
HyperForce: Hypervisor-enForced Execution

of Security-Critical Code

Francesco Gadaleta, Nick Nikiforakis, Jan Tobias Mühlberg,
and Wouter Joosen

IBBT-DistriNet, KU Leuven, Celestijnenlaan 200A B-3001, Leuven, Belgium
{francesco.gadaleta,nick.nikiforakis,jantobias.muehlberg,

wouter.joosen}@cs.kuleuven.be

Abstract. The sustained popularity of the cloud and cloud-related
services accelerate the evolution of virtualization-enabling technologies.
Modern off-the-shelf computers are already equipped with specialized
hardware that enables a hypervisor to manage the simultaneous
execution of multiple operating systems. Researchers have proposed
security mechanisms that operate within such a hypervisor to protect the
virtualized operating systems from attacks. These mechanisms improve
in security over previous techniques since the defense system is no longer
part of an operating system’s attack surface. However, due to constant
transitions between the hypervisor and the operating systems, these
countermeasures typically incur a significant performance overhead.

In this paper we present HyperForce, a framework which allows
the deployment of security-critical code in a way that significantly
outperforms previous in-hypervisor systems while maintaining similar
guarantees with respect to security and integrity. HyperForce is a
hybrid system which combines the performance of an in-guest security
mechanism with the security of in-hypervisor one. We evaluate our
framework by using it to re-implement an invariance-based rootkit
detection system and show the performance benefits of a HyperForce-
utilizing countermeasure.

Keywords: virtualization, hypervisor, virtual devices, countermeasure.

1 Introduction

The “cloud” is probably the most used technological term of the last years. Its
supporters present it as a complete change in the way that companies operate
that will help them scale on-demand without the hardware-shackles of the past.
CPU-time, hard-disk space, bandwidth and complete virtual infrastructure can
be bought at a moment’s notice. Backups of data are synced to the cloud and
in some extreme cases, all of a user’s data may reside there (Chromium OS). Its
opponents treat it as privacy nightmare that will take away the user’s control
over their own data and place it in the hands of corporations as well as a risk
to the privacy, integrity and availability of user data [3,13]. Regardless however

D. Gritzalis, S. Furnell, and M. Theoharidou (Eds.): SEC 2012, IFIP AICT 376, pp. 126–137, 2012.
c© IFIP International Federation for Information Processing 2012



HyperForce: Hypervisor-enForced Execution of Security-Critical Code 127

on one’s view of the cloud, one of the main technologies that makes the cloud-
concept possible is virtualization.

Virtualization is the set of technologies that together allow for the existence
of more than one running operating systems on-top of a single physical machine.
While initially all of the needed mechanisms for virtualization were created in
software, the sustained popularity of virtualization, lead to their implementation
in hardware, providing the desired speed that was lacking in their software
counterparts. Today both Intel1 and AMD2 support a set of instructions
that are there with the sole purpose of facilitating virtualization. Apart from
the use of virtualization as way to host different operating systems on one
machine, virtualization can also be used to provide greater security guarantees
for operating systems. Researchers have already proposed various system that
use virtualization primitives that all fall in this category [5,6,7,8,15]. The
chief difference between these systems that operate from within the virtualized
system’s hypervisor (in-hypervisor) and protection systems that operate from
within the operating system (in-guest) is that the latter are part of the system’s
attack surface. For instance, an antivirus that operates from within the operating
system that it supposedly protects, i.e. in-guest, could be deactivated or crippled
by the attack itself. In-hypervisor security systems, in contrast, can utilize the
isolation guarantees of virtualization to make sure that they will be active
regardless of the state of system that they protect. Unfortunately these security
benefits do not come for free. The constant transition from the virtualized
operating system to the hypervisor that protects it (known as VMExit) and back
(VMEntry), negatively affects the performance of the virtualized systems forcing
one to choose between better security or better performance.

In this paper we present HyperForce, a framework that allows countermeasures
for virtualized operating systems to be protected, with security and integrity
comparable to the one provided by in-hypervisor systems but at the performance
cost of in-guest systems. Our system follows a hybrid approach by maintaining the
security-critical code within the guest but forcing its execution and protecting its
instructions and data from the hypervisor. Using our framework, we re-implement
Hello rootKitty [7], an in-hypervisor rootkit-detection system which uses the
invariance of critical kernel objects as a way of identifying kernel compromises.
We evaluate the implementation of Hello rootKitty using our framework and
show that it significantly outperforms the original version while maintaining
comparable security guarantees.

The rest of this paper is structured as follows. In Section 2 we present our
motivation for the HyperForce framework followed by its design details. In
Section 3 we evaluate the performance benefits of our framework by using it
to re-implement the aforementioned rootkit-detection system. In Section 4 we
discuss the related work and Section 5 concludes.

1 http://www.intel.com/technology/virtualization/technology.htm
2 http://sites.amd.com/us/business/it-solutions/virtualization

http://www.intel.com/technology/virtualization/technology.htm
http://sites.amd.com/us/business/it-solutions/virtualization


128 F. Gadaleta et al.

2 Design

In this section, we describe the needs that motivated us to create HyperForce
and we provide the design and implementation details of our system.

2.1 Motivation

Designing a countermeasure that protects virtualized operating systems is
considered a challenge not only because of the difficulty to modify the target
system (due to the lack of sources or licenses) but also because a virtualized
system is already affected by consistent overhead, by design. An important goal
for any framework using virtualization as a security tool, is to guarantee the
execution of critical code in the kernel-space of a virtualized operating system
regardless of the state of the kernel, i.e. code that will run identically in both
clean and compromised kernels. By critical code we refer to code that, in general,
monitors the state of the system and that it is desirable, mainly from a security
point of view, to maintain its execution. Examples of such code include the
integrity check of sensitive kernel-level data structures that are usually abused
by rootkits or the scanning of files and memory for known malware signatures.
Given our assumption of a kernel-level attacker, it is also needed to ensure the
integrity of the critical code to protect it from malicious modifications which
might compromise its efficacy or completely disable its operations.

A straightforward way of achieving this goal is to implement and execute
security-critical code within the hypervisor [7]. An alternative approach monitors
the target system from a separate virtual machine. In fact, one of the most
interesting features of virtualization technology is that it guarantees complete
isolation between the hypervisor and any virtual machine running on top of it as
well as isolation between multiple virtual machines running on top of the same
physical machine. Unfortunately, both approaches are known to be affected by
consistent performance overhead, making it hard to consider such solutions for
production systems. The main goal of HyperForce is to keep a degree of security
comparable to these completely isolated systems while significantly reducing
their performance overhead.

2.2 Core Idea

The idea of HyperForce is to combine the best features of the in-guest and
in-hypervisor defense systems into a hybrid solution which performs as an
in-guest countermeasure while providing security comparable to in-hypervisor
countermeasures. We achieve this by deploying the functional part of the
countermeasure within the guest operating system while maintaining its integrity
and enforcing its execution with the assistance of the hypervisor. Since the
functional part of the security-critical code, i.e. its instructions and data, is
running within the virtualized operating system, it also has native access to the
resources of the virtualized operating system such as the memory, disk and API
of the virtualized kernel. This provides a great performance benefit for code that



HyperForce: Hypervisor-enForced Execution of Security-Critical Code 129

needs to access many memory locations within the virtualized operating system
since it alleviates the costly need of introspection that in-hypervisor systems
require, i.e. the discovery of the corresponding physical memory pages of the
virtual memory pages of the guest and their remapping within the hypervisor or
within another virtual machine.

Enforcement of Execution. Given an arbitrary piece of security-critical code,
HyperForce needs to ensure its execution at regular time intervals. A complete
reliance for its execution on the virtualized operating system, could potentially
allow a kernel-level attacker to intervene and inhibit the code’s execution through
the modification of the appropriate kernel-level data-structures. For instance, an
attacker could locate the function pointer pointing to the security-critical code
and overwrite it with a pointer towards their own code.

From a high-level view, HyperForce changes the execution flow of the
guest kernel whenever the installed monitoring code has to be executed and
restores the original execution flow upon code termination. The advances of
virtualization technology allows one to implement this transition in a multitude
of ways. Our decision was influenced by our desire of minimizing the amount of
instrumentation code in the hypervisor and of keeping performance overhead to
a minimum.

In our framework, the security-critical code is encapsulated within a function
that is loaded in the virtualized operating system in the form of Linux Kernel
Module (LKM). This allows the code to have native access to all of the VM’s
native resources. HyperForce then uses the infrastructure of the virtualization
platform, specifically the Virtual Machine Monitor (VMM), to create a virtual
device. Virtual devices simulate real hardware devices, such as sound-cards and
video cards, and are supported by all modern Virtual Machine Monitors. Once
this virtual device is created and loaded in the virtualized operating system,
HyperForce then registers the address of the security-critical code as an interrupt
handler for the virtual device, as illustrated in Figure 1. The cooperation of the
hypervisor and the trusted module, allows for the security-critical code to execute
every time that the virtual device generates an interrupt.

Since the virtual device is fully controlled by the hypervisor, it is the
hypervisor that decides when interrupts must be generated and not the
virtualized operating system. Due to this fact, the possibly compromised kernel
of the VM, cannot anticipate when the security-critical code will be executed
since the logic behind it is hidden from it through the virtualization-guaranteed
isolation between hypervisor and VM. This fact stops any attackers’ efforts to
evade detection by mimicking a non-compromised operating system just before
the execution of the critical-code and restoring their malicious activities after it.

Integrity of Code. In the previous paragraphs we described the loading of
security-critical code within the hypervisor and the use of virtual devices to
ensure the execution of that code. Since the code is loaded in the VM as a
LKM, it executes with the privileges of the virtualized kernel. While this is



130 F. Gadaleta et al.

System Emulator QEMU

HARDWARE

v_netcard

Guest Kernel

v_vidcard v_pcidevv_hdrive

Host Kernel / Hypervisor 

Virtual Machine

trusted mod.

Host user space

Host kernel space

Guest kernel space

Fig. 1. Schema of HyperForce. Highlighted components indicate parts of the system
that need instrumentation/modification.

desired, it also opens up the code to attacks, e.g. modifications of its code and
data, from an attacker who is in control of the virtualized kernel. Traditionally,
the module could not be protected from the rest of the kernel since they both
operate within the same protection ring, namely Ring 0. Due to virtualization
however, the hypervisor has more power than the virtualized operating system’s
kernel (signified as Ring -1) and can thus protect any resources from the
virtualized kernel, including memory pages. HyperForce takes advantage of this
fact, and write-protects the memory pages holding the instructions and data
of the security-critical code. In order to allow the code to make changes to its
data, HyperForce can unlock the memory pages before it triggers an interrupt
of its virtual device and lock them back immediately after the code’s execution.
In order to ensure that an attacker cannot avoid the execution of the interrupt
handler containing the security-critical code, HyperForce also write-protects the
memory page holding the Interrupt Descriptor Table (IDT) of the protected VM.
Lastly, HyperForce protects the Interrupt Descriptor Table Register (IDTR) that
contains the address of the IDT, as a regular invariant critical kernel object.

3 Evaluation

We implemented HyperForce in KVM, an extension of the Linux kernel with
hypervisor capabilities. KVM is formed by a system emulator, QEMU, that
runs as regular process in user space and a kernel-space device driver that uses
virtualization-enabled processors. In order to show the improvements provided



HyperForce: Hypervisor-enForced Execution of Security-Critical Code 131

by our framework we chose to re-implement and measure a pure in-hypervisor
countermeasure, namely Hello rootKitty [7].

Hello rootKitty is a lightweight invariance-enforcing framework that mitigates
the problem of kernel-level rootkits. It represents a typical in-hypervisor
monitoring system that checks the integrity of invariant guest-kernel objects from
the hypervisor. A periodical mapping of guest-kernel memory into hypervisor
space is followed by computation of its hash and checks against a set of
precomputed values. Such a countermeasure often deals with a high number
of kernel objects and performance overhead can easily make the guest system
unusable. To minimize the amount of time spent by additional code, only a subset
of these objects is checked whenever control returns to hypervisor (VMExit).
Thus a certain number of VMExit events is needed to check the entire list of
protected objects. This relaxation will have a cost in terms of detection time
needed to check the entire list of objects.

The original version of Hello rootKitty was implemented in BitVisor [19], a
tiny hypervisor designed for mediating I/O access from a single guest operating
system. In order to be able to fairly compare it with our implemented version
using HyperForce, we also re-implemented the original Hello rootKitty in KVM.
A schema of Hello rootKitty implemented in KVM is provided in Fig. 2. It
can be observed that while the HyperForce framework requires only the system
emulator to be modified (Fig. 1), the implementation of the in-hypervisor Hello
rootKitty needs instrumentation code to be added to the host kernel. In both
cases the trusted module needs to be added to the guest kernel.

System Emulator QEMU

v_netcard

Guest Kernel

v_vidcard v_hdrive

Host Kernel / Hypervisor 

Virtual Machine

trusted mod.

Host user space

Host kernel space

Guest kernel space

HARDWARE

Fig. 2. Schema of Hello rootKitty implemented in Linux KVM. Highlighted
components indicate parts of the system that need instrumentation/modification.



132 F. Gadaleta et al.

Table 1. Macro benchmarks (in-host OS and in-guest OS) evaluating Hello rootKitty
implemented with and without HyperForce

(a) In-host measurements

iperf [Gb/s] overhead

HRK 6.36 -
HF(HRK) 6.29 +1.1%

(b) In-guest measurements

iperf [Gb/s] bunzip [sec]

native KVM 5.97 32.04

HRK 5.26 (+12%) 33.73 (+5%)
HF(HRK) 5.71 (+4.3%) 32.88 (+2.5%)

We collected results of macro and micro-benchmarks from the guest and from
the host machine and discuss them in Section 3.1 and Section 3.2. In order
to provide reliable results, all tests have been repeated 10 times and averaged.
Experiments have been performed on Intel Core 2 Duo 2 Ghz processor with
4GB of RAM.

3.1 Macro-benchmarks

We run two macro benchmarks, iperf that measures TCP and UDP bandwidth
performance and bunzip of a Linux kernel source code. The original in-hypervisor
version of Hello rootKitty is denoted as “HRK” while the version using the
HyperForce framework is denoted as “HF(HRK)”.

While the in-hypervisor approach, due to the slower context switching, has
a slightly better throughput of network performance in the host machine
Table 1(a), benchmarks in the guest machine show a considerably better
performance with HyperForce. iperf and bunzip have also been executed on
a native KVM system and compared against the same system running in-
hypervisor Hello rootKitty and then HF(HRK). The performance overhead of
our approach is about half of the in-hypervisor Hello rootKitty, as shown in
Table 1(b). Hello rootKitty implemented using HyperForce performs with 4.3%
overhead compared to a native KVM guest while in-hypervisor Hello rootKitty
shows 12% overhead. The second column reports overhead of bunzip measured
in seconds. HF(HRK) outperforms the in-hypervisor Hello rootKitty, showing
an overhead of only 2.5% compared to the native KVM guest.

3.2 Micro-benchmarks

Micro benchmarks show a more detailed picture of the two approaches. We
use LMbench [12]3 to measure the overhead of operating system specific events
such as context switch, memory mapping latency, page fault, signal handling
and fork. Within the host machine, HyperForce shows substantial improvement
against the alternative Hello rootKitty. In Table 2 we report only the tests where
this improvement is consistent. In all other tests the in-hypervisorHello rootKitty
and the Hello rootKitty using HyperForce show negligible performance overhead.

3 We use version 3 of LMbench as available at http://lmbench.sourceforge.net/

http://lmbench.sourceforge.net/


HyperForce: Hypervisor-enForced Execution of Security-Critical Code 133

Table 2. Overhead of Hello rootKitty using the HyperForce framework (HF(HRK))
is measured against in-hypervisor Hello rootKitty (HRK) with LMbench micro-
benchmarks within the host machine. Operations are measured in microseconds.

ctx switch mmap lat page flt mem lat

HRK 2.020 6148 1.57 114.7
HF(HRK) 1.48 4950 1.46 101.7

speedup +26% +19% +7% +11%

Table 3. Overhead of HF(HRK) is measured against in-hypervisor Hello rootKitty
with LMbench micro-benchmarks within the guest machine. Operations are measured
in microseconds.

null call null IO open/close sig inst sig handl fork proc exec proc ctx switch

HRK 0.30 0.32 2.32 0.74 5.37 1923 4087 5.58
HF(HRK) 0.14 0.21 2.10 0.45 2.60 1788 3984 5.00

Speedup +53% +34% +10% +39% +51% +8% +2.5% +10%

The picture in the guest machine shows a similar trend in which HF(HRK)
outperforms the original in-hypervisor Hello rootKitty in every test (Table 3).

To interpret the results shown in Table 3, one has to know that Hello rootKitty
performs integrity checks whenever the guest kernel writes to a control register
(MOV CR* event). When virtual addressing is enabled, the upper 20 bits of control
register 3 (CR3) become the page directory base register, which is used to
locate the page directory and page table of the current process. Thus, on every
context switch or system call invocation, CR3 is modified. Trapping these events
strategically contributes to Hello rootKitty’s short attack detection time. Yet,
the integrity checks performed by Hello rootKitty increase the latency of context
switches and system calls.

In contrast, our implementation of Hello rootKitty in HyperForce employs
interrupt events to trigger in-guest integrity checks. This eliminates overheads
with respect to switching execution context and address mapping between the
hypervisor and the guest OS, while the remaining computational overhead affects
guest operations more evenly. As can be seen in Table 3, the above changes
imply significant speedups on system call invocations (53%) and context switches
(10%). Although LMbench is often considered as insufficient for evaluating
system performance [10], our example shows that the benchmark suite can be
used to neatly distinguish the actual speedup on system call invocations (“null
call”) from the impact on a particular system call execution (e.g. “open/close”).

One may think that our approach to trigger security checks through interrupts
in HyperForce reduces the security of the protected system compared to the
original in-hypervisor Hello rootKitty: in the latter case an attacker increases
their chance of being detected with every system call raised. However for a total



134 F. Gadaleta et al.

of 15,000 protected kernel objects, the worst-case detection time reported in [7]
is 6 seconds. Hello rootKitty in HyperForce improves on that by checking the
same amount of kernel objects in 4 seconds. While Hello rootKitty relies on the
activity of the system as a trigger that checks the integrity of protected objects,
Hello rootKitty in HyperForce performs the checking independently of system
activity every 4 seconds.

In summary, our implementation of Hello rootKitty in HyperForce
significantly reduces computational overhead while reducing the worst-case
detection time for potentially malicious manipulations of invariant kernel
objects. Our results indicate that the HyperForce framework could be used to
re-implement other in-hypervisor applications, enhancing their performance and
maintaining their effectiveness.

4 Related Work

In this section we review related work in the domain of kernel code integrity
assurance. For a discussion of literature related to rootkit detection we refer the
reader to [7].

Hardware-Based Execution Flow Integrity. Means of guaranteeing the
integrity of a running operating system that employ dedicated hardware devices
to monitor the physical memory of a computer system have been proposed in
[1] and [14]. In order to perform integrity checks, both systems make use of
PCI hardware that directly accesses the computer’s memory at a negligible
performance overhead. Yet, the need for dedicated hardware may hinder
widespread deployment of these techniques.

Hypervisor-Based Execution Flow Integrity. A tiny hypervisor that
protects legacy OSs by ensuring that only validated code can be executed
in kernel mode, is SecVisor [17]. A similar system, NICKLE [16], shadows
physical memory to store authenticated guest code. At runtime, an instruction
fetch is directed to access either the normal system memory or the shadow
area, depending on whether the instruction is to be executed in user mode or
kernel mode. An attempt to execute unvalidated code can thus be detected and
prevented. Recently, attacks that do not inject malicious code but construct it
from existing fragments of the attacked program have been presented [2,9,18].
These attacks effectively bypass countermeasures such as SecVisor and NICKLE.

Rootkits commonly modify a system’s function pointers to ensure execution.
HookScout [21] detects such rootkits. The tool employs as system emulator to
infer a policy for function pointer propagation in kernel memory. A separate
detection system is then used to detect violations of this policy during
normal operation of the OS. Since the detection system runs on the target
machine, it may be disabled by an attack. HookSafe [20] protects kernel hooks
that are dynamically allocated by relocating these kernel hooks to dedicated
memory pages. Regular page-level protection through the hardware’s Memory



HyperForce: Hypervisor-enForced Execution of Security-Critical Code 135

Management Unit is then used to protect the pages. Yet, the technique does not
prevent non-control data from being compromised.

HyperForce can be utilized to effectively protect the integrity of the in-guest
components of systems such as HookScout and HookSafe. Our experimental
results obtained from implementing Hello rootKitty [7] in HyperForce show that
our technique leverages the use of in-guest protection mechanisms. That is,
HyperForce substantially reduces the performance overhead that would occur if
the countermeasure would be implemented in-hypervisor, while strong security
guarantees are maintained.

Security Agent Injection. Closely related to HyperForce is work by Lee et
al. [11] and Chiueh et al. [4] on deploying agents by means of code injection
from a hypervisor. Both approaches are applicable to guest OSs that have not
been previously prepared by loading a special driver or similar. In [11], Lee et
al. proposes to protect agent code that is executing in a compromised guest OS
kernel by the use of cryptography and by injecting this code on demand from the
hypervisor. As there is no implementation and no experimental evaluation given,
a comparison with HyperForce is not feasible. Similarly, work on SADE [4] by
Chiueh et al. uses VMWare’s ESX server API to inject and execute code in a
guest OS so as to disable and remove a previously detected malware infection
from that guest. In difference to the HyperForce approach, the agent code
in SADE is not protected from malicious interference on the guest. Chiueh
et al. argue that on-demand injection leaves a relatively short time span for
such interference. SADE is used by a virtual appliance that implements out-of-
guest monitoring of VMs’ memory, scanning for malware signatures. The paper
presents experimental data on the code injection process but does not discuss
the overhead implied by mapping memory pages between the virtual appliance
and the VMs. We expect in-guest memory inspection, as implemented by our
Hello rootKitty in HyperForce, to outperform SADE.

5 Conclusion

The attractive properties offered by virtualization are a foundational block for
the whole “cloud technology”. At the same time, virtualization is already being
used for purposes other than the deployment of multiple operating systems
as a way of increasing the security of a single virtualized operating system.
In this paper we briefly discuss the differences between security mechanisms
deployed within an operating system (in-guest) and the ones deployed within a
hypervisor (in-hypervisor) and bring attention to the, seemingly exclusive, choice
between the performance benefits of the former versus the security benefits of
the latter. We tackle this choice by developing HyperForce, a hybrid framework
allowing security mechanisms to be developed in a way that provides them with
performance analogous to in-guest systems while maintaining the security of
in-hypervisor systems. Using HyperForce, we re-implemented an in-hypervisor
rootkit detection system and show how the new version significantly outperforms



136 F. Gadaleta et al.

the original without compromising the security or integrity of the detection
system.

We conclude that hybrid security systems that are built on top of HyperForce
can provide effective and efficient alternatives to mitigate the overhead
of techniques that exclusively operate in-hypervisor. Interesting candidate
applications for our framework are, e.g., malware detection and removal software.
For future work we envisage to extend HyperForce with techniques to inject
security agents into a guest operating system so as to provide secure means of
on-demand deployment of such agents.

Acknowledgments. This research is partially funded by the Interuniversity
Attraction Poles Programme Belgian State, Belgian Science Policy, the Research
Fund KU Leuven and the EU FP7 project NESSoS.

References

1. Baliga, A., Ganapathy, V., Iftode, L.: Detecting kernel-level rootkits using data
structure invariants. IEEE Transactions on Dependable and Secure Computing 8,
670–684 (2011)

2. Buchanan, E., Roemer, R., Shacham, H., Savage, S.: When good instructions go
bad: generalizing return-oriented programming to RISC. In: CCS 2008: Proceedings
of the 15th ACM Conference on Computer and Communications Security, pp. 27–
38. ACM (2008)

3. Business Insider. Amazon’s Cloud Crash Disaster Permanently Destroyed
Many Customers’ Data (2011), http://articles.businessinsider.com/2011-

04-28/tech/29958976 1 amazon-customer-customers-data-data-loss

4. Chiueh, T.C., Conover, M., Lu, M., Montague, B.: Stealthy deployment and
execution of in-guest kernel agents. In: Proceedings of the Black Hat USA Security
Conference (2009)

5. Criswell, J., Lenharth, A., Dhurjati, D., Adve, V.: Secure Virtual Architecture: A
Safe Execution Environment for Commodity Operating Systems. In: SOSP 2007:
Proceedings of the 21st ACM Symposium on Operating Systems Principles, pp.
351–366. ACM (2007)

6. Dewan, P., Durham, D., Khosravi, H., Long, M., Nagabhushan, G.: A hypervisor-
based system for protecting software runtime memory and persistent storage. In:
SpringSim 2008: Proceedings of the 2008 Spring Simulation Multiconference, pp.
828–835. Society for Computer Simulation International (2008)

7. Gadaleta, F., Nikiforakis, N., Younan, Y., Joosen, W.: Hello rootKitty: A
Lightweight Invariance-Enforcing Framework. In: Lai, X., Zhou, J., Li, H. (eds.)
ISC 2011. LNCS, vol. 7001, pp. 213–228. Springer, Heidelberg (2011)

8. Gadaleta, F., Younan, Y., Jacobs, B., Joosen, W., De Neve, E., Beosier, N.:
Instruction-level countermeasures against stack-based buffer overflow attacks. In:
Eurosys, pp. 7–12. ACM (2009)

9. Hund, R., Holz, T., Freiling, F.C.: Return-oriented rootkits: Bypassing kernel
code integrity protection mechanisms. In: SSYM 2009: Proceedings of the 18th
Conference on USENIX Security Symposium, pp. 383–398. USENIX Association
(2009)

http://articles.businessinsider.com/2011-04-28/tech/29958976_1_amazon-customer-customers-data-data-loss
http://articles.businessinsider.com/2011-04-28/tech/29958976_1_amazon-customer-customers-data-data-loss


HyperForce: Hypervisor-enForced Execution of Security-Critical Code 137

10. Open Kernel labs. Why lmbench is evil?,
http://www.ok-labs.com/blog/entry/why-lmbench-is-evil/

11. Lee, Y.-C., Rahimi, S., Harvey, S.: A pre-kernel agent platform for security
assurance. In: IEEE Symposium on Intelligent Agent (IA), pp. 1–7. IEEE (2011)

12. McVoy, L., Staelin, C.: LMbench: Portable tools for performance analysis. In:
Proceedings of the 1996 Annual Conference on USENIX Annual Technical
Conference, pp. 23–39. USENIX Association, Berkeley (1996)

13. Nikiforakis, N., Balduzzi, M., Van Acker, S., Joosen, W., Balzarotti, D.: Exposing
the lack of privacy in file hosting services. In: Proceedings of the 4th USENIX
conference on Large-Scale Exploits and Emergent Threats, LEET (2011)

14. Petroni Jr., N.L., Fraser, T., Molina, J., Arbaugh, W.A.: Copilot - a coprocessor-
based kernel runtime integrity monitor. In: Proceedings of the 13th USENIX
Security Symposium, p. 13. USENIX Association (2004)

15. QubesOS: Architecture Specification,
http://qubes-os.org/files/doc/arch-spec-0.3.pdf

16. Riley, R., Jiang, X., Xu, D.: Guest-Transparent Prevention of Kernel Rootkits with
VMM-Based Memory Shadowing. In: Lippmann, R., Kirda, E., Trachtenberg, A.
(eds.) RAID 2008. LNCS, vol. 5230, pp. 1–20. Springer, Heidelberg (2008)

17. Seshadri, A., Luk, M., Qu, N., Perrig, A.: SecVisor: a tiny hypervisor to provide
lifetime kernel code integrity for commodity OSes. In: Proceedings of Twenty-First
ACM SIGOPS Symposium on Operating Systems Principles, pp. 335–350. ACM
(2007)

18. Shacham, H.: The geometry of innocent flesh on the bone: return-into-libc without
function calls (on the x86). In: CCS 2007: Proceedings of the 14th ACM Conference
on Computer and Communications Security, pp. 552–561. ACM (2007)

19. Shinagawa, T., Eiraku, H., Tanimoto, K., Omote, K., Hasegawa, S., Horie, T.,
Hirano, M., Kourai, K., Oyama, Y., Kawai, E., Kono, K., Chiba, S., Shinjo, Y.,
Kato, K.: BitVisor: a thin hypervisor for enforcing I/O device security. In: VEE
2009: Proceedings of the 2009 ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments, pp. 121–130. ACM (2009)

20. Wang, Z., Jiang, X., Cui, W., Ning, P.: Countering kernel rootkits with lightweight
hook protection. In: CCS 2009: Proceedings of the 16th ACM Conference on
Computer and Communications Security, pp. 545–554. ACM (2009)

21. Yin, H., Poosankam, P., Hanna, S., Song, D.: HookScout: Proactive Binary-Centric
Hook Detection. In: Kreibich, C., Jahnke, M. (eds.) DIMVA 2010. LNCS, vol. 6201,
pp. 1–20. Springer, Heidelberg (2010)

http://www.ok-labs.com/blog/entry/why-lmbench-is-evil/
http://qubes-os.org/files/doc/arch-spec-0.3.pdf

	HyperForce: Hypervisor-enForced Execution of Security-Critical Code

	Introduction
	Design
	Motivation
	Core Idea

	Evaluation
	Macro-benchmarks
	Micro-benchmarks

	Related Work
	Conclusion
	References




