Skip to main content

Defining Taxonomic Ranks

  • Reference work entry
The Prokaryotes

Abstract

Taxonomic ranks are subjectively defined constructs based on dissimilarities between individuals or groups of organisms, with higher ranks representing higher-order groupings. The establishment of a Linnaeus-type hierarchy and binomial nomenclature for bacteria originated from the botanical background of the first microbiologists in the nineteenth century and the desire to establish a system comparable to those of plants and animals. Anatomical/morphological similarities, reflecting evolutionary relationships, are common among plants and animals, allowing their classification into a hierarchic structure. In contrast, as bacterial relatedness is not typically characterized by distinctive morphological and physiological similarities, the first 100 years of bacteriology witnessed several different hierarchic structures, often discussed in parallel, depending upon the emerging discoveries at the time. It was not until the semantic nature of DNA, RNA, and proteins was described that scientists were able to present the outline of a hierarchic structure of the prokaryotes. This structure is primarily based on the phylogenetic tree of the small subunit ribosomal RNA gene, a universally present molecule of about 1,500 nucleotides long, and so far represents the most convincing reflection of the evolutionary relationships among prokaryotic taxa. Although the evolution of several housekeeping genes is in support of the rRNA gene tree, indicating that an average “consensus” phylogeny may have been obtained, the phylogenies of many other genes depart from the rRNA phylogeny due to extensive horizontal gene transfer, making it clear that the true evolutionary history of organisms is probably not reflected by the present prokaryotic tree. It must also be remembered that taxonomy is not fixed but prone to changes as a result of research on established and new taxa. Only the naming of taxa but not the science of classification is regulated, resulting in taxonomy in flux with regular changes of ranks due to their splitting and merging and introduction of novel ranks at all levels as new information becomes available.

This chapter describes the main principles underlying the delineation of the higher ranks (phylum-class-order-family) and discusses the finding that not all taxa related at the same rank are comparable units in terms of intrataxon genetic relatedness. Special attention is given to the species rank, the fundamental unit of biological organization, and the recent advances in genomics and ecology that call into question the pragmatic but artificial species definition that is in use today. Only when these issues will be addressed, the promise for a more predictive, genome-based prokaryotic taxonomy will be realized. We believe time and technology needed may have arrived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achtman M (1998) Microevolution during epidemic spread of Neisseria meningitidis. Electrophoresis 19:593–596

    CAS  PubMed  Google Scholar 

  • Achtman M, Wagner M (2008) Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol 6:431–440

    CAS  PubMed  Google Scholar 

  • Acinas SG, Klepac-Ceraj V, Hunt DE, Pharino C, Ceraj I, Distel DL, Polz MF (2004) Fine-scale phylogenetic architecture of a complex bacterial community. Nature 430:551–554

    CAS  PubMed  Google Scholar 

  • Alperi A, Martínez-Murcia AJ, Monera A, Saavedra MJ, Figueras MJ (2010) Aeromonas fluvialis sp. nov., isolated from a Spanish river. Int J Syst Evol Microbiol 60:72–77

    CAS  PubMed  Google Scholar 

  • Amann R, Ludwig W, Schleifer KH (1988) Beta-subunit of ATP-synthase: a useful marker for studying the phylogenetic relationship of eubacteria. J Gen Microbiol 134:2815–2821

    CAS  PubMed  Google Scholar 

  • Amann RI, Lin C, Key R, Montgomery L, Stahl DA (1992) Diversity among Fibrobacter strains: towards a phylogenetic classification. Syst Appl Microbiol 15:23–31

    Google Scholar 

  • Ash C, Farrow JAE, Wallbanks S, Collins MD (1991) Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit ribosomal RNA sequences. Lett Appl Microbiol 13:202–206

    CAS  Google Scholar 

  • Bachmann K (1998) Species as units of diversity: an outdated concept. Theor Biosci 117:213–230

    Google Scholar 

  • Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Micribiol Rev 43:260–296

    CAS  Google Scholar 

  • Barraclough TG, Hughes M, Ashford-Hodges N, Fujisawa T (2009) Inferring evolutionarily significant units of bacterial diversity from broad environmental surveys of single-locus data. Biol Lett 23:425–428

    Google Scholar 

  • Baumann P, Baumann L, Woolkalis MJ, Bang SS (1983) Evolutionary relationships in Vibrio and Photobacterium a basis for a natural classification. Annu Rev Microbiol 37:369–398

    CAS  PubMed  Google Scholar 

  • Bautz EKF, Bautz FA (1964) The influence of non-complementary bases on the stability of ordered polynucleotides. Proc Natl Acad Sci USA 52:1476–1481

    CAS  PubMed  Google Scholar 

  • Beiko RG, Harlow TJ, Ragan MA (2005) Highways of gene sharing in prokaryotes. Proc Natl Acad Sci USA 102:14332–14337

    CAS  PubMed  Google Scholar 

  • Beres SB, Carroll RK, Shea PR, Sitkiewicz I, Martinez-Gutierrez JC et al (2009) Molecular complexity of successive bacterial epidemics deconvoluted by comparative pathogenomics. Proc Natl Acad Sci USA 107:4371–4376

    Google Scholar 

  • Borriss R, Chen X, Rueckert C, Blom J, Becker A, Baumgarth B, Fan B, Pukall R, Schumann P, Spröer C, Junge H, Vater J, Pühler A, Klenk H-P (2010)Relationship of Bacillus amyloliquefaciens clades associated with strains DSM7T and FZB42: a proposal for Bacillus amyloliquefaciens subsp. amyloliquefaciens subsp. nov. and Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on their discriminating complete genome sequences. Int J Syst Evol Microbiol. First published on Sep 3, 2010 as doi: 10.1099/ijs.0.023267-0

    Google Scholar 

  • Brenner DJ (1991) Additional genera of the Enterobacteriaceae. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, applications. Springer, New York, pp 2922–2937

    Google Scholar 

  • Britten RJ, Kohne DE (1968) Repeated sequences in DNA. Science 161:529–540

    CAS  PubMed  Google Scholar 

  • Buchanan RE (1916) Studies in the nomenclature and classification of the bacteria I. The problem of bacterial nomenclature. J Bacteriol 1:591–596

    CAS  PubMed  Google Scholar 

  • Buchanan RE (1918) Studies in the nomenclature and classification of the bacteria V. Subgroups and genera of the Bacteriaceae. J Bacteriol 3:27–61

    CAS  PubMed  Google Scholar 

  • Buckley M, Roberts RJ (2007) Reconciling microbial systematics and genomics. Colloquium Report. The American Society for Microbiology, Washington, DC

    Google Scholar 

  • Caro-Quintero A, Rodriguez-Castano GP, Konstantinidis KT (2009) Genomic insights into the convergence and pathogenicity factors of Campylobacter jejuni and Campylobacter coli species. J Bacteriol 191:5824–5831

    CAS  PubMed  Google Scholar 

  • Caro-Quintero A, Deng J, Auchtung J, Brettar I, Höfle MG, Klappenbach J, Konstantinidis KT (2011) Unprecedented levels of horizontal gene transfer among spatially co-occurring Shewanella bacteria from the Baltic Sea. ISME J 5:131–140

    CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (2002) The neomuran origin of archaebacteria, the negibacterial root of the universal tree, and bacterial mega classification. Int J Syst Evol Microbiol 52:7–76

    CAS  PubMed  Google Scholar 

  • Christensen H, Kuhnert P, Busse H-J, Frederiksen WC, Bisgaard M (2007) Proposed minimal standards for the description of genera, species and subspecies of the Pasteurellaceae. Int J Syst Evol Microbiol 57:166–178

    CAS  PubMed  Google Scholar 

  • Cicarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287

    Google Scholar 

  • Cohan FM (2002) What are bacterial species? Annu Rev Microbiol 56:457–487

    CAS  PubMed  Google Scholar 

  • Cohan FM (2006) Towards a conceptual and operational union of bacterial systematics, ecology, and evolution. Philos Trans R Soc Lond B Biol Sci 361:1985–1996

    PubMed  Google Scholar 

  • Cohan FM, Koeppel AF (2008) The origins of ecological diversity in prokaryotes. Curr Biol 18R:1024–1034

    Google Scholar 

  • Cohn F (1872) Untersuchungen über Bacterien. Beitr Biol Pfl 2:127–224

    Google Scholar 

  • Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, Cai J, Hippe H, Farrow JAE (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826

    CAS  PubMed  Google Scholar 

  • Colwell RR (1970) Polyphasic taxonomy of the genus Vibrio: numerica taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and related Vibrio species. J Bacteriol 104:410–433

    CAS  PubMed  Google Scholar 

  • Cousin S, Brambilla E, Yang J, Stackebrandt E (2008) Culturable aerobic bacteria from the upstream region of a karst water rivulet. Int Microbiol 11:91–100

    CAS  PubMed  Google Scholar 

  • Cowan ST (1968) A dictionary of microbial taxonomic usage. Oliver & Boyd, Edinburgh

    Google Scholar 

  • Cracraft J (1983) Species concept and speciation analysis. Current ornithology. Plenum Press, New York, pp 159–187

    Google Scholar 

  • Darwin C (1859) On the origin of species. Murray, London

    Google Scholar 

  • De Ley J (1970) Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J Bacteriol 101:738–754

    PubMed  Google Scholar 

  • DeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard NU, Martinez A, Sullivan MB, Edwards R, Brito BR, Chisholm SW, Karl DM (2006) Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311:496–503

    CAS  PubMed  Google Scholar 

  • Dobzhansky T (1937) Genetics and the origin of species. Columbia University Press, New York

    Google Scholar 

  • Doolittle WF, Bapteste E (2007) Pattern pluralism and the tree of life hypothesis. Proc Natl Acad Sci USA 104:2043–2049

    CAS  PubMed  Google Scholar 

  • Doolittle WF, Zhaxybayeva O (2009) On the origin of prokaryotic species. Genome Res 19:744–756

    CAS  PubMed  Google Scholar 

  • Douglas AE (1998) Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol 43:17–37

    CAS  PubMed  Google Scholar 

  • Dykhuizen DE, Green L (1991) Recombination in Escherichia coli and the definition of biological species. J Bacteriol 173:7257–7268

    CAS  PubMed  Google Scholar 

  • Dzink JL, Sheehan MT, Socransky SS (1990) Proposal of three subspecies of Fusobacterium nucleatum Knorr 1922: Fusobacterium nucleatum subsp. nucleatum subsp. nov., comb. nov.; Fusobacterium nucleatum subsp. polymorphum subsp. nov., nom. rev., comb. nov.; and Fusobacterium nucleatum subsp. vincentii subsp. nov., nom. rev., comb. nov. Int J Syst Bacteriol 40:74–78

    CAS  PubMed  Google Scholar 

  • Embley MT, Stackebrandt E (1994) The molecular phylogeny and systematics of the Actinomycetes. Annu Rev Microbiol 48:257–289

    CAS  PubMed  Google Scholar 

  • Eppley JM, Tyson GW, Getz WM, Banfield JF (2007) Genetic exchange across a species boundary in the archaeal genus Ferroplasma. Genetics 177:407–416

    CAS  PubMed  Google Scholar 

  • Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorimetric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229

    Google Scholar 

  • Farelly V, Rainey FA, Stackebrandt E (1995) Effect of genomic size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl Environ Microbiol 61:2798–2801

    Google Scholar 

  • Farmer JJ III, Janda JM, Brenner FW, Cameron DN, Birkhead KM (2005) Genus 1. Vibrio Pacini 1854, 411AL. In: Brenner DJ, Krieg NR, Staley JR (eds) Bergey’s manual systematic bacteriology: the proteobacteria, 2nd edn. Springer, New York, pp 494–546

    Google Scholar 

  • Fowler VJ, Widdel F, Pfennig N, Stackebrandt E (1986) Phylogenetic relationships of sulfate- and sulfur-reducing eubacteria. Syst Appl Microbiol 8:32–41

    CAS  Google Scholar 

  • Fox GE, Stackebrandt E, Hespell RB, Gibson J, Maniloff J, Dyer TA, Wolfe RS, Balch WE, Tanner R, Magrum L, Zablen L-B, Blakemore R, Gupta R, Lewis BJ, Stahl DA, Luehrsen R, Chen KN, Woese CR (1980) The phylogeny of prokaryotes. Science 209:457–463

    CAS  PubMed  Google Scholar 

  • Fox GE, Wisotzkey JD, Jurtshuk P Jr (1992) How close is close: 16S RNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170

    CAS  PubMed  Google Scholar 

  • Fraser C, Hanage WP, Spratt BG (2007) Recombination and the nature of bacterial speciation. Science 315:476–480

    CAS  PubMed  Google Scholar 

  • Fraser C, Alm EJ, Polz MF, Spratt BG, Hanage WP (2009) The bacterial species challenge: making sense of genetic and ecological diversity. Science 323:741–746

    CAS  PubMed  Google Scholar 

  • Garrity GM, Holt JG (2001a) Class I. Deinococci class. nov. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn, The Archaea and the deeply branching and phototrophic bacteria. Springer, New York, p 395

    Google Scholar 

  • Garrity GM, Holt JG (2001b) Phylum BVIII. Nitrospirae phy. nov. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology. Springer, New York, pp 451–464

    Google Scholar 

  • Garrity GM, Holt JG (2001c) Phylum BVI. Chloroflexi phy. nov. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn, The Archaea and the deeply branching and phototrophic bacteria. Springer, New York, pp 427–446

    Google Scholar 

  • Garrity GM, Garrity GM, Bell JA, Lilburn T (2005) Phylum XIV. Proteobacteria phyl. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn, The proteobacteria, part B: the gammaproteobacteria. Springer, New York, p 1

    Google Scholar 

  • Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ, Stackebrandt E, Van de Peer Y, Vandamme P, Thompson FL, Swings J (2005) Re-evaluating prokaryotic species. Nat Rev Microbiol 3:733–739

    CAS  PubMed  Google Scholar 

  • Gharbia SE, Shah HN (1992) Fusobacterium nucleatum subsp. fusiforme subsp. nov. and Fusobacterium nucleatum subsp. animalis subsp. nov. as additional subspecies within Fusobacterium nucleatum. Int J Syst Bacteriol 42:296–298

    CAS  PubMed  Google Scholar 

  • Gibbons NE, Murray RGE (1978) Proposals concerning the higher taxa of bacteria. Int J Syst Bacteriol 28:1–6

    Google Scholar 

  • Gibson J, Ludwig W, Stackebrandt E, Woese CR (1985) The phylogeny of the green photosynthetic bacteria: absence of a close relationship between Chlorobium and Chloroflexus. Syst Appl Microbiol 6:152–156

    CAS  Google Scholar 

  • Gogarten JP, Townsend JP (2005) Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol 3:679–687

    CAS  PubMed  Google Scholar 

  • Goris J, Suzuki K, De Vos P, Nakase T, Kersters K (1999) Evaluation of a microplate DNA-DNA hybridization method compared to the initial renaturation method. Can J Microbiol 44:1148–1153

    Google Scholar 

  • Goris J, Konstantinidis KT, Coenye T, Vandamme P, Tiedje JM (2007) DNA-DNA hybridization values and their relation to whole genome sequence. Int J Syst Evol Microbiol 57:81–91

    CAS  PubMed  Google Scholar 

  • Grimont PAD, Popoff MY, Grimont F, Coynault C, Lemelin M (1980) Reproducibility and correlation study of three deoxyribonucleic acid hybridization procedures. Curr Microbiol 4:325–330

    CAS  Google Scholar 

  • Gupta RS, Golding GB (1993) Evolution of HSP70 gene and its implications regarding relationships between Archaebacteria, Eubacteria and Eukaryotes. J Mol Evol 37:573–582

    CAS  PubMed  Google Scholar 

  • Gürtler V, Mayall BC (2001) Genomic approaches to typing, taxonomy and evolution of bacterial isolates. Int J Syst Evol Microbiol 51:3–16

    PubMed  Google Scholar 

  • Guttman DS, Dykhuizen DE (1994) Clonal divergence in Escherichia coli as a result of recombination, not mutation. Science 266:1380–1383

    CAS  PubMed  Google Scholar 

  • Handelsman J, Tiedje J, Alvarez-Cohen L, Ashburner M, Cann I, Delong E, Doolittle W, Fraser-Ligget C, Godzik A, Gordon J, Riley M, Schmidt T (2007) The news of metagenomics: revealing the secrets of our microbial planet. The National Academies Press, Washington, DC

    Google Scholar 

  • Hara T, Shimoda T, Nonaka K, Ogata S (1991) Colorimetric detection of DNA-DNA hybridization in microdilution wells for taxonomic application on bacteria strains. J Ferment Bioeng 72:122–124

    CAS  Google Scholar 

  • Harris LG, El-Bouri K, Johnston S, Rees E, Frommelt L, Siemssen N, Christner M, Davies AP, Rohde H, Mack D (2010) Rapid identification of staphylococci from prosthetic joint infections using MALDI-TOF mass-spectrometry. Int J Artif Organs 33:568–574

    CAS  PubMed  Google Scholar 

  • He Y, Li H, Lu X, Stratton CW, Tang YW (2010) Mass spectrometry biotyper system identifies enteric bacterial pathogens directly from colonies grown on selective stool culture media. J Clin Microbiol 48:3888–3892

    PubMed  Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams & Wilkins, Baltimore

    Google Scholar 

  • Hsieh S-Y, Tseng C-L, Lee Y-S, Kuo A-J, Sun C-F, Lin Y-H, Chen J-K (2008) Highly efficient classification and identification of human pathogenic bacteria by MALDI-TOF MS. Mol Cell Proteomics 7:448–456

    CAS  PubMed  Google Scholar 

  • Hull D (1976) Are species really individuals? Syst Zool 25:174–191

    Google Scholar 

  • Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192

    CAS  PubMed  Google Scholar 

  • Huys G, Kämpfer P, Albert MJ, Kuhn I, Denys R, Swings J (2002) Aeromonas hydrophila subsp. dhakensis subsp. nov., isolated from children with diarrhoea in Bangladesh, and extended description of Aeromonas hydrophila subsp. hydrophila Chester 1901 Stanier 1943 Approved Lists 1980. Int J Syst Evol Microbiol 52:705–712

    CAS  PubMed  Google Scholar 

  • Iino T, Mori K, Uchino Y, Nakagawa T, Harayama S, Suzuki KI (2010) Ignavibacterium album gen. nov., sp. nov., a moderately thermophilic anaerobic bacterium isolated from microbial mats at a terrestrial hot spring and proposal of Ignavibacteria classis nov., for a novel lineage at the periphery of green sulfur bacteria. Int J Syst Evol Microbiol 60:1376–1382

    CAS  PubMed  Google Scholar 

  • Imhoff JF, Süling J, Petri R (1998a) Phylogenetic relationships among the Chromatiaceae, their taxomonic reclassification and description of the new genera Allochromatium, Halochromatium, Isochromatium, Marichromatium, Thiococcus, Thiohalocapsa and Thermochromatium. Int J Syst Bacteriol 48:1129–1143

    PubMed  Google Scholar 

  • Imhoff JF, Petri R, Süling J (1998b) Reclassification of species of the spiral-shaped phototrophic purple non-sulfur bacteria of the γ-Proteobacteria: description of the genera Phaeospirillum gen. nov., Rhodovibrio gen. nov., Rhodothalassium gen. nov. and Roseospiragen nov., as well as transfer of Rhodospirillum fulvum to Phaeospirillum fulvum comb. nov., of Rhodospirillum molischianum to Phaeospirillum molischianum comb. nov., of Rhodospirillum salinarum to Rhodovibrion salinarum comb. nov., of Rhodospirillum sodomense to Rhodovibrio sodomensis comb. nov., of Rhodospirillum salexigens to Rhodothalassium salexigens comb. nov. and of Rhodospirillum medosalinum to Roseospira mediosalina. Int J Syst Bacteriol 48:793–798

    PubMed  Google Scholar 

  • Istock CA, Bell JA, Ferguson N, Istock NL (1996) Bacterial species and evolution: theoretical and practical perspectives. J Ind Microbiol 17:137–150

    CAS  Google Scholar 

  • Johnson JL (1973) The use of nucleic acid homologies in the taxonomy of anaerobic bacteria. Int J Syst Bacteriol 23:308–315

    CAS  Google Scholar 

  • Kandler O, König H (1985) Cell envelopes of archaebacteria. In: Woese CR, Wolfe RS (eds) Archaebacteria (The bacteria. A treatise on structure and function), vol VIII. Academic, New York, pp 413–457

    Google Scholar 

  • Kaznowski A (1995) A method of colorimetric DNA-DNA hybridization in microplates with covalently immobilized DNA for identification of Aeromonas sp. Med Microbiol Lett 4:362–369

    CAS  Google Scholar 

  • Klenk HP, Zillig W (1994) DNA-dependent RNA polymerase subunit B as a tool for phylogenetic reconstructions: branching topology of the archaeal domain. J Mol Evol 38:4420–4432

    Google Scholar 

  • Kloos WE, Mohapatra N, Dobrogosz J, Ezell JW, Manclark CR (1981) Deoxyribonucleotide sequence relatioships among Bordetella species. Int J Syst Bacteriol 31:173–176

    Google Scholar 

  • Kluyver AJ, van Niel CB (1936) Prospects for a natural system of classification of bacteria. Zbl Bakt Abt 2(94):369–403

    Google Scholar 

  • Konstantinidis KT, DeLong EF (2008) Genomic patterns of recombination, clonal divergence and environment in marine microbial populations. ISME J 2:1052–1065

    CAS  PubMed  Google Scholar 

  • Konstantinidis KT, Tiedje JM (2005a) Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187:6258–6264

    CAS  PubMed  Google Scholar 

  • Konstantinidis KT, Tiedje JM (2005b) Genomic insights that advance the species concept for prokaryotes. Proc Natl Acad Sci USA 102:2567–2572

    CAS  PubMed  Google Scholar 

  • Konstantinidis KT, Tiedje JM (2007) Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol 105:504–509

    Google Scholar 

  • Konstantinidis KT, Ramette A, Tiedje JM (2006) Toward a more robust assessment of intra-species diversity using fewer genetic markers. Appl Environ Microbiol 72:7286–7293

    CAS  PubMed  Google Scholar 

  • Konstantinidis KT, Braff J, Karl DM, DeLong EF (2009) Comparative metagenomic analysis of a microbial community residing at a depth of 4,000 meters at station ALOHA in the North Pacific subtropical gyre. Appl Environ Microbiol 75:5345–5355

    CAS  PubMed  Google Scholar 

  • Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SD (2006) Automated phylogenetic detection of recombination using a genetic algorithm. Mol Biol Evol 23:1891–1901

    PubMed  Google Scholar 

  • Lapage SP, Sneath PHA, Lessel EF, Skerman VBD, Seeliger HPR, Clark WA (eds) (1975) International code of nomenclature of bacteria (1975 revision). American Society for Microbiology, Washington, DC

    Google Scholar 

  • Lawrence JG (2002) Gene transfer in bacteria: speciation without species? Theor Popul Biol 61:449–460

    PubMed  Google Scholar 

  • Lawrence JG, Ochman H (1998) Molecular archaeology of the Escherichia coli genome. Proc Natl Acad Sci USA 95:9413–9417

    CAS  PubMed  Google Scholar 

  • Lawrence JG, Retchless AC (2009) The interplay of homologous recombination and horizontal gene transfer in bacterial speciation. Methods Mol Biol 532:29–53

    CAS  PubMed  Google Scholar 

  • Lay JO Jr (2001) MALDI-TOF mass spectrometry of bacteria. Mass Spectrom Rev 20(4):172–194

    CAS  PubMed  Google Scholar 

  • Lehmann KB, Neumann R (1896) Atlas und Grundriss der Bakteriologie und Lehrbuch der speziellen Bakteriologischen Diagnostik, 1st edn. Munich J.F, Lehmann

    Google Scholar 

  • Lester CH, Sandvang D, Olsen SS, Schønheyder HC, Jarløv JO, Bangsborg J, Hansen DS, Jensen TG, Frimodt-Møller N, Hammerum AM, Lester CH, Sandvang D, Olsen SS, Schønheyder HC, Jarløv JO, Bangsborg J, Hansen DS, Jensen TG, Frimodt-Møller N, Hammerum AM, DANRES Study Group (2008) Emergence of ampicillin-resistant Enterococcus faecium in Danish hospitals. J Antimicrob Chemother 62:1203–1206

    CAS  PubMed  Google Scholar 

  • Lilburn TG, Harrison SH, Cole JR, Garrity GM (2006) Computational aspects of systematic biology. Brief Bioinform 7:186–195

    CAS  PubMed  Google Scholar 

  • Lind E, Ursing J (1986) Clinical strains of Enterobacter aggomeruns synonyms: Erwinia herbicola,Envinia milletiae identified by DNA-DNA-hybridization. Acta Pathol Microbiol Scand B Microbiol Immunol 94:205–213

    CAS  Google Scholar 

  • Linnaeus C (1753) Species plantarum. Holmiae

    Google Scholar 

  • Maiden CJM, Dingle KC (2008) Campylobacter. In: Nachamkin I, Szymanski CM, Blaser MJ (eds) Population biology of Campylobacter jejuni and related organisms, 3rd edn. American Society for Microbiology Press, Washington, DC, pp 27–40

    Google Scholar 

  • Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant DA, Feavers IM, Achtman M, Spratt BG (1996) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA 95:3140–3145

    Google Scholar 

  • Margulis L (1981) Symbiosis in cell evolution. W.H. Freeman, San Francisco

    Google Scholar 

  • Maynart-Smith J, Smith NH, O’Rourke M, Spratt BG (1993) How clonal are bacteria? Proc Natl Acad Sci USA 90:4384–4388

    Google Scholar 

  • McVean G, Awadalla P, Fearnhead P (2002) A coalescent-based method for detecting and estimating recombination from gene sequences. Genetics 160:1231–1241

    CAS  PubMed  Google Scholar 

  • Migula W (1900) System der Bakterien. Gustav Fischer, Jena

    Google Scholar 

  • Miller SR, Augustine S, Olson TL, Blankenship RE, Selker J, Wood AM (2005) Discovery of a free-living chlorophyll d-producing cyanobacterium with a hybrid proteobacterial/cyanobacterial small-subunit rRNA gene. Proc Natl Acad Sci USA 102:850–855

    CAS  PubMed  Google Scholar 

  • Moran NA (2007) Symbiosis as an adaptive process and source of phenotypic complexity. Proc Natl Acad Sci USA 104:8627–8633

    CAS  PubMed  Google Scholar 

  • Moreno E (1997) In search of a bacterial species definition. Rev Biol Trop 45:753–771

    CAS  PubMed  Google Scholar 

  • Naser SM, Thompson FL, Hoste B, Gevers D, Dawyndt P, Vancanneyt M, Swings J (2005) Application of multilocus sequence analysis MLSA for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiol (Reading) 151:2141–2150

    CAS  Google Scholar 

  • O`Hara RJ (1994) Evolutionary history and the species problem. Amer Zool 34:12–22

    Google Scholar 

  • Orla-Jensen S (1909) Die Hauptlinien des natürlichen Bakteriensystems. Zbl Bakt Abt 2(22):305–346

    Google Scholar 

  • Peix A, Valverde A, Rivas R, Igual JM, Ramırez-Bahena M-H, Mateos PF, Santa-Regina I, Rodrıguez-Barrueco C, Martınez-Molina E, Velazquez C (2007) Reclassification of Pseudomonas aurantiaca as a synonym of Pseudomonas chlororaphis and proposal of three subspecies, P. chlororaphis subsp. chlororaphis subsp. nov., P. chlororaphis subsp. aureofaciens subsp. nov., comb. nov. and P. chlororaphis subsp. aurantiaca subsp. nov., comb. nov. Int J Syst Evol Microbiol 57:1286–1290

    CAS  PubMed  Google Scholar 

  • Prévot AR (1938) Études de systématique bactérienne. Ann Inst Pasteur 60:285–307

    Google Scholar 

  • Pringsheim EG (1923) Zur Kritik der Bakteriensystematik. Lotus 71:357–377

    Google Scholar 

  • Prod’hom G, Bizzini A, Durussel C, Bille J, Gilbert Greub G (2011) MALDI-TOF mass spectrometry for direct bacterial identification from positive ammonium chloride lysed blood culture pellets. J Clin Microbiol. doi:10.1128/JCM.01780-09

    Google Scholar 

  • Rademaker JLW, Hoste B, Louws FJ, Kersters K, Swings J, Vauterin L, Vauterin P, de Bruijn FJ (2000) Comparison of AFLP and rep-PCR genomic fingerprinting with DNA–DNA homology studies: Xanthomonas as a model system. Int J Syst Evol Microbiol 50:665–677

    CAS  PubMed  Google Scholar 

  • Rainey FA, Stackebrandt E (1993) Phylogenetic evidence for the relationship of Saccharococcus thermophilus to Bacillus thermoglucosidasius, Bacillus kaustophilus and Bacillus stearothermophilus. Syst Appl Microbiol 16:224–226

    Google Scholar 

  • Relman DA, Strauss E (1999) Microbial genomes: blueprint for life. American Society for Microbiology Press, Washington, DC

    Google Scholar 

  • Reysenbach A-L (2001) Phylum BI. Aquificae phy. nov. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn, The Archaea and the deeply branching and phototrophic bacteria. Springer, New York, pp 359–367

    Google Scholar 

  • Richter M, Rossello-Mora R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131

    CAS  PubMed  Google Scholar 

  • Riley M, Buckley M (2008) Large-scale sequencing: the future of genomic sciences? American Society for Microbiology Press, Washington, DC

    Google Scholar 

  • Rodas AM, Ferrer S, Pardo I (2005) Polyphasic study of wine Lactobacillus strains: taxonomic implications. Int J Syst Evol Microbiol 55:197–207

    CAS  PubMed  Google Scholar 

  • Rong X, Huang Y (2010) Taxonomic evaluation of the Streptomyces griseus clade using multilocus sequence analysis and DNA-DNA hybridization, with proposal to combine 29 species and three subspecies as 11 genomic species. Int J Syst Evol Microbiol 60:696–703

    CAS  PubMed  Google Scholar 

  • Rong X, Guop Y, Huag Y (2009) Proposal to reclassify the Streptomyces albidoflavus clade on the basis of multilocus sequence analysis and DNA-DNA hybridization, and taxonomic elucidation of Streptomyces griseus subsp. solvifaciens. Syst Appl Microbiol 32:314–322

    CAS  PubMed  Google Scholar 

  • Rossello-Mora R (2005) Updating prokaryotic taxonomy. J Bacteriol 187:6255–6257

    CAS  PubMed  Google Scholar 

  • Rosselló-Móra R (2006) DNA-DNA reassociation methods applied to microbial taxonomy and their critical evaluation. In: Stackebrandt E (ed) Molecular identification, systematics, and population structure of prokaryotes. Springer, Berlin, pp 23–50

    Google Scholar 

  • Rosselló-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67

    PubMed  Google Scholar 

  • Rothschild LJ, Ragan A, Coleman AW, Heywood P, Gerbi SA (1986) Are rRNA sequence comparisons the Rosetta stone of phylogeny? Cell 47(5):640

    CAS  PubMed  Google Scholar 

  • Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, Wu D, Eisen JA, Hoffman JM, Remington K et al (2007) The sorcerer II global ocean sampling expedition: Northwest Atlantic through Eastern Tropical Pacific. PLoS Biol 5:e77

    PubMed  Google Scholar 

  • Scheldeman P, Goossens K, Rodriguez-Diaz M, Pil A, Goris J, Herman L, De Vos P, Logan NA, Heyndrickx M (2004) Paenibacillus lactis sp. nov. isolated from raw and heat-treated milk. Int J Syst Evol Microbiol 54:885–891

    CAS  PubMed  Google Scholar 

  • Schleifer K-H, Kandler O (1972) The peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477

    CAS  PubMed  Google Scholar 

  • Schleifer K-H, Stackebrandt E (1983) Molecular systematics of prokaryotes. Annu Rev Microbiol 37:143–187

    CAS  PubMed  Google Scholar 

  • Schleifer K-H, Leuteritz M, Weiss N, Ludwig W, Kirchhof G, Seidel-Rüfer H (1990) Taxonomic study of anaerobic, Gram-negative, rod-shaped bacteria from breweries: emended description of Pectinatus cerevisiiphilus and description of Pectinatus frisingensis sp. nov., Selenomonas lacticifex sp. nov., Zymophilus raffinosivorans gen. nov., sp. nov., and Zymophilus paucivorans sp. nov. Int J Syst Bacteriol 40:19–27

    CAS  PubMed  Google Scholar 

  • Schroeter J (1886) Microspira comma. In: Cohn F (ed) Kryprogamen-Flora von Schlesien 3:168

    Google Scholar 

  • Seewaldt E, Schleifer K-H, Bock E, Stackebrandt E (1982) The close phylogenetic relationship of Nitrobacter and Rhodopseudomonas palustris. Arch Microbiol 131:287–290

    CAS  Google Scholar 

  • Selander RK, Li J, Boyd F, Wang F-S, Nelson K (1994) DNA sequence analysis of the genetic structure of populations of Salmonella enterica and Escherichia coli. In: Priest FG, Ramos-Cormenzana A, Tindall R (eds) Bacterial systematics and diversity. Plenum Press, New York, pp 17–50

    Google Scholar 

  • Shah HN, Keys CJ, Schmid O, Gharbia SE (2002) Matrix-assisted laser desorption/ionisation time of flight mass spectrometry and proteomics; a new era in anaerobic microbiology. Clin Infect Dis 35:58–64

    Google Scholar 

  • Sibley CG, Comstock JA, Ahlquist JE (1990) DNA hybridization evidence of homoid phylogeny: a reanalysis of the data. J Mol Evol 30:202–236

    CAS  PubMed  Google Scholar 

  • Sneath PAH (1989) Analysis and interpretation of sequence data for bacterial systematics: the view of a numerical taxonomist. Syst Appl Microbiol 12:15–31

    Google Scholar 

  • Stackebrandt E (1992) The prokaryotes. a handbook on the biology of bacteria: ecophysiology, isolation, identification, applications. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) Unifying phylogeny and phenotypic properties. Springer, New York, pp 19–47

    Google Scholar 

  • Stackebrandt E (2000) The prokaryotes: an evolving electronic resource for the microbiological community. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) Defining taxonomic ranks. Springer, New York, pp 29–57

    Google Scholar 

  • Stackebrandt E (2010) Diversification and focusing: strategies of microbial culture collections. Trends Microbiol 18:283–287

    CAS  PubMed  Google Scholar 

  • Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155

    Google Scholar 

  • Stackebrandt E, Goebel BM (1994) A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    CAS  Google Scholar 

  • Stackebrandt E, Rainey FA (1997) Phylogenetic relationships. In: Rood IJ, McClane BA, Songer JB, Titball RW (eds) The clostridia: molecular biology and pathogenesis. Academic, New York, pp 3–19

    Google Scholar 

  • Stackebrandt E, Woese CR (1984) The phylogeny of prokaryotes. Microbiol Sci 1:117–122

    CAS  PubMed  Google Scholar 

  • Stackebrandt E (1985) The significance of "wall types" in phylogenetically based taxonomic studies on actinomycetes. In: Szabó G, Biró S. Goodfellow M (eds) Sixth Int Symp on Actinomycete Biology. Akademiai Kiado, Budapest, pp 497–606

    Google Scholar 

  • Stackebrandt E, Embley M, Weckesser J (1988) Phylogenetic, evolutionary, and taxonomic aspects of phototrophic eubacteria. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E, Trüper HG (eds) Green photosynthetic bacteria. Plenum Press, New York, pp 201–215

    Google Scholar 

  • Stackebrandt E, Tindall B, Ludwig W, Goodfellow M (1999) Prokaryotic diversity and systematics. In: Lengeler J, Drews G, Schlegel HG (eds) Biology of the prokaryotes. Thieme, Stuttgart, pp 675–720

    Google Scholar 

  • Stackebrandt E, Frederiksen W, Garrity GM, Grimont PAD, Kämpfer P, Maiden MC, Nesme X, Rossello-Mora R, Swings J, Trüper HG, Vauterin L, Ward AC, Whitman WB (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1052

    CAS  PubMed  Google Scholar 

  • Stackebrandt E, Päuker O, Erhard M (2005) Grouping myxococci (Corallococcus) strains by matrix-assisted laser desorption ionization time-of-flight MALDI TOF mass spectrometry: comparison with gene sequence phylogenies. Curr Microbiol 50:71–77

    CAS  PubMed  Google Scholar 

  • Staley JT (1997) Biodiversity: are microbial species threatened? Curr Opin Biotechnol 8:340–345

    CAS  PubMed  Google Scholar 

  • Staley J (2009) The phylogenomics species concept. Microbiol Today 36:82–83

    Google Scholar 

  • Staley JT, Krieg NR (1984) Bacterial classification I. Classification of prokaryotic organisms: an overview. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams & Wilkins, Baltimore, pp 1–4

    Google Scholar 

  • Stanier RY, van Niel CB (1941) The main outlines of bacterial classification. J Bacteriol 42:437–466

    CAS  PubMed  Google Scholar 

  • Steigerwalt AG, Fanning GR, Fife-Ashbury MA, Brenner DJ (1976) DNA relatedness among species of Enterobacter and Serratia. Can J Microbiol 22:121–137

    CAS  PubMed  Google Scholar 

  • Szabados F, Woloszyn J, Richter C, Kaase M, Gatermann SG (2010) A Biotyper 2.0 Bruker Daltonics-based score cut-off of actually 2 is superior to molecular Staphylococcus aureus identification. J Med Microbiol 59:787–790

    CAS  PubMed  Google Scholar 

  • Thane PR (2009) A critique of prokaryotic species concepts. Methods Mol Biol 532:379–395

    Google Scholar 

  • Thompson CC, Thompson FL, Vicente ACP (2008) Identification of Vibrio cholerae and Vibrio mimicus by multilocus sequence analysis MLSA. Int J Syst Evol Microbiol 58:617–621

    CAS  PubMed  Google Scholar 

  • Tindall BJ, Rosselló-Móra R, Busse H-J, Ludwig W, Kämpfer P (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266

    CAS  PubMed  Google Scholar 

  • Turenne CY, Collins DM, Alexander DC, Behr MA (2008) Mycobacterium avium subsp. paratuberculosis and M. avium subsp. avium are independently evolved pathogenic clones of a much broader group of M. avium organisms. J Bacteriol 190:2479–2487

    CAS  PubMed  Google Scholar 

  • Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43

    CAS  PubMed  Google Scholar 

  • Ullman JS, McCarthy BJ (1973) The relationship between mismatched base pairs and the thermal stability of DNA duplexes. Biochim Biophys Acta 294:416–424

    CAS  PubMed  Google Scholar 

  • van Baar BL (2000) Characterisation of bacteria by matrix-assisted laser desorption/ionisation and electrospray mass spectrometry. FEMS Microbiol Rev 24:193–219

    PubMed  Google Scholar 

  • van Berkum P, Terefework Z, Paulin L, Suomalainen S, Lindström K, Eardly BD (2003) Discordant phylogenies within the rrnl of rhizobia. J Bacteriol 185:2988–2998

    PubMed  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D et al (2004) Environmental genome shotgun sequencing of the Sargasso sea. Science 304:66–74

    CAS  PubMed  Google Scholar 

  • Wagner M (2009) Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. Annu Rev Microbiol 63:411–429

    CAS  PubMed  Google Scholar 

  • Ward DM (1998) A natural species concept for prokaryotes. Curr Opin Microbiol 1:271–277

    CAS  PubMed  Google Scholar 

  • Ward DM (2006) A macrobiological perspective on microbial species. Microbe 1:269–278

    Google Scholar 

  • Walker DH (1989) Rocky Mountain spotted fever: a new disease in need of microbiological concern. Clin Microbiol Rev 2:227–240

    CAS  PubMed  Google Scholar 

  • Wayne L, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) International committee on systematic bacteriology: report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Google Scholar 

  • Winslow C-EA, Broadhurst J, Buchanan RE (1920) The families and genera of the bacteria. J Bacteriol 3:191–229

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    CAS  PubMed  Google Scholar 

  • Woese CR, Debrunner-Vossbrinck B, Oyaizu H, Stackebrandt E, Ludwig W (1985) Gram-positive bacteria: possible photosynthetic ancestry. Science 229:762–765

    CAS  PubMed  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains archaea, bacteria and eucaryas. Proc Natl Acad Sci USA 87:4576–4579

    CAS  PubMed  Google Scholar 

  • Wolf YI, Rogozin IB, Grishin NV, Tatusov RL, Koonin EV (2001) Genome trees constructed using five different approaches suggest new major bacterial clades. BMC Evol Biol 1:8–28

    CAS  PubMed  Google Scholar 

  • Yanagida F, Suzuki K-I, Kozaki M, Komagata K (1997) Proposal of Sporolactobacillus nakayamae subsp. nakayamae sp. nov., subsp. nov., Sporolactobacillus nakayamae subsp. racemicus subsp. nov., Sporolactobacillus terrae sp. nov., Sporolactobacillus kofuensis sp. nov., and Sporolactobacillus lactosus sp. nov. Int J Syst Bacteriol 47:499–504

    Google Scholar 

  • Zawadzki P, Roberts MS, Cohan FM (1995) The log-linear relationship between sexual isolation and sequence divergence in Bacillus transformation is robust. Genetics 140:917–932

    CAS  PubMed  Google Scholar 

  • Zhu Y, Fournier PE, Eremeeva M, Raoult D (2005) Proposal to create subspecies of Rickettsia conorii based on multi-locus sequence typing and an emended description of Rickettsia conorii. BMC Microbiol 5:11. doi:10.1186/1471-2180-5-11

    PubMed  Google Scholar 

  • Ziemke F, Höfle MG, Lalucat J, Rosello-Mora R (1998) Reclassification of Owen’s genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48:179–186

    CAS  PubMed  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Molecules as documents of evolutionary history. J Theor Biol 8:357–366

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos T. Konstantinidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Konstantinidis, K.T., Stackebrandt, E. (2013). Defining Taxonomic Ranks. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30194-0_4

Download citation

Publish with us

Policies and ethics