηXLmaxPdb. (16)
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Again, since zeroing the derivative ∂Ssp/∂I is tantamount to zeroing ∂Ssp/∂Y ,
we obtain the optimal value of the amount of investments as

Yopt = Y : ∂Ssp/∂Y = 0. (17)

The best response function for the service provider is then

Yopt =

⎡
⎣ΦX

(
1− P

(c)
maxXθ

)
Imax

⎤
⎦

1
1−k

, (18)

where Φ = ηP
(s)
maxAkLmax.

6 Analysis of Nash Equilibrium

In Section 5, we have seen how each player responds in an optimal way to the
decision taken by the other player. In this case, the service provider plays by
setting its level of investments, while the customer plays by deciding how much
information it releases (by using the risk exposure as a proxy). The two best
response functions can be formulated each as a function of the strategic leverage
employed by the opponent, so that we have Xopt = f(Y ) and Yopt = g(X).
Equation (18) provides us with the function g(·), while Equation (13) provides
us with the inverse function f−1(·). A Nash equilibrium is achieved for any couple
of values (X∗, Y ∗) for which we have

X∗ = f(Y ∗)
Y ∗ = g(X∗).

(19)

In this section, we examine if the game we have described in the previous sections
admits a Nash equilibrium. We solve the system of equations (19) numerically.

We define a reference scenario, by setting the parameters’ values on the basis
of market and regulatory reports, as reported in Table 1.

For the reference case, we obtain the best response functions shown in Fig. 2.
We see that both functions are monotone growing and a single Nash equilibrium
point exists. We have examined what happens in a variety of cases, with per-
turbations around the reference case. In all cases, we have found either a single
Nash equilibrium or no equilibrium at all.

We report here the impact of two major parameters on the Nash equilibrium:
the damage sharing factor η and the data breach probability.

All the other parameters being equal to the reference case, we have varied η in
the (0.5, 0.8) range. At the lower bound, the customer and the service provider
share the money loss resulting from the data breach in equal proportions. In-
stead, when η = 0.8, the service provider pays most of the toll. In Fig. 3, we see
how the equilibrium point moves (we have a single equilibrium point throughout
the range). Increasing the burden on the service provider brings it to increase its
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Table 1. Parameters’ values for the reference case

Parameter Value

η 0.75
Lmax 10000 �
Imax 5 �
p∗ 2 �
p̂ 1 �
q∗ 600
q̂ 300
αmax 0.15

P
(s)
max 10−3

P
(c)
max 10−3

k 0.5
A 0.9
ν 2/15
θ 2/15
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Fig. 2. Best response functions in the reference case

investment in security and the customer to release its personal data more easily.
However, when η > 0.8 there is no Nash equilibrium: the damage sharing policy
cannot be stretched too far at the service provider’s disadvantage.

Instead, we have examined the effect of data breach probability by increasing

the maximum data breach probability on both sides (P
(s)
max and P

(c)
max), from

5 · 10−4 to 5 · 10−3. In Fig. 4, we see that the equilibrium is reached when the
data breach probability is not too low. The behaviour of the service provider
is affected very little by the increase in the data breach probability, while the
decade change in both data breach probabilities brings the customer to span all
its range of behaviours.
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Fig. 3. Impact of damage sharing factor on the equilibrium
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Fig. 4. Impact of data breach probability on the equilibrium (P
(s)
max = P

(c)
max ∈ (7 ·

10−4, 5 · 10−3)

7 Conclusions

We have provided a game-theoretic formulation of the strategic interaction be-
tween a customer and its service provider, when both have an interest in the level
of security and a damage sharing policy is in place for apportioning the money
loss resulting from a data breach. We have provided the analytical expressions of
the respective best response functions, where the service provider can choose its
level of investment in security, and the customer can choose its level of exposure
related to the amount of personal information released. The game’s outcome can
be used to help formulate the regulatory policy. The presence of Nash equilibrium
can be examined numerically. For all the cases examined, the game never ex-
hibits more than a single Nash equilibrium point. Increasing the quota of money
loss apportioned to the service provider spurs it to increase its investment in
security, and the customer to release more personal data, but no equilibrium
is reached when the damage sharing factor grows beyond a threshold. If the
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damage sharing factor is kept at not-too-unbalanced values (e.g., lower than
75%), the incentive to invest in security is however quite modest (no more than
30% of the maximum envisaged). Instead, the behaviour of the service provider
is relatively unaffected by changes in the data breach probability.
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