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Abstract. We initiate the study of security for key-dependent messages
(KDM), sometimes also known as “circular” or “clique” security, in the
setting of identity-based encryption (IBE). Circular/KDM security re-
quires that ciphertexts preserve secrecy even when they encrypt mes-
sages that may depend on the secret keys, and arises in natural usage
scenarios for IBE.

We construct an IBE system that is circular secure for affine func-
tions of users’ secret keys, based on the learning with errors (LWE)
problem (and hence on worst-case lattice problems). The scheme is se-
cure in the standard model, under a natural extension of a selective-
identity attack. Our three main technical contributions are (1) showing
the circular/KDM-security of a “dual”-style LWE public-key cryptosys-
tem, (2) proving the hardness of a version of the “extended LWE” prob-
lem due to O’Neill, Peikert and Waters (CRYPTO’11), and (3) building
an IBE scheme around the dual-style system using a novel lattice-based
“all-but-d” trapdoor function.

1 Introduction

Traditional notions of secure encryption, starting with semantic (or IND-CPA)
security [22], assume that the plaintext messages do not depend on the secret
decryption key (except perhaps indirectly, via the public key or other cipher-
texts). In many settings, this may fail to be the case. One obvious scenario is, of
course, careless or improper key management: for example, some disk encryption
systems end up encrypting the symmetric secret key itself (or a derivative) and
storing it on disk. However, there are also situations in which key-dependent
messages are used as an integral part of an cryptosystem. For example, in their
anonymous credential system, Camenisch and Lysyanskaya [13] use a cycle of
key-dependent messages to discourage users from delegating their secret keys.
More recently, Gentry’s “bootstrapping” technique for obtaining a fully homo-
morphic cryptosystem [19] encrypts a secret key under the corresponding public
key in order to support unbounded homomorphism; the cryptosystem therefore
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needs to be “circular secure.” More generally, a system that potentially reveals
encryptions of any party’s secret key under any user’s public key needs to be
“clique” or “key-dependent message” (KDM) secure. This notion allows for prov-
ing formal symbolic soundness of cryptosystems having complexity-based secu-
rity proofs [1].

Since Boneh et al.’s breakthrough work [9] giving a KDM-secure encryption
scheme, in the standard model, from the Decision Diffie-Hellman assumption, a
large number of results (mostly positive) have been obtained regarding circular-
and KDM-secure encryption [23, 5, 6, 10, 4, 26, 11, 12]. However, all these
works have dealt only with the symmetric or public-key settings; in particular,
the question of circular/KDM security for identity-based cryptography has not
yet been considered. Recall that in identity-based encryption [35], any string
can serve as a public key, and the corresponding secret keys are generated and
administered by a trusted Private Key Generator (PKG).

Circular Security for IBE. In this work we define and construct a circular/KDM-
secure identity-based encryption (IBE) scheme. KDM security is well-motivated
by some natural usage scenarios for IBE, as we now explain.

Recall that identity-based encryption gives a natural and lightweight solution
to revocation, via expiring keys. The lifetime of the cryptosystem is divided
into time periods, or “epochs.” An identity string consists of a user’s “true”
identity (e.g., name) concatenated with an epoch; when encrypting, one uses the
identity for the current epoch. To support revocation, the PKG gives out a user’s
secret key only for the current epoch, and only if the user is still authorized to
be part of the system. Therefore, a user’s privileges can be revoked by simply
refusing to give out his secret key in future epochs; in particular, this revocation
is transparent to the encrypter.

The above framework makes it necessary for users to periodically get new
secret keys from the PKG, confidentially. The most lightweight method, which
eliminates the need for the user to prove his identity every time, is simply for
the PKG to encrypt the new secret key under the user’s identity for the previous
epoch. This can be proved secure, assuming the underlying IBE is CPA-secure, as
long as there are no cycles of encrypted keys. However, if a user deletes or loses an
old secret key and wants to decrypt a ciphertext from the corresponding epoch,
it would be natural for the authority to provide the old secret key encrypted
under the user’s identity for the current epoch. But because the current secret
key has also been encrypted (perhaps via a chain of encryptions) under the old
identity, this may be unsafe unless the IBE is KDM-secure.

1.1 Our Contributions

As already mentioned, in this work we define a form of circular/KDM security
for identity-based encryption, and give a standard-model construction based on
the learning with errors (LWE) problem, hence on worst-case lattice problems
via the reductions of [34, 32].
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As in prior positive results on circular security [9, 5, 10], our definition allows
the adversary to obtain encrypted “key cliques” for affine functions of the secret
keys. More precisely, for any tuple of identities (id1, . . . , idd), the attacker may
adaptively query encryptions of f(skidi) under any of the identities idj , where
f is any affine function over the message space, and each skidi is a secret key
for identity idi. Our attack model is in the style of a “selective identity” attack,
wherein the adversary must declare the target identities id1, . . . , idd (but not the
functions f) before seeing the public parameters of the scheme. While this is not
the strongest security notion we might hope for, it appears to at least capture the
main security requirements of the scenarios described above, because encrypted
key cycles are only ever published for the same “real-world” identity at different
time epochs. Therefore, just as in a standard selective-identity attack for IBE,
the adversary is actually limited to attacking just a single real-world identity, on
a set of d epochs (which could, for example, include all valid epochs). We also
point out that by a routine hybrid argument, security also holds when attacking
a disjoint collection of identity cliques (that are named before seeing the public
parameters).

Our IBE construction is built from two components, both of which involve
some novel techniques. First, we give an LWE-based public-key cryptosystem that
is clique secure (even for an unbounded number of users) for affine functions, and
is suitable for embedding into an IBE like the one of [20]. Second, we construct
a lattice-based “all-but-d” trapdoor function that serves as the main foundation
of the IBE. We elaborate on these two contributions next.

Clique-Secure Public-Key Cryptosystem. We first recall that Applebaum et al. [5]
showed that a variant of Regev’s so-called “primal” LWE cryptosystem [34] is
clique secure for affine functions. Unfortunately, this primal-type system does
not seem suitable as the foundation for identity-based encryption using the tools
of [20]. The first reason is that the proof of clique security from [5] needs the users’
public keys to be completely independent, rather than incorporating a shared
random string (e.g., the public parameters in an IBE system). The second reason
is a bit more technical, and is already described in [20]: in primal-style systems,
the user-specific public keys are exponentially sparse pseudorandom values (with
unique secret keys), and it is difficult to design an appropriate mapping from
identities to valid public keys that actually admit usable underlying secret keys.

Therefore, we first need to obtain clique security for a so-called “dual”-type
cryptosystem (using the terminology from [20]), in which every syntactically
valid public key has a functional underlying secret key (actually, many such
secret keys) that can be extracted by the PKG. It turns out that achieving this
goal is quite a bit more technically challenging than it was for the “primal”-style
schemes. This is primarily because the KDM-secure scheme from [5] (like the
earlier one from [9]) has the nice property that given the public key alone, one
can efficiently generate statistically well-distributed encryptions of the secret key
(without knowing the corresponding encryption randomness). This immediately
implies circular security for “self-loops,” and clique security follows from a couple
of other related techniques.
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Unfortunately, this nice statistical property on ciphertexts does not seem at-
tainable for dual-style LWE encryption, because now valid ciphertexts are expo-
nentially sparse and hard to generate without knowing the underlying encryption
randomness. In addition, because the adversary may obtain an unbounded num-
ber of key-dependent ciphertexts, we also cannot rely on any statistical entropy
of the secret key conditioned on the public key, as is common in the security
proofs of most dual-style cryptosystems.

We resolve the above issues by relying on computational assumptions twice
in our security proof, first when changing the way that challenge ciphertexts
are produced (i.e., by using knowledge of the secret key), and then again when
changing the form of the public key. Notably, unlike prior works (e.g., [17, 31])
in which ciphertexts in intermediate games are created by “encrypting with an
(information theoretically revealed) secret key,” we are able to avoid the use
of super-polynomially large noise to “overwhelm” the slight statistical difference
between the two ways of generating ciphertexts. This lets us prove security under
fully polynomial lattice/LWE assumptions, i.e., those involving a polynomially
bounded modulus q and inverse error rate for the LWE problem, and therefore
polynomial approximation factors for worst-case lattice problems. We do so by
proving the hardness of a version of the extended -LWE problem, as defined and
left open by the recent work of [31]. We believe that this result should be useful
in several other contexts as well.

All-but-d trapdoor functions. We use the clique-secure cryptosystem described
above as the foundation for a clique-secure IBE. To make the cryptosystem
identity-based, as in [20] we need to embed a “strong” trapdoor into the public
parameters so that the PKG can extract a secret key for any identity. Here we
use the ideas behind the tag-based algebraic construction of [2], and follow the
somewhat simpler and more efficient realization recently due to [28]. We remark
that these trapdoor constructions are well-suited to security definitions in which
the adversary attacks a single tag, because the trapdoor can be “punctured”
(i.e., made useless for extracting secret keys, and useful for embedding an LWE
challenge) at exactly one predetermined tag. Unfortunately, this does not ap-
pear to be sufficient for our purposes, because in the clique security game, the
adversary is attacking d identities at once and can obtain challenge ciphertexts
under all of them.

To resolve the insufficiency of a single puncture, we extend the trapdoor con-
structions of [2, 28] so that it is possible to puncture the trapdoor at up to
d arbitrary, prespecified tags. To accomplish this, we show how to statistically
hide in the public key a degree-d polynomial f(·) over a certain ring R, so that
f(idi) = 0 for all the targeted tags (identities) idi, while f(id) is a unit in R
(i.e., is invertible) for all other identities. The d components of the public key
can be combined so as to homomorphically evaluate f on any desired tag. The
underlying trapdoor is punctured exactly on tags id where f(id) = 0, and is
effective for inversion whenever f(id) is a unit in R. Our construction is analo-
gous to the one of [15] in the setting of prime-order groups with bilinear pairings
(where arithmetic “in the exponent” happens in a field), and the all-but-d lossy
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trapdoor functions of [24]. However, since lattice-based constructions do not
work with fields or rings like ZN , we instead use techniques from the literature
on secret sharing over groups and modules, e.g., [16, 18].

We remark that, for technical reasons relating to the number of “hints” for
which we can prove the hardness of the extended-LWE problem, we have not been
able to prove the KDM-security of our IBE under fully polynomial assumptions
(as we were able to do for our basic public-key cryptosystem). We instead rely on
the conjectured hardness of LWE for a slightly super-polynomial modulus q and
inverse error rate 1/α, which translates via known reductions [34, 32] to the con-
jectured hardness of worst-case lattice problems for slightly super-polynomial ap-
proximation factors, against slightly super-polynomial-time algorithms. Known
lattice algorithms are very far from disproving such conjectures.

2 Preliminaries

We denote the real numbers by R and the integers by Z. For a positive integer
d, we use [d] to denote the set {1, . . . , d}. We denote vectors over R and Z with
lower-case bold letters (e.g. x), and matrices by upper-case bold letters (e.g. A).
We say that a function is negligible, written negl(n), if it vanishes faster than the
inverse of any polynomial in n. The statistical distance between two distributions
X , Y over a finite or countable set D is Δ(X,Y ) = 1

2

∑
w∈D |X(w) − Y (w)|.

Statistical distance is a metric, and in particular obeys the triangle inequality.
Let {Xn} and {Yn} be ensembles of random variables indexed by the security
parameter n. We say that X and Y are statistically close if Δ(Xn, Yn) = negl(n).
For a matrix X ∈ R

n×k, the largest singular value (also known as the spectral
norm) of X is defined as s1(X) = max‖u‖=1‖Xu‖.

2.1 Lattices and Gaussians

A (full-rank) m-dimensional integer lattice Λ is an additive subgroup of Zm with
finite index. This work is concerned with the family of integer lattices whose
cryptographic importance was first demonstrated by Ajtai [3]. For integers n ≥ 1,
modulus q ≥ 2, anm-dimensional lattice from this family is specified by an “arity
check” matrix A ∈ Z

n×m
q :

Λ⊥(A) = {x ∈ Z
m : Ax = 0 ∈ Z

n
q } ⊆ Z

m.

For any y in the subgroup of Zn
q generated by the columns of A, we also define

the coset

Λ⊥y (A) = {x ∈ Z
m : Ax = y mod q} = Λ⊥(A) + x̄,

where x̄ ∈ Z
m is an arbitrary solution to Ax̄ = y.

We briefly recall Gaussian distributions over lattices (for more details see
[29, 20]). For s > 0 and dimension m ≥ 1, the Gaussian function ρs : R

m → (0, 1]
is defined as ρs(x) = exp(−π‖x‖2/s2). For a coset Λ+c of a lattice Λ, the discrete
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Gaussian distribution DΛ+c,s (centered at zero) assigns probability proportional
to ρs(x) to each vector in the coset, and probability zero elsewhere.

We will need a few standard concepts and facts about discrete Gaussians over
lattices. First, for ε > 0 the smoothing parameter [29] ηε(Λ) of an n-dimensional
lattice is a positive real value. We will not need its precise definition, which
depends on the notion of the dual lattice, but only recall the few relevant facts
that we need; for details, see, e.g., [29, 20, 28].

Lemma 1. Let m ≥ Cn lg q for some constant C > 1.

1. For any ω(
√
logn) function, we have ηε(Z

n) ≤ ω(
√
logn) for some negligible

ε(n) = negl(n).
2. With all but negl(n) probability over the uniformly random choice of A ∈

Z
n×m
q , the following holds: For e ← DZm,r where r = ω(

√
logn), the dis-

tribution of y = Ae mod q is within negl(n) statistical distance of uniform,
and the conditional distribution of e given y is DΛ⊥

y (A),r.

3. For any m-dimensional lattice Λ, any c ∈ Z
m, and any r ≥ ηε(Λ) where

ε(n) = negl(n), we have ‖DΛ+c,r‖ ≤ r
√
m with all but negl(n) probability.

In addition, for Λ = Z we have |DZ,r| ≤ r · ω(√logn) except with negl(n)
probability.

4. For any r > 0, and for R← Dn×k
Z,r , we have s1(R) ≤ r ·O(

√
n+
√
k) except

with negl(n) probability.

Lemma 2. For any real number r = ω(
√
logn) and c ∈ Z, the statistical dis-

tance between DZ,r and c+DZ,r is O(|c|/r).

2.2 Trapdoors for Lattices

We recall the efficient trapdoor construction and associated sampling algorithm
of Micciancio and Peikert [28]. This construction uses a universal public “gadget”
matrix G ∈ Z

n×w
q for which there is an efficient discrete Gaussian sampling

algorithm for any parameter r ≥ ω(
√
logn) ≥ ηε(Λ

⊥(G)) (for some ε(n) =
negl(n)), i.e., an algorithm that, given any y ∈ Z

n
q and r, outputs a sample from

DΛ⊥
y (G),r. For concreteness, as in [28] we takeG = In⊗[1, 2, 4, . . . , 2k−1] ∈ Z

n×nk
q

for k = �lg q�.
Following [28], we say that an integer matrixR ∈ Z

(m−n)×w is a “strong” trap-
door with tag H for A ∈ Z

n×m
q if A [RI ] = H(G) for some efficiently computable

and invertible linear transformation H over Z
n
q , which is applied column-wise

to G. Equivalently, in place of H(G) we may write H ·G for some invertible
matrix H ∈ Z

n×n
q , but in our constructions it will be more natural to work with

invertible linear transformations, without explicitly referring to the matrices that
represent them.

Lemma 3 ([28, Theorem 5.1]). Let R be a strong trapdoor for A ∈ Z
n×m
q .

There is an efficient randomized algorithm that, given R, any u ∈ Z
n
q , and any

r ≥ s1(R) · ω(√logn) ≥ ηε(Λ
⊥(A)) (for some ε(n) = negl(n)), samples from a

distribution within negl(n) distance of DΛ⊥
u (A),r.
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2.3 Learning With Errors

The learning with errors (LWE) problem is parameterized by a dimension n ≥ 1,
an integer modulus q ≥ 2 and an error distribution χ over Z (or its induced
distribution over Zq). For a vector s ∈ Z

n
q , the distribution As,χ over Zn

q ×Zq is
sampled by choosing a ∈ Z

n
q uniformly at random and outputting (a, 〈a, s〉+ x),

where x← χ.
The search version of LWE is to recover an arbitrary s given oracle access to

As,χ. The decision version of LWE is to distinguish, with non-negligible advan-
tage, between samples from As,χ for uniformly random s ∈ Z

n
q and uniformly

random samples from Z
n
q ×Zq. There are search-to-decision reductions for LWE

for a variety of moduli q and parameter conditions ([34, 32, 5, 27, 28]). Of par-
ticular importance to us are the reductions from [5, 28] for q = pe, where p is
prime, e ≥ 1 is an integer, and Prx←χ[|x| ≥ p/2] = negl(n). The reductions runs
in time polynomial in n, p, and e.

For error distribution χ = DZ,αq, where αq ≥ 2
√
n, the search version of LWE

is at least as hard as quantumly approximating certain worst-case problems on
n-dimensional lattices to within Õ(n/a) factors [34]; for certain parameters, a
classical reduction is known for a subset of these lattice problems [32]. Note that
the original hardness result for search-LWE was for a continuous Gaussian error
distribution, but this can be converted to a discrete Gaussian disribution with
a suitable randomized rounding method [33].

We will need the transformation of Applebaum et al. [5] from the standard
decision-LWE problem (where s is uniform) to one where the secret s is chosen
from the error distribution χ.

Lemma 4 ([5, Lemma 2]). Let q = pe be a prime power. There is a deter-
ministic polynomial-time transformation that, for arbitrary s ∈ Z

n
q and error

distribution χ, maps As,χ to Ax̄,χ where x̄← χn, and maps U(Zn
q ×Zq) to itself.

The transformation also produces an invertible square matrix Ā ∈ Z
n×n
q and

b̄ ∈ Z
n
q that, when mapping As,χ to Ax̄,χ, satisfy x̄ = −Āts+ b̄.

2.4 Key-Dependent Message Security

In defining key-dependent message security for public-key encryption and for
identity-based encryption, we adapt the original definitions of Black et al. [7].
As in their definitions, the adversary plays a game with a challenger, and is able
to make encryption queries for functions from a certain family F of the users’
secret keys. (Technically, F is a family of sets of functions parameterized by the
security parameter n and the number of users d.)

To simplify our security proofs, in our definition the adversary specifies two
functions (f0, f1) ∈ F with each query, and must distinguish between encryptions
of f0 and encryptions of f1. If f(k1, . . . , kd) = 0 is contained in F (which should
be the case if we want KDM security to imply standard semantic security), then
this definition is at least as strong as (and is in fact equivalent to) the original.

To define KDM-security for identity-based encryption, we extend the standard
definition of selective security for IBE from [14, 8]. Note that we add a parameter



Circular and KDM Security for Identity-Based Encryption 341

d to the Setup algorithm denoting the maximum number of users in a clique (i.e.,
a set of users such that the secret key for any user in the clique may be safely
encrypted under the identity for any user in the clique). An adversary plays a
game with a challenger that answer encryption queries for functions of the secret
keys for identities from a list I, encrypted under identities from I. For selective
security, I must be specified before the adversary sees the public key and remains
static throughout the game. In addition to (key-dependent) encryption queries,
the adversary is also allowed to make extraction queries for any identity id /∈ I.

For an identity-based encryption scheme (Setup,Ext,Enc,Dec), the security
game between an adversary and a challenger is parameterized by some β ∈ {0, 1}
and proceeds as follows.

1. A(1n, d) outputs a list of (distinct) target identities I = (id1, id2, . . . id�) for
some � ≤ d.

2. The challenger runs (mpk,msk)← Setup(1n, d). The adversary is givenmpk.
The challenger then extracts secret keys for each of the target identities,
running ski ← Extmsk(idi) for each i ∈ [�].

3. A then can make extraction and encryption queries, in the order of its choice.
Extraction Queries: A can query Extmsk(·) for any identity id /∈ I
Encryption Queries: A can make encryption queries of the form (f0, f1, i),

where f0, f1 ∈ F and 1 ≤ i ≤ �. The challenger computes m ←
fβ(sk1, . . . , sk�) and c← Enc(idi,m), and returns c to A.

We say that the scheme is selective-identity KDM-CPA secure with respect to
F if the games for β = 0, 1 are computationally indistinguishable.

We define KDM-CPA security for a public-key scheme (Gen,Enc,Dec) in a
similar manner. Starting at phase two above (since there are no identities to
target), the challenger now runs Gen d times, and gives pk1, . . . , pkd to the ad-
versary. In phase three, the adversary can only make encryption queries (since
there are no identities to extract), and requests encryptions under public keys
instead of identities. Everything else is exactly the same.

3 Hardness of Extended LWE

In this section we describe the extended -LWE problem (as originally defined
in [31]), and give a reduction to it from the standard LWE problem (with
polynomially bounded parameters), thus establishing its hardness under a mild
assumption.

3.1 Background and the Problem

O’Neill, Peikert and Waters [31] introduced the extended-LWE problem as a
simplifying tool for certain security proofs in which LWE is used in a “hash
proof-like” fashion, and additional information about the secret key is revealed
to the attacker. In prior works, dealing with such situations often involved adding
some “overwhelming” (super-polynomial) extra noise in order to disguise a small
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but noticeable statistical difference between, e.g., creating a ciphertext honestly
according to an encryption algorithm, and creating one by combining the secret
key with a challenge LWE instance. Unfortunately, the use of such overwhelming
noise requires an underlying LWE problem with super-polynomial modulus q and
inverse error rate 1/α, which corresponds to a substantially stronger assumption
than is needed in the security proofs for many other cryptosystems.

Here we recall the formal definition of the extended-LWE problem. In addition
to the usual n, q, and χ parameters for LWE, we also have a number m = poly(n)
of LWE samples, an efficiently sampleable “hint” distribution τ over Zm (often,
a discrete Gaussian Dm

Z,r for some r ≥ 1) and another Gaussian parameter β > 0.
The problem is to distinguish, with non-negligible advantage, between the two
experiments described next; the extended-LWE assumption is that this distin-
guishing problem is hard. In the ExptLWE experiment, the challenger chooses
A ← Z

n×m
q , a secret s ← Z

n
q and error vector x ← χm defining bt = stA + xt,

along with a “hint” vector z← τ and error term x̃← DZ,βq, and outputs

(A,b, z, b′ = 〈x, z〉+ x̃).

The first two components are just m LWE samples, while the latter two com-
ponents may be seen as a hint about the error vector x ∈ Z

m in the form of
a (noisy) inner product with a vector z ∈ Z

m, which is not reduced modulo
anything. The ExptUnif experiment is the same, except that b is defined to be
uniformly random and independent of everything else.

Notice that because A and z are public, one can “amortize” the extended-
LWE problem by including any poly(n) number of vectors bt

i = stiA + xt
i and

hints b′i = 〈xi, z〉, for independent si,xi (and the same A, z). By a routine hybrid
argument, the two forms of the problem are equivalent, up to a poly(n) factor
in the distinguishing advantage. We use the amortized form of the problem in
our security proof in Section 4.

As observed in [31] (and implicitly in prior works like [21, 17]), there is a
straightforward reduction from LWE with χ = DZ,αq to extended-LWE where
τ is any m-fold product distribution with variance r2, if the ratio β/(r · α) is
superpolynomial in n. In fact, in this case we can securely give out an unbounded
polynomial number of hints zi, b

′
i = 〈x, zi〉+ x̃i about the error x. This is simply

because by Lemma 2, the terms x̃ ← DZ,βq statistically hide the inner product
〈x, z〉, since the latter has magnitude ≈ r‖x‖ ≤ rαq

√
m = βq · negl(n). As a

result, the reduction can just simulate the hints (z, 〈x, z〉 + x̃) on its own. The
disadvantage of this approach is that in order to be useful, the modulus q and
inverse error rate 1/α typically must be super-polynomially large in n, which
corresponds to assuming the worst-case hardness of various lattice problems for
super-polynomial approximation factors and running times.

We also point out that in the above setting, if the ratio βq/r is polynomial
in n and a sufficiently large h = poly(n) number of hints are given out, then
extended-LWE is easy to solve. To see this, view the h hints as (Z ∈ Z

m×h,yt :=
xtZ + x̃t). With overwhelming probability, the singular values of Z will all be
r ·Ω(

√
h−C

√
n+m) for some universal constant C > 0 (see, e.g., [36, Theorem



Circular and KDM Security for Identity-Based Encryption 343

5.39]). Thus, for sufficiently large h = poly(n), with overwhelming probability
the singular values of the right-inverse Z+ ∈ R

h×m of Z will all be small enough
so that �x̃t · Z+� = 0. As a result, we can compute �ytZ+� = xt, which trivially
allows for solving the extended-LWE problem.

In the full version, we contrast our results for extended-LWE with syntactically
similar (but qualitatively different) results, such as the Goldreich-Levin theorem
and those of [21, 17].

3.2 Reduction from LWE

Here we give a tight reduction from standard LWE to extended-LWE, which holds
for the same parameters n, q, χ,m ≥ n + ω(logn) in the two problems, and in
which no noise is added to the hint 〈z,x〉 (i.e., β = 0). Our reduction imposes
one requirement on the parameters: for x ← χm and z ← τ , we need it to be
the case that |〈x, z〉| < p with overwhelming probability, where p is the smallest
prime divisor of the modulus q. For example, if χ = DZ,αq and τ = Dm

Z,r, by

standard tail inequalities it suffices to have αq · r√m+ n · ω(√logn) < p. In
other words, the LWE inverse error rate is 1/α > (q/p) · r√m+ n, which is only
polynomial in n when q, r,m are.

Theorem 1. There exists a probabilistic polynomial-time oracle machine (a
simulator) S such that for any adversary A,

AdvLWE(SA) ≥ 1
2p−1 ·AdvELWE(A)− negl(n),

where the parameters of the LWE and extended-LWE problems satisfy the condi-
tion specified above.

Proof. For the proof it is convenient to use the equivalent “knapsack” form of

LWE, which is: given H ← Z
(m−n)×m
q and c ∈ Z

m−n
q , where c is either c = Hx

for x ← χm, or is uniformly random and independent of H, determine (with
non-negl(n) advantage) which is the case. The extended form of the problem
also reveals a hint (z, 〈x, z〉+ x̃), analogously to extended-LWE. The equivalence
between LWE and its knapsack form for m ≥ n + ω(logn), which also applies
to their extended versions, has been noticed in several works; a proof appears
in [27, Lemmas 4.8 and 4.9].

We construct the reduction S as follows. It receives an LWE instance (in

knapsack form) H ∈ Z
(m−n)×m
q , c ∈ Z

m−n
q . It samples z ← τ , x′ ← χm, and

v← Z
m−n
q , then lets

H′ := H− vzt ∈ Z
(m−n)×m
q , c′ = c− v · 〈z,x′〉 ∈ Z

m−n
q .

It sends (H′,b′, z, 〈x′, z〉) to A (an adversary for extended-LWE in knapsack
form), and outputs what A outputs.

We now analyze the behavior of S. First consider the case where H, c are
uniform and independent. Then it is clear that H′, c′ are as well, and both x′
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and z are also chosen exactly as in ExptUnif, so S perfectly simulates ExptUnif
to A.

Now, consider the case where H, c are drawn from the knapsack distribution,
with c = Hx for x ← χm. In this case, we have that H′ is uniformly random
(solely over the choice of H), and

c′ = Hx− v · 〈z,x′〉 = H′x+ v · 〈z,x− x′〉.
So in the event that 〈x′, z〉 = 〈x, z〉, we have c′ = H′x and so S perfectly
simulates ExptLWE to A. Whereas if 〈z,x − x′〉 is a unit modulo q, then for
any fixed choice of H′, z, x, and x′ (subject to this condition), we have that
c′ is uniformly random over the choice of v alone. Finally, since x and x′ are
identically distributed, it follows that S perfectly simulates ExptUnif to A.

It remains to analyze the probabilities that 〈z,x − x′〉 is zero or a unit (modulo
q), respectively. First, by assumption |〈z,x − x′〉| < p with overwhelming prob-
ability, so exactly one of the two cases holds; moreover, we have 〈x, z〉 = 〈x′, z〉
with probability at least 1

2p−1 − negl(n) because x and x′ are independent. The
theorem then follows from a routine calculation.

Normal Form. In our cryptosystems, we need to assume the hardness of extended-
LWE in “normal form” (as in [30, 5]), where the secret s ← χn is drawn from
the error distribution, the matrix A and vector bt have m−n columns, and the
hint is of the form z← τ , b′ = 〈(s,x), z〉 ∈ Z. Suppose m is sufficiently large so
that a uniformly random matrix from Z

n×m
q contains an invertible n-by-n sub-

matrix with overwhelming probability. Then the reduction from [30, 5] applies
to extended-LWE in this form, with the slight modification that LWE samples in
the first phase are never “thrown away” but are instead recycled to the second
phase.

4 KDM-CPA Secure Public-Key Scheme

Here we present a “dual”-style LWE cryptosystem that is KDM-CPA secure for
affine functions of the secret keys. In fact, by setting the parameters appropri-
ately, the construction and security proof also encompass (a slight variant of)
the cryptosystem from [25], which has somewhat smaller keys and ciphertexts
than “primal” or “dual” systems. In Section 6 we build a KDM-CPA secure IBE
around this system.

The cryptosystem involves a few parameters: a modulus q = p2 for a prime p
where the message space is Zp; integer dimensions n,m relating to the underlying
LWE problems; and a Gaussian parameter r for key generation and encryption.
To make embedding this scheme into our IBE more natural, Gen includes an
additional parameter d, which will be used to specify the size of identity cliques
in the IBE scheme, and outputs public keys A that are md columns wide. In the
public-key scheme alone, the value d is unrelated to the number of public keys
that the adversary can obtain in an attack (which is unbounded), and we would
just fix d = 1.
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– Gen(1n, d): choose A ∈ Z
n×md
q , z0 ← Dn

Z,r, z1 ← Dmd
Z,r , and let y = z0 −

Az1 = [In | −A]z ∈ Z
n
q where z = (z0, z1) ∈ Z

n+md. The public key is
(A,y) and the secret key is z1.
(Notice that, unlike the dual-style encryption of [20], but like the scheme
of [25], the public key component y is a perturbed value of −Az1. This will
be important in the proof of KDM security.)

– Enc(A,y, μ): to encrypt a message μ ∈ Zp, choose x0 ← Dn
Z,r, x1 ← Dmd

Z,r

and x′ ← DZ,r. Output the ciphertext ct = xt
0[A | y] + [xt

1 | x′] + [0 | p · μ].
– Dec(z1, c): Compute μ′ = ct [ z11 ] ∈ Zq. Output the μ ∈ {0, . . . , p− 1} = Zp

such that μ′ is closest to (pμ) mod q.

For the public-key system alone, it suffices to take m ≥ n + ω(logn) by our
use of the extended-LWE assumption and its proof of hardness as in Section 3.
When embedding the system into an IBE scheme, however, we will use m =
Θ(n log q) because we need the public parameters to be statistically close to
uniform over the choice of the master secret key. The error parameter r must be
small enough (relative to q/p) so that decryption is correct with overwhelming
probability, but large enough to satisfy the reductions to LWE from worst-case
lattice problems [34, 32]; for the latter purpose, r ≥ 2

√
n suffices. (Note that

even if part of the security proof relies on LWE in dimension > n, this problem
is no easier than LWE in dimension n, and so we can still securely use r = 2

√
n

with the larger dimension.)
Here we give some example bounds. Let r = 2

√
n, let

p = r2
√
n+md · ω(

√
logn) = n

√
n+md · ω(

√
logn),

and let q = p2. Then decryption is correct except with probability negl(n): let
(A,y, z)← Gen(1n, d). For a ciphertext c← Enc(A,y, μ), we have

ct [ z11 ] = xt
0Az1+〈x1, z1〉+〈x0,y〉+x′+p·μ = 〈x0, z0〉+〈x1, z1〉+x′+p·μ mod q,

so decryption is correct whenever |〈x0, z0〉+ 〈x1, z1〉+ x′| < p/2. By known tail
bounds on discrete Gaussians, this bound holds except with probability negl(n)
(over the choice of all the random variables), as required.

A proof of the following appears in the full version.

Theorem 2. The above cryptosystem is KDM-CPA secure with respect to the
set of affine functions over Zp, under the extended-LWE assumption for param-
eters described above.

5 All-But-d Trapdoor Functions

Here we develop a technique for constructing “all-but-d” (tag-based) trapdoor
functions, which, informally, are trapdoor functions for which the trapdoor en-
ables efficient inversion for all but (up to) d tags, which are specified at the time
of key generation. This is the main tool we use for embedding our KDM-CPA-
secure public-key cryptosystem into an identity-based encryption scheme.



346 J. Alperin-Sheriff and C. Peikert

Our construction is a generalization (to higher-degree polynomials) of the
main technique from [2]. For simplicity and somewhat better efficiency, we follow
the construction of [28], specifically the use of a fixed, public “gadget” matrix
G as described in Section 2.2.

5.1 Algebraic Background

Let n ≥ 1, q ≥ 2, and d = poly(n) be integers. Let R denote any commutative
ring (with efficiently computable operations, including inversion of multiplicative
units) such that the additive group G = Z

n
q is an R-module, and such that

there are at least d + 1 known elements U = {u0 = 0, u1, u2, . . .} ⊆ R where
ui − uj is invertible in R (i.e., a unit) for every i �= j. In particular, we have an
(efficiently computable) scalar multiplication operation R× G → G. Note that
multiplication by u ∈ R is an invertible linear transformation on G exactly when
u is invertible (i.e., a unit). We extend scalar multiplication in the natural way to
vectors and matrices, i.e., Ra×b×G

b×c → G
a×c. To avoid confusion with vectors

and matrices over Zq, we use u notation for vectors over R, and V notation for
matrices over R.

To construct a suitable ring, we use ideas from the literature on secret shar-
ing over groups and modules, e.g., [16, 18]. We use an extension ring R =
Zq[x]/(F (x)) for any monic, degree-n, irreducible F (x) = F0 + F1x + · · · +
Fn−1xn−1 + xn ∈ Zq[x]. Scalar multiplication R × G → G is defined by iden-
tifying each a = (a0, . . . , an−1)t ∈ G with the polynomial a(x) = a0 + a1x +
· · ·+ an−1xn−1 ∈ R, multiplying in R, then mapping back to G. In other words,
scalar multiplication is defined by the linear transformation x · (a0, . . . , an−1)t =
(0, a0, . . . , an−2)t − an−1(F0, F1, . . . , Fn−1)t. It is easy to check that with this
scalar product, G is an R-module. In addition, by the Chinese remainder theo-
rem, r ∈ R is a unit if and only if it is nonzero (as a polynomial residue) modulo
every prime integer divisor p of q. (This is because Zp[x]/(F (x)) is a field by con-
struction.) Letting p be the smallest such divisor of q, we can define the universe
U = {u0 = 0, u1, u2, . . .} ⊆ R to consist of all the polynomial residues having
coefficients in {0, . . . , p− 1}. Then |U | = pn ≥ 2n and ui − uj is a unit for all
i �= j, as desired.

5.2 Basic Construction

As in [28], we fix a universal public “gadget” matrix G ∈ Z
n×w
q for which there is

an efficient Gaussian preimage sampling algorithm for parameter s ≥ ω(
√
logn),

i.e., an algorithm that given any u ∈ Z
n
q outputs a sample from DΛ⊥

u (G),s. E.g.,

we can let G = In ⊗ (1, 2, 4, . . . , 2k−1) ∈ Z
n×nk
q for k = �lg q�.

As input, the trapdoor generator takes:

– an integer d ≥ 1 and a monic degree-d polynomial f(z) = c0+c1z+· · ·+zd ∈
R[z],

– a (usually uniformly random) matrix Ā ∈ Z
(nd)×m̄
q for some m̄ ≥ 1, which

is made up of stacked submatrices Āi ∈ Z
n×m̄
q for i = 0, . . . , d− 1.
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– a “short” secret R ∈ Z
m̄×w chosen at random from an appropriate distribu-

tion (typically, a discrete Gaussian) to serve as a trapdoor.

As output it produces a matrix A ∈ Z
(nd)×(m̄+w)
q (which is statistically close

to uniform, when the parameters and input Ā are appropriately chosen). In
addition, for each tag u ∈ U there is an efficiently computable (from A) matrix

Au ∈ Z
n×(m̄+w)
q for which R may be a trapdoor, depending on the value of

f(u) ∈ R.
We write the coefficients of f(z) as a column vector c = (c0, c1, . . . , cd−1)t ∈

Rd, and define

A′f :=
[
Ā c ⊗G

]
=

⎡

⎢
⎣

Ā0 c0 ·G
...

...
Ād−1 cd−1 ·G

⎤

⎥
⎦ ∈ Z

(nd)×(m̄+w)
q .

To hide the polynomial f , we output the public key

A := A′f ·
[
I −R

I

]

=
[
Ā (c⊗G)− ĀR

]
.

Note that as long as the distribution of [Ā | −ĀR] is statistically close to
uniform, then so is A for any f .

The tag space for the trapdoor function is the set U ⊂ R. For any tag u ∈ U ,
define the row vector ut := (u0, u1, · · · , ud−1) ∈ Rd (where 00 = 1) and the
derived matrix for tag u to be

Au := ut ·A+
[
0 ud ·G]

=
[
ut · Ā f(u) ·G] ·

[
I −R

I

]

.

By the condition in Lemma 3, R is a (strong) trapdoor for Au exactly when
f(u) ∈ R is a unit, because Au · [RI ] = f(u) ·G and f(u) represents an invertible
linear transformation when it is a unit.

5.3 Puncturing

In our cryptosystems and security proofs we will need to generate (using the
above procedure) an all-but-d trapdoor function that is “punctured” at up to d
tags. More precisely, we are given as input:

– a set of distinct tags P = {u1, . . . , u�} ⊆ U for some � ≤ d,
– uniformly random matrices A∗i ∈ Z

n×m̄
q for i ∈ [�] (which often come from

an SIS or LWE challenge),
– a “short” secret R ∈ Z

m̄×w chosen at random from an appropriate distribu-
tion (typically, a discrete Gaussian) to serve as a trapdoor,

– optionally, some uniformly random auxiliary matrices Y∗i ∈ Z
n×k
q for i ∈ [�]

and some k ≥ 0.
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As output we produce a public key A ∈ Z
(nd)×m̄
q and auxiliary matrix Y ∈

Z
(nd)×k
q so that:

1. EachAui matches the challenge matrixA∗i , andR is only a “weak” trapdoor
for Aui . More precisely,

Aui =
[
A∗i 0

] ·
[
I −R

I

]

.

2. R is a (strong) trapdoor for Au for any nonzero u ∈ U \ P , i.e., f(u) is a
unit.

3. The auxiliary matrix Yui := ui
t ·Y equals the auxiliary input Y∗i for each

ui ∈ P .

We satisfy these criteria by invoking the above trapdoor generator with the
following inputs f and Ā:

1. We define the monic degree-d polynomial

f(z) = zd−� ·
∏

i∈[�]
(z − ui) ∈ R[z]

and expand to compute its coefficients ci ∈ R. Note that f(ui) = 0 for every
ui ∈ P , and f(u) is a unit for any nonzero u ∈ U \ P because 0 ∈ U and
ui − uj is a unit for every distinct ui, uj ∈ U .

2. We define Ā using interpolation: let A∗ ∈ Z
(n�)×m̄
q denote the stack of

challenge matrices A∗i , and let V ∈ R�×d be the Vandermonde matrix whose

rows are the vectors ui
t defined above. We then let Ā ∈ Z

(nd)×m̄
q be a

uniformly random solution to V · Ā = A∗.
Such a solution exists, and is efficiently computable and uniformly random
(over the uniformly random choice of A∗ and the random solution chosen).
To see this, extend V to an invertible d × d Vandermonde matrix over R
having unit determinant

∏
i<j(uj − ui) ∈ R∗, by adding d − � additional

rows uj
t for arbitrary distinct uj ∈ U \ P . Likewise, extend A∗ to have

dimension (nd) × m̄ by adding uniformly random rows. Then for any fixed
choice of the (extended) matrix V , the (extended) matrix A∗ and solution
Ā are in bijective correspondence, and so the latter is uniformly random
because the former is.

3. We also define the auxiliary matrix Y similarly using interpolation, as a
uniformly random solution to V ·Y = Y∗.

6 Circular-Secure IBE

Our IBE scheme is a generalization of the efficient IBE scheme of Agrawal et
al. [2]. Other than some minor changes in the parameters, the main difference
is the use of the all-but-d trapdoor construction, which allows us to “puncture”
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the master public key at up to d identities in the security proof. The scheme
has parameters modulus q, message space Zp for some p < q, dimension m, and
Gaussian parameters r and γ. Most of the parameters match those in the public-
key encryption scheme of Section 4, with the additional constraint that r must
be large enough that we can run the preimage sampling algorithm (Lemma 3) in
Ext. Due to space considerations, the conditions on the parameters are described
in the full version.

The identity space for the scheme is U \{0} ⊂ R, where U , R are constructed
as in Section 5.

– Setup(1n, d): On input security parameter 1n and secret key clique size d:
1. Sample R ← Dmd×w

Z,ω(
√
logn)

, and for i = 0, . . . , d − 1, choose uniformly

random Ai ← Z
n×md
q , yi ← Z

n
q and let Ãi = −AiR ∈ Z

n×w
q . (Note that

this is simply calling the all-but-d trapdoor construction from Section 5
with an empty set of punctured tags.) Let At :=

[
At

0 · · · At
d−1

]
, Ãt :=

[
Ãt

0 · · · Ãt
d−1

]
, yt :=

[
yt
0 · · · yt

d−1
]
. Note that Ã = −AR.

2. The public key is mpk = (A, Ã,y). The master secret key is msk = (R).
– Ext(mpk,msk, u) On input mpk,msk and u ∈ U \ {0} ⊆ R:

1. Let ut := (u0, u1, . . . , ud−1), Āu = ut ·A, yu = ut · y and Au = [Āu |
udG− ĀuR], as in Section 5.

2. Sample z0 ← Dn
Z,r, z1 ← DΛ⊥

z0−yu
(Au),r using the preimage sampling

algorithm (Lemma 3), so that yu = z0 − Auz1 (as in the public-key
cryptosystem from Section 4). Output sku := z1.
Note that the above is possible because ud ∈ R is a unit, and by our
choice of r below, because s1(R) = O(

√
md+

√
w)·ω(√logn) = O(

√
md)·

ω(
√
logn) with all but negl(n) probability by Lemma 1.

– Enc(mpk, u, μ): On input master public key, identity u ∈ U\{0}, and message
μ ∈ Zp do:

1. Let ut := (u0, u1, . . . , ud−1), Au = [ut ·A | udG + ut · Ã] ∈ Z
n×md+w
q ,

and yu = ut · y.
2. Choose s← Dn

Z,r, x0 ← Dmd
Z,r ,x1 ← Dw

Z,γ , x2 ← DZ,r. Let x
t = [xt

0 | xt
1].

3. Output the ciphertext ct = st[Au | yu] + [xt | x2] + [0 | p · μ].
– Dec(mpk, sku = z1, c): output the μ ∈ Zp such that ct [ z11 ] is closest to p · μ

modulo q.

Theorem 3. For the above parameters, the above IBE scheme is selective iden-
tity KDM-CPA secure with respect to the set of affine functions over Zp, under
the LWEq,χ assumption for χ = DZ,r, and the KDM-CPA security of the system
from Section 4.

Proof (Sketch). Here we give an overview of the proof strategy, deferring the
formal proof to the full version. Game 0 is the actual attack game. In Game
1, we use the all-but-d trapdoor construction from Section 5 to generate the
master public key, “puncturing” it at the targeted identities. Finally, in Game 2,
we play the KDM-CPA security game against a challenger running the public-
key encryption scheme from Section 4 and use the outputs of the challenger
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to simulate Game 1. This requires some care because the IBE secret keys and
ciphertexts have larger dimension by an additive term of w (the width of G).
To address this, we fill in the missing dimensions of the secret keys by choosing
them ourselves, and use knowledge of the master secret key to fill in the missing
dimensions of the ciphertexts (here is where we use the fact that noise with
parameter γ “overwhelms” noise with parameter r).

Acknowledgments. We thanks Oded Regev for helpful comments, and for
pointing out a subtle error in a prior version of our reduction from Section 3.
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