SmoothCache: HT'TP-Live Streaming Goes
Peer-to-Peer

Roberto Roverso!'?2, Sameh El-Ansary!, and Seif Haridi?

! Peerialism Inc., Stockholm, Sweden
2 The Royal Institute of Technology (KTH), Stockholm, Sweden
{roberto,sameh}@peerialism.com, haridi@kth.se

Abstract. In this paper, we present SmoothCache, a peer-to-peer live
video streaming (P2PLS) system. The novelty of SmoothCache is three-
fold: 4) It is the first P2PLS system that is built to support the relatively-
new approach of using HT'TP as the transport protocol for live content,
1) The system supports both single and multi-bitrate streaming modes
of operation, and ¢¢) In Smoothcache, we make use of recent advances
in application-layer dynamic congestion control to manage priorities of
transfers according to their urgency. We start by explaining why the
HTTP live streaming semantics render many of the existing assumptions
used in P2PLS protocols obsolete. Afterwards, we present our design
starting with a baseline P2P caching model. We, then, show a number
of optimizations related to aspects such as neighborhood management,
uploader selection and proactive caching. Finally, we present our eval-
uation conducted on a real yet instrumented test network. Our results
show that we can achieve substantial traffic savings on the source of the
stream without major degradation in user experience.

Keywords: HTTP-Live streaming, peer-to-peer, caching, CDN.

1 Introduction

Peer-to-peer live streaming (P2PLS) is a problem in the Peer-To-Peer (P2P) net-
working field that has been tackled for quite some time on both the academic and
industrial fronts. The typical goal is to utilize the upload bandwidth of hosts con-
suming a certain live content to offload the bandwidth of the broadcasting origin.
On the industrial front, we find successful large deployments where knowledge
about their technical approaches is rather limited. Exceptions include systems
described by their authors like Coolstreaming [16] or inferred by reverse engi-
neering like PPlive [4] and TVAnts [I2]. On the academic front, there have been
several attempts to try to estimate theoretical limits in terms of optimality of
bandwidth utilization [3][7] or delay [15].

Traditionally, HTTP has been utilized for progressive download streaming,
championed by popular Video-On-Demand (VoD) solutions such as Netflix [1]
and Apple’s iTunes movie store. However, lately, adaptive HT'TP-based stream-
ing protocols became the main technology for live streaming as well. All compa-
nies who have a major say in the market including Microsoft, Adobe and Apple

R. Bestak et al. (Eds.): NETWORKING 2012, Part II, LNCS 7290, pp. 29-f3] 2012.
© IFIP International Federation for Information Processing 2012



30 R. Roverso, S. El-Ansary, and S. Haridi

have adopted HTTP-streaming as the main approach for live broadcasting. This
shift to HT'TP has been driven by a number of advantages such as the following:
i) Routers and firewalls are more permissive to HTTP traffic compared to the
RTSP/RTP i:) HTTP caching for real-time generated media is straight-forward
like any traditional web-content ¢i¢) The Content Distribution Networks (CDNs)
business is much cheaper when dealing with HTTP downloads [5].

The first goal of this paper is to describe the shift from the RTSP/RTP model
to the HTTP-live model (Section 2l). This, in order to detail the impact of the
same on the design of P2P live streaming protocols (Section[]). A point which we
find rather neglected in the research community (Section[). We argue that this
shift has rendered many of the classical assumptions made in the current state-of-
the-art literature obsolete. For all practical purposes, any new P2PLS algorithm
irrespective of its theoretical soundness, won’t be deployable if it does not take
into account the realities of the mainstream broadcasting ecosystem around it.
The issue becomes even more topical as we observe a trend in standardizing
HTTP live [§] streaming and embedding it in all browsers together with HTMLS5,
which is already the case in browsers like Apple’s Safari.

The second goal of this paper is to present a P2PLS protocol that is compatible
with HTTP live streaming for not only one bitrate but that is fully compatible
with the concept of adaptive bitrate, where a stream is broadcast with multiple
bitrates simultaneously to make it available for a range of viewers with variable
download capacities (Section []).

The last goal of this paper is to describe a number of optimizations of our
P2PLS protocol concerning neighborhood management, uploader selection and
peer transfer which can deliver a significant amount of traffic savings on the
source of the stream (Section[f and[7]). Experimental results of our approach show
that this result comes at almost no cost in terms of quality of user experience

(Section [{).

2 The Shift from RTP/RTSP to HTTP

In the traditional RT'SP/RTP model, the player uses RTSP as the signalling
protocol to request the playing of the stream from a streaming server. The player
enters a receive loop while the server enters a send loop where stream fragments
are delivered to the receiver using the RTP protocol over UDP. The interaction
between the server and player is stateful. The server makes decisions about which
fragment is sent next based on acknowledgements or error information previously
sent by the client. This model makes the player rather passive, having the mere
role of rendering the stream fragments which the server provides.

In the HTTP live streaming model instead, it is the player which controls the
content delivery by periodically pulling from the server parts of the content at
the time and pace it deems suitable. The server instead is entitled with the task
of encoding the stream in real time with different encoding rates, or qualities,
and storing it in data fragments which appear on the server as simple resources.

When a player first contacts the streaming server, it is presented with a meta-
data file (Manifest) containing the latest stream fragments available at the server



SmoothCache: HTTP-Live Streaming Goes Peer-to-Peer 31

=SmoothStreamingMedia=

rate="4024"/
57" />

=/StreamIndex>

=StreamIndex Type="vi
Url="QualityLevel
<QualityLevel Ind
<QualityLevel Ind

<c d="25000000" />
<c d="25000000"/>

</StreamIndex>
</SmoothStreamingMedia=

ate}) /Fragments(audio={start time}}">

Client Server

GET http://live.is.com/BBB

GET http://live.is.com/BBB.ism/QualityLevels(:

il
]

GET http://live.is.com/BBB.ism/QualityL

GET hitp/five.iis.com/BBB.ism/QualityLevels(1470000)/F 1240000000)

GET http:/five.iis.com/BBB.ism/QualityL evels(1470000)/Fragments(video=1260000000) , |

GET http:/live.iis.com/BBB ism/QualityLevels(1470000) Fragments(video=1280000000), |

Fig.1. a) Sample Smooth streaming Manifest, b) Client-Server interactions in Mi-
crosoft Smooth Streaming

at the time of the request. Each fragment is uniquely identified by a time-stamp
and a bitrate. If a stream is available in n different bitrates, then this means
that for each timestamp, there exists n versions of it, one for each bitrate.

After reading the manifest, the player starts to request fragments from the server.
The burden of keeping the timeliness of the live stream is totally upon the player.
The server in contrast, is stateless and merely serves fragments like any other
HTTP server after encoding them in the format advertised in the manifest.

Manifest Contents. To give an example, we use Microsoft’s Smooth Streaming
manifest. In Figure [Tal we show the relevant details of a manifest for a live
stream with 3 video bitrates (331, 688, 1470 Kbps) and 1 audio bitrate (64
Kbps). By inspecting one of the streams, we find the first (the most recent)
fragment containing a d value which is the time duration of the fragment in a
unit of 100 nanoseconds and a t value which is the timestamp of the fragment.
The fragment underneath (the older fragment) has only a d value because the
timestamp is inferred by adding the duration to the timestamp of the one above.
The streams each have a template for forming a request url for fragments of that
stream. The template has place holders for substitution with an actual bitrate
and timestamp. For a definition of the manifest’s format, see [5].

Adaptive Streaming Protocol. In Figure[ID, we show an example interaction
sequence between a Smooth Streaming Client and Server [5]. The Client first
issues a HTTP GET request to retrieve the manifest from the streaming server.
After interpreting the manifest, the player requests a video fragment from the
lowest available bitrate (331 Kbps). The timestamp of the first request is not
predictable but in most cases we have observed that it is an amount equal to
10 seconds backward from the most recent fragment in the manifest. This is
probably the only predictable part of the player’s behavior.

In fact, without detailed knowledge of the player’s internal algorithm and
given that different players may implement different algorithms, it is difficult
to make assumptions about the period between consecutive fragment requests,
the time at which the player will switch rates, or how the audio and video are



32 R. Roverso, S. El-Ansary, and S. Haridi

interleaved. For example, when a fragment is delayed, it could get re-requested
at the same bitrate or at a lower rate. The timeout before taking such action is
one thing that we found slightly more predictable and it was most of the time
around 4 seconds. That is a subset of many details about the pull behavior of
the player.

Implications of Unpredictability. The point of mentioning these details is to
explain that the behavior of the player, how it buffers and climbs up and down
the bitrates is rather unpredictable. In fact, we have seen it change in different
version of the same player. Moreover, different adopters of the approach have
minor variations on the interactions sequence. For instance, Apple HTTP-live
[8] dictates that the player requests a manifest every time before requesting a
new fragment and packs audio and video fragments together. As a consequence
of what we described above, we believe that a P2PLS protocol for HTTP live
streaming should operate as if receiving random requests in terms of timing and
size and has to make this the main principle. This filters out the details of the
different players and technologies.

3 Impact of the Shift on P2PLS Algorithms

Traditionally, the typical setup for a P2PLS agent is to sit between the streaming
server and the player as a local proxy offering the player the same protocol
as the streaming server. In such a setup, the P2PLS agent would do its best,
exploiting the peer-to-peer overlay, to deliver pieces in time and in the right
order for the player. Thus, the P2PLS agent is the one driving the streaming
process and keeping an active state about which video or audio fragment should
be delivered next, whereas the player blindly renders what it is supplied with.
Given the assumption of a passive player, it is easy to envisage the P2PLS
algorithm skipping for instance fragments according to the playback deadline,
i.e. discarding data that comes too late for rendering. In this kind of situation,
the player is expected to skip the missing data by fast-forwarding or blocking for
few instants and then start the playback again. This type of behavior towards
the player is an intrinsic property of many of the most mature P2PLS system
designs and analyses such as [13I15/16].

In contrast to that, a P2PLS agent for HTTP live streaming can not rely
on the same operational principles. There is no freedom in skipping pieces and
deciding what is to be delivered to the player. The P2PLS agent has to obey the
player’s request for fragments from the P2P network and the speed at which this
is accomplished affects the player’s next action. From our experience, delving
in the path of trying to reverse engineer the player behavior and integrating
that in the P2P protocol is some kind of black art based on trial-and-error and
will result into very complicated and extremely version-specific customizations.
Essentially, any P2PLS scheduling algorithm that assumes that it has control
over which data should be delivered to the player is rather inapplicable to HTTP
live streaming.



SmoothCache: HTTP-Live Streaming Goes Peer-to-Peer 33

4 Related Work

We are not aware of any work that has explicitly articulated the impact of the
shift to HT'TP on the P2P live streaming algorithms. However, a more relevant
topic to look at is the behavior of the HTTP-based live players. Akhshabi et.
al [2], provide a recent dissection of the behavior of three such players under
different bandwidth variation scenarios. It is however clear from their analysis
that the bitrate switching mechanics of the considered players are still in early
stages of development. In particular, it is shown that throughput fluctuations
still cause either significant buffering or unnecessary bitrate reductions. On top
of that, it is shown how all the logic implemented in the HTTP-live players is
tailored to TCP’s behavior, as the one suggested in [6]. That in order to compen-
sate throughput variations caused by TCP’s congestion control and potentially
large retransmission delays. In the case of a P2PLS agent acting as proxy, it is
then of paramount importance to not interfere with such adaptation patterns.

We believe, given the presented approaches, the most related work is the P2P
caching network LiveSky [I4]. We share in common the fact of trying to establish
a P2P CDN. However, LiveSky does not present any solution for supporting
HTTP live streaming.

5 P2PLS as a Caching Problem

We will describe here our baseline design to tackle the new realities of the HTTP-
based players. We treat the problem of reducing the load on the source of the
stream the same way it would be treated by a Content Distribution Network
(CDN): as a caching problem. The design of the streaming protocol was made
such that every fragment is fetched as an independent HTTP request that could
be easily scheduled on CDN nodes. The difference is that in our case, the caching
nodes are consumer machines and not dedicated nodes. The player is directed
to order from our local P2PLS agent which acts as an HTTP proxy. All traffic
to/from the source of the stream as well as other peers passes by the agent.

Baseline Caching. The policy is as follows: any request for manifest files (meta-
data), is fetched from the source as is and not cached. That is due to the fact
that the manifest changes over time to contain the newly generated fragments.
Content fragments requested by the player are looked up in a local index of the
peer which keeps track of which fragment is available on which peer. If informa-
tion about the fragment is not in the index, then we are in the case of a P2P
cache miss and we have to retrieve it from the source. In case of a cache hit, the
fragment is requested from the P2P network and any error or slowness in the
process results, again, in a fallback to the source of the content. Once a fragment
is downloaded, a number of other peers are immediately informed in order for
them to update their indices accordingly.

Achieving Savings. The main point is thus to increase the cache hit ratio as
much as possible while the timeliness of the movie is preserved. The cache hit
ratio is our main metric because it represents savings from the load on the source



34 R. Roverso, S. El-Ansary, and S. Haridi

Table 1. Summary of baseline and improved strategies

Strategy Baseline Improved
Manifest Trimming (MT) Off On
Partnership Construction (PC) Random Request-Point-aware
Partnership Maintenance (PM) Random Bitrate-aware
Uploader Selection (US) Random Throughput-based
Proactive Caching (PR) Off On

of the live stream. Having explained the baseline idea, we can see that, in the-
ory, if all peers started to download the same uncached manifest simultaneously,
they would also all start requesting fragments exactly at the same time in per-
fect alignment. This scenario would leave no time for the peers to advertise and
exchange useful fragments between each others. Consequently a perfect align-
ment would result in no savings. In reality, we have always seen that there is an
amount of intrinsic asynchrony in the streaming process that causes some peers
to be ahead of others, hence making savings possible. However, the larger the
number of peers, the higher the probability of more peers being aligned. We will
show that, given the aforementioned asynchrony, even the previously described
baseline design can achieve significant savings.

Our target savings are relative to the number of peers. That is we do not
target achieving a constant load on the source of the stream irrespective of the
number of users, which would lead to loss of timeliness. Instead, we aim to save
a substantial percentage of all source traffic by offloading that percentage to the
P2P network. The attractiveness of that model from a business perspective has
been verified with content owners who nowadays buy CDN services.

6 Beyond Baseline Caching

We give here a description of some of the important techniques that are crucial
to the operation of the P2PLS agent. For each such technique we provide what
we think is the simplest way to realize it as well as improvements if we were able
to identify any. The techniques are summarized in Table 1.

Manifest Manipulation. One improvement particularly applicable in Mi-
crosoft’s Smooth streaming but that could be extended to all other technologies
is manifest manipulation. As explained in Section 2] the server sends a manifest
containing a list of the most recent fragments available at the streaming server.
The point of that is to avail to the player some data in case the user decides to
jump back in time. Minor trimming to hide the most recent fragments from some
peers places them behind others. We use that technique to push peers with high
upload bandwidth slightly ahead of others because they have they can be more
useful to the network. We are careful not to abuse this too much, otherwise peers
would suffer a high delay from live playing point, so we limit it to a maximum of



SmoothCache: HTTP-Live Streaming Goes Peer-to-Peer 35

4 seconds. It is worth noting here that we do a quick bandwidth measurement for
peers upon admission to the network, mainly, for statistical purposes but we do
not depend on this measurement except during the optional trimming process.

Neighborhood and Partnership Construction. We use a tracker as well as
gossiping for introducing peers to each other. Any two peers who can establish
bi-directional communication are considered neighbors. Each peer probes his
neighbors periodically to remove dead peers and update information about their
last requested fragments. Neighborhood construction is in essence a process to
create a random undirected graph with high node arity. A subset of the edges
in the neighborhood graph is selected to form a directed subgraph to establish
partnership between peers. Unlike the neighborhood graph, which is updated
lazily, the edges of the partneship graph are used frequently. After each successful
download of a fragment, the set of (out-partners) is informed about the newly
downloaded fragment. From the opposite perspective, it is crucial for a peer to
wisely pick his in-partners because they are the providers of fragments from the
P2P network. For this decision, we experiment with two different strategies: 7)
Random picking, i7) Request-point-aware picking: where the in-partners include
only peers who are relatively ahead in the stream because only such peers can
have future fragments.

Partnership Maintenance. Each peer strives to continuously find better in-
partners using periodic maintenance. The maintenance process could be limited
to replacement of dead peers by randomly-picked peers from the neighborhood.
Our improved maintenance strategy is to score the in-partners according to a
certain metric and replace low-scoring partners with new peers from the neigh-
borhood. The metric we use for scoring peers is a composite one based on: 7)
favoring the peers with higher percentage of successfully transferred data, %)
favoring peers who happen to be on the same bitrate. Note that while favor-
ing peers on the same bitrate, having all partners from a single bitrate is very
dangerous, because once a bit-rate change occurs the peer is isolated. That is,
all the received updates about presence of fragments from other peers would be
from the old bitrate. That is why, upon replacement, we make sure that the
resulting in-partners set has all bit-rates with a gaussian distribution centered
around the current bitrate. That is, most in-partners are from the current bit
rate, less partners from the immediately higher and lower bit rates and much
less partners from other bitrates and so forth. Once the bit-rate changes, the
maintenance re-centers the distribution around the new bitrate.

Uploader Selection. In the case of a cache hit, it happens quite often that
a peer finds multiple uploaders who can supply the desired fragment. In that
case, we need to pick one. The simplest strategy would be to pick a random
uploader. Our improved strategy here is to keep track of the observed historical
throughput of the downloads and pick the fastest uploader.

Sub-fragments. Up to this point, we have always used in our explanation
the fragment as advertised by the streaming server as the unit of transport
for simplifying the presentation. In practice, this is not the case. The sizes of



36 R. Roverso, S. El-Ansary, and S. Haridi

the fragment vary from one bitrate to the other. Larger fragments would result
in waiting for a longer time before informing other peers which would directly
entail lower savings because of the slowness of disseminating information about
fragment presence in the P2P network. To handle that, our unit of transport
and advertising is a sub-fragment of a fixed size. That said, the reality of the
uploader selection process is that it always picks a set uploaders for each fragment
rather than a single uploader. This parallelization applies for both random and
throughput-based uploader selection strategies.

Fallbacks. While downloading a fragment from another peer, it is of critical
importance to detect problems as soon as possible. The timeout before falling
back to the source is thus one of the major parameters while tuning the system.
We put an upper bound (T},2,) on the time needed for any P2P operation,
computed as: Tpap = Tpiayer — S * Ty where Tpiayer is the maximum amount
of time after which the player considers a request for a fragment expired, S is
the size of fragment and T is the expected time to retrieve a unit of data from
the fallback. Based on our experience, Tpqayer is player-specific and constant,
for instance Microsoft’s Smooth Streaming waits 4 seconds before timing out.
A longer Ty, translates in a higher P2P success transfer ratio, hence higher
savings. Since Tpiayer and S are outside of our control, it is extremely important
to estimate T’y correctly, in particular in presence of congestion and fluctuating
throughput towards the source. As a further optimization, we recalculate the
timeout for a fragment while a P2P transfer is happening depending on the
amount of data already downloaded, to allow more time for the outstanding
part of the transfer. Finally, upon fallback, only the amount of fragment that
failed to be downloaded from the overlay network is retrieved from the source,
i.e. through a partial HTTP request on the range of missing data.

7 Proactive Caching

The baseline caching process is in essence reactive, i.e. the attempt to fetch a
fragment starts after the player requests it. However, when a peer is informed
about the presence of a fragment in the P2P network, he can trivially see that
this is a future fragment that would be eventually requested. Starting to prefetch
it early before it is requested, increases the utilization of the P2P network and
decreases the risk of failing to fetch it in time when requested. That said, we
do not guarantee that this fragment would be requested in the same bitrate,
when the time comes. Therefore, we endure a bit of risk that we might have to
discard it if the bitrate changes. In practice, we measured that the prefetcher
successfully requests the right fragment with a 98.5% of probability.

Traffic Prioritization. To implement this proactive strategy we have taken ad-
vantage of our dynamic runtime-prioritization transport library DTL [9] which
exposes to the application layer the ability to prioritize individual transfers rel-
ative to each other and to change the priority of each individual transfer at
run-time. Upon starting to fetch a fragment proactively, it is assigned a very



SmoothCache: HTTP-Live Streaming Goes Peer-to-Peer 37

low-priority. The rationale is to avoid contending with the transfer process of
fragments that are reactively requested and under a deadline both on the up-
loading and downloading ends.

Successful Prefetching. One possibility is that a low-priority prefetching pro-
cess completes before a player’s request and there is no way to deliver it to the
player before that happens, the only option is to wait for a player request. More
importantly, when that time comes, careful delivery from the local machine is
very important because extremely fast delivery might make the adaptive stream-
ing player mistakenly think that there is an abundance of download bandwidth
and start to request the following fragments a higher bitrate beyond the ac-
tual download bandwidth of the peer. Therefore, we schedule the delivery from
the local machine to be not faster than the already-observed average download
rate. We have to stress here that this is not an attempt to control the player
to do something in particular, we just maintain transparency by not delivering
prefetched fragments faster than not prefetched ones.

Interrupted Prefetching. Another possiblity is that the prefetching process
gets interrupted by the player in 3 possible ways: i) The player requests the frag-
ment being prefetched: in that case the transport layer is dynamically instructed
to raise the priority and Tpjqyer is set accordingly based on the remaining amount
of data as described in the previous section. i7) The player requests the same frag-
ment being prefetched but at a higher rate which means we have to discard any
prefetched data and treat the request like any other reactively fetched fragment.
ii1) The player decides to skip some fragments to catch up and is no longer in need
of the fragment being prefetched. In this case, we have to discard it as well.

8 Evaluation

Methodology. Due to the non-representative behaviour of Planetlab and the
difficulty to do parameter exploration in publicly-deployed production network,
we tried another approach which is to develop a version of our P2P agent that is
remotely-controlled and ask for volunteers who are aware that we will conduct
experiments on their machines. Needless to say, that this functionality is removed
from any publicly-deployable version of the agent.

Test Network. The test network contained around 1350 peers. However, the
maximum, minimum and average number of peers simultaneously online were
770, 620 and 680 respectively. The network included peers mostly from Sweden
(89%) but also some from Europe (6%) and the US (4%). The upload band-
width distribution of the network was as follows: 15% : 0.5Mbps, 42% : 1Mbps,
17% : 2.6 Mbps, 15% : 10Mbps, 11% : 20M bps. In general, one can see that there
is enough bandwidth capacity in the network, however the majority of the peers
are on the lower end of the bandwidth distribution. For connectivity, 82% of
the peers were behind NAT, and 12% were on open Internet. We have used our
NAT-Cracker traversal scheme as described in [I1] and were able to establish
bi-directional communication between 89% of all peer pairs. The unique number



38 R. Roverso, S. El-Ansary, and S. Haridi

100

100

9%

80

S R e S e 80 |-

o

. S e Bening®0Pe® e, 00800000 0g00e0e0
-

L T X joto ol

R e e - w Rt 60 [

MT+PC+PM+US+P!

e

5 P

§ ///\,_,/W

Savings (%)
Peers (%)

N g
83 8
RO e
Ak .

MT+PCHPM -3
10 145 MT+PC+PM+US &
MT+PC+PM+US+PR —-8-—

2 N ,—{4 S8
[} 5 10 15 20 5x<10 10<x<30
Time (minutes) Time (secs)

(a) (b)

Fig.2. (a) Comparison of traffic savings with different algorithm improvements, (b)
Comparison of cumulative buffering time for source only and improvements

e — S .
30<x<60 x>60

of NAT types encountered were 18 types. Apart from the tracker used for in-
troducing clients to each other, our network infrastructure contained, a logging
server, a bandwidth measurement server, a STUN-like server for helping peers
with NAT traversal and a controller to launch tests remotely.

Stream Properties. We used a production-quality continuous live stream with
3 video bitrates (331, 688, 1470 Kbps) and 1 audio bitrate (64 Kbps) and we let
peers watch 20 minutes of this stream in each test. The stream was published
using Microsoft Smooth Streaming traditional tool chain. The bandwidth of the
source stream was provided by a commercial CDN and we made sure that it had
enough capacity to serve the maximum number of peers in our test network.
This setup gave us the ability to compare the quality of the streaming process
in the presence and absence of P2P caching in order to have a fair assessment of
the effect of our agent on the overall quality of user experience. We stress that,
in a real deployment, P2P caching is not intended to eliminate the need for a
CDN but to reduce the total amount of paid-for traffic that is provided by the
CDN. One of the issues that we faced regarding realistic testing was making sure
that we are using the actual player that would be used in production, in our case
that was the Microsoft Silverlight player. The problem is that the normal mode
of operation of all video players is through a graphical user interface. Naturally,
we did not want to tell our volunteers to click the “Play” button every time we
wanted to start a test. Luckily, we were able to find a rather unconventional way
to run the Silverlight player in a headless mode as a background process that
does not render any video and does not need any user intervention.

Reproducibility. Each test to collect one data point in the test network hap-
pens in real time and exploring all parameter combination of interest is not feasi-
ble. Therefore, we did a major parameter combinations study on our simulation
platform [10] first to get a set of worth-trying experiments that we launched
on the test network. Another problem is the fluctuation of network conditions



SmoothCache: HTTP-Live Streaming Goes Peer-to-Peer 39

P2P 331 Kbps
331 Kbps No-P2P 331 Kbps 1%
668 Kbps 5% 4% [
7%

No-P2P 688Kbps 668 Kbps 331 Kbps
6% 6% N\ 4%

P2P 688 Kbps
1%
No-P2P 1.47 Mbps
13%

P2P 1.47 Mbps
75%

(a) (b) (c)

Fig. 3. Breakdown of traffic quantities per bitrate for: (a) A network with P2P caching,
Source & P2P traffic summed together. (b) The same P2P network with source & P2P
traffic reported separately, and (¢) A network with no P2P.

and number of peers. We repeated each data point a number of times before
gaining confidence that this is the average performance of a certain parameter
combination.

Evaluation Metrics. The main metric that we use is traffic savings defined
as the percentage of the amount of data served from the P2P network from the
total amount of data consumed by the peers. Every peer reports the amount of
data served from the P2P network and streaming source every 30 seconds to the
logging server. In our bookkeeping, we keep track of how much of the traffic was
due to fragments of a certain bitrate. The second important metric is buffering
delay. The Silverlight player can be instrumented to send debug information
every time it goes in/out of buffering mode, i.e. whenever the player finds that
the amount of internally-buffered data is not enough for playback, it sends a
debug message to the server, which in our case is intercepted by the agent.
Using this method, a peer can report the lengths of the periods it entered into
buffering mode in the 30 seconds snapshots as well. At the end of the stream, we
calculate the sum of all the periods the player of a certain peer spent buffering.

8.1 Deployment Results

Step-by-Step Towards Savings. The first investigation we made was to start
from the baseline design with all the strategies set to the simplest possible. In
fact, during the development cycle we used this baseline version repeatedly until
we obtained a stable product with predictable and consistent savings level before
we started to enable all the other improvements. Figure [2a] shows the evolution
of savings in time for all strategies. The naive baseline caching was able to save
a total of 44% of the source traffic. After that, we worked on pushing the higher-
bandwidth peers ahead and making each partner select peers that are useful
using the request-point-aware partnership which moved the savings to a level
of 56%. So far, the partnership maintenance was random. Turning on bit-rate-
aware maintenance added only another 5% of savings but we believe that this is
a key strategy that deserves more focus because it directly affects the effective



40 R. Roverso, S. El-Ansary, and S. Haridi

No-P2P 331 Kbps
8%
P2P 331 Kbps
2%

P2P 1.47 Mbps N°'P2:16;s'(bps
9% |
P2P 688 Kbps
e gy,

No-P2P 1.47 Mbps
38%

Savings (%)

(a)

Fig. 4. (a) Breakdown of traffic quantities per bitrate using baseline, (b) Comparison
of savings between different in-partners number

partnership size of other peers from each bitrate which directly affects savings.
For the uploader selection, running the throughput-based picking achieved 68%
of savings. Finally, we got our best savings by adding proactive caching which
gave us 77% savings.

User Experience. Getting savings alone is not a good result unless we have
provided a good user experience. To evaluate the user experience, we use two
metrics: First, the percentage of peers who experienced a total buffering time
of less than 5 seconds, i.e. they enjoyed performance that did not really deviate
much from live. Second, showing that our P2P agent did not achieve this level
of savings by forcing the adaptive streaming to move everyone to the lowest
bitrate. For the first metric, Figure 2l shows that with all the improvements,
we can make 87% of the network watch the stream with less than 5 seconds
of buffering delay. For the second metric, Figure Bal shows also that 88% of all
consumed traffic was on the highest bitrate and P2P alone shouldering 75%
(Figure [BH)), an indication that, for the most part, peers have seen the video at
the highest bitrate with a major contribution from the P2P network.

P2P-less as a Reference. We take one more step beyond showing that the
system offers substantial savings with reasonable user experience, namely to
understand what would be the user experience in case all the peers streamed
directly from the CDN. Therefore, we run the system with P2P caching disabled.
Figure2blshows that without P2P, only 3% more (90%) of all viewers would have
a less than 5 seconds buffering. On top of that, Figure Bd shows that only 2%
more (90%) of all consumed traffic is on the highest bitrate, that is the small
price we paid for saving 77% of source traffic. Figure [4a] instead describes the
lower performance of our baseline caching scenario, which falls 13% of the P2P-
less scenario (77%). This is mainly due to the lack of bit-rate-aware maintenance,
which turns out to play a very significant role in terms of user experience.

Partnership Size. There are many parameters to tweak in the protocol but,
in our experience, the number of in-partners is by far the parameter with the
most significant effect. Throughout the evaluation presented here, we use 50



SmoothCache: HTTP-Live Streaming Goes Peer-to-Peer 41

NO P2P 1470Kbps
P2P 1470Kbps
NO P2P 668Kbps
P2P 668Kbps

NO P2P 331Kbps
P2P 331Kbps 277

Savings (%)
= 0N 8 2 2 2 N =
- 3 8 8 8 8 3 3 8
Peers (%)
2 8 @ &2 a2 N @
o 3 8 8 & 8 38 3 8

, emr (ol e o
331 668 1470 x<5.0 5.0<x<10.0 10.0<x<30.0 30.0<x<60.0 x>60.0
Bitrate (Kbps) Time (secs)

(a) (b)

Fig.5. (a) Savings for single bitrate runs, (b) Buffering time for single bitrate runs

in-partners. Figure D] shows that more peers result in more savings; albeit with
diminishing returns. We have selected 50-peers as a high-enough number, at a
point where increasing the peers does not result into much more savings.

Single Bitrate. Another evaluation worth presenting as well is the case of a
single bitrate. In this experiment, we get 84%, 81% and 69% for the low, medium
and high bitrate respectively (Figure Bal). As for the user experience compared
with the same single bitrates in a P2P-less test, we find that the user experience
expressed as delays is much closer to the P2P-less network (Figure Bh). We
explain the relatively better experience in the single bitrate case by the fact that
all the in-partners are from the same bitrate, while in the multi-bitrate case,
each peer has in his partnership the majority of the in-partners from a single
bitrate but some of them are from other bitrates which renders the effective
partnership size smaller. We can also observe that the user experience improves
as the bitrate becomes smaller.

9 Conclusion

In this paper, we have shown a novel approach in building a peer-to-peer live
streaming system that is compatible with the new realities of the HTTP-live.
These new realities revolve around the point that unlike RT'SP/RTP streaming,
the video player is driving the streaming process. The P2P agent will have a
limited ability to control what gets rendered on the player and much limited
ability to predict its behaviour. Our approach was to start with baseline P2P
caching where a P2P agent acts as an HT'TP proxy that receives requests from
the HTTP live player and attempts to fetch it from the P2P network rather the
source if it can do so in a reasonable time.

Beyond baseline caching, we presented several improvements that included: a)
Request-point-aware partnership construction where peers focus on establishing
relationships with peers who are ahead of them in the stream, b) Bit-rate-aware



42 R. Roverso, S. El-Ansary, and S. Haridi

partnership maintenance through which a continuous updating of the partner-
ship set is accomplished both favoring peers with high successful transfers rate
and peers who are on the same bitrate of the maintaining peer, ¢) Manifest
trimming which is a technique for manipulating the metadata presented to the
peer at the beginning of the streaming process to push high-bandwidth peers
ahead of others, d) Throughput-based uploader selection which is a policy used
to pick the best uploader for a certain fragment if many exist, e) Careful tim-
ing for falling back to the source where the previous experience is used to tune
timing out on P2P transfers early enough thus keeping the timeliness of the live
playback.

Our most advanced optimization was the introduction of proactive caching
where a peer requests fragments ahead of time. To accomplish this feature
without disrupting the already-ongoing transfer, we used our application-layer
congestion control [9] to make pre-fetching activities have less priority and dy-
namically raise this priority in case the piece being pre-fetched got requested by
the player.

We evaluated our system using a test network of real volunteering clients
of about 700 concurrent nodes where we instrumented the P2P agents to run
tests under different configurations. The tests have shown that we could achieve
around 77% savings for a multi-bitrate stream with around 87% of the peers
experiencing a total buffering delay of less than 5 seconds and almost all of the
peers watched the data on the highest bitrate. We compared these results with
the same network operating in P2P-less mode and found that only 3% of the
viewers had a better experience without P2P which we judge as a very limited
degradation in quality compared to the substantial amount of savings.

References

1. Netflix inc., www.netflix.com

2. Akhshabi, S., Begen, A.C., Dovrolis, C.: An experimental evaluation of rate-
adaptation algorithms in adaptive streaming over HTTP. In: Proceedings of the
Second Annual ACM Conference on Multimedia Systems, MMSys (2011)

3. Guo, Y., Liang, C., Liu, Y.: AQCS: adaptive queue-based chunk scheduling for
P2P live streaming. In: Proceedings of the 7th IFIP-TC6 NETWORKING (2008)

4. Hei, X., Liang, C., Liang, J., Liu, Y., Ross, K.W.: Insights into PPLive: A Mea-
surement Study of a Large-Scale P2P IPTV System. In: Proc. of IPTV Workshop,
International World Wide Web Conference (2006)

5. Microsoft Inc.: Smooth Streaming,
http://www.iis.net/download/SmoothStreaming

6. Liu, C., Bouazizi, I., Gabbouj, M.: Parallel Adaptive HTTP Media Streaming. In:
Proc. of 20th International Conference on Computer Communications and Net-
works (ICCCN), July 31-August 4, pp. 1-6 (2011)

7. Massoulie, L., Twigg, A., Gkantsidis, C., Rodriguez, P.: Randomized Decentralized
Broadcasting Algorithms. In: 26th IEEE International Conference on Computer
Communications, INFOCOM 2007, pp. 1073-1081 (May 2007)

8. Pantos, R.: HTTP Live Streaming (December 2009),
http://tools.ietf.org/html/draft-pantos-http-live-streaming-01


www.netflix.com
http://www.iis.net/download/SmoothStreaming
http://tools.ietf.org/html/draft-pantos-http-live-streaming-01

10.

11.

12.

13.

14.

15.

16.

SmoothCache: HTTP-Live Streaming Goes Peer-to-Peer 43

. Reale, R., Roverso, R., El-Ansary, S., Haridi, S.: DTL: Dynamic Transport Library

for Peer-to-Peer Applications. In: Bononi, L., Datta, A.K., Devismes, S., Misra, A.
(eds.) ICDCN 2012. LNCS, vol. 7129, pp. 428-442. Springer, Heidelberg (2012)
Roverso, R., El-Ansary, S., Gkogkas, A., Haridi, S.: Mesmerizer: A effective tool for
a complete peer-to-peer software development life-cycle. In: Proceedings of SIMU-
TOOLS (March 2011)

Roverso, R., El-Ansary, S., Haridi, S.: NATCracker: NAT Combinations Matter.
In: Proc. of 18th International Conference on Computer Communications and Net-
works, ICCCN 2009. IEEE Computer Society, SF (2009)

Silverston, T., Fourmaux, O.: P2P IPTV measurement: a case study of TVants. In:
Proceedings of the 2006 ACM CoNEXT Conference, CONEXT 2006, pp. 45:1-45:2.
ACM, New York (2006), http://doi.acm.org/10.1145/1368436.1368490
Vlavianos, A., Iliofotou, M., Faloutsos, M.: BiToS: Enhancing BitTorrent for Sup-
porting Streaming Applications. In: Proceedings of the 25th IEEE International
Conference on Computer Communications, INFOCOM 2006, pp. 1-6 (April 2006)
Yin, H., Liu, X., Zhan, T., Sekar, V., Qiu, F., Lin, C., Zhang, H., Li, B.: Livesky:
Enhancing cdn with p2p. ACM Trans. Multimedia Comput. Commun. Appl. 6,
16:1-16:19 (2010), http://doi.acm.org/10.1145/1823746.1823750

Zhang, M., Zhang, Q., Sun, L., Yang, S.: Understanding the Power of Pull-Based
Streaming Protocol: Can We Do Better? IEEE Journal on Selected Areas in Com-
munications 25, 1678-1694 (2007)

Zhang, X., Liu, J., Li, B., Yum, Y.S.P.: CoolStreaming/DONet: a data-driven over-
lay network for peer-to-peer live media streaming. In: 24th Annual Joint Conference
of the IEEE Computer and Communications Societies, INFOCOM 2005 (2005)


http://doi.acm.org/10.1145/1368436.1368490
http://doi.acm.org/10.1145/1823746.1823750

	SmoothCache: HTTP-Live Streaming Goes Peer-to-Peer

	Introduction
	The Shift from RTP/RTSP to HTTP
	Impact of the Shift on P2PLS Algorithms
	Related Work
	P2PLS as a Caching Problem
	Beyond Baseline Caching
	Proactive Caching
	Evaluation
	Deployment Results

	Conclusion
	References




