
Heterogeneous Secure Multi-Party Computation

Mentari Djatmiko1,2, Mathieu Cunche1,
Roksana Boreli1,2, and Aruna Seneviratne1,2

1 NICTA, 13 Garden Street, Eveleigh, NSW, 2015, Australia
2 University of New South Wales, Sydney, NSW, 2052, Australia

{mentari.djatmiko,mathieu.cunche,
roksana.boreli,aruna.seneviratne}@nicta.com.au

Abstract. The increased processing power and storage capacity of in-
home and mobile computing devices has motivated their inclusion in
distributed and cloud computing systems. The resulting diverse environ-
ment creates a strong requirement for secure computations, which can
be realised by Secure Multi-Party Computation (MPC). However, MPC
most commonly assumes that parties performing the secure computation
have the same characteristics and evenly distributes the computation
load. In a heterogeneous environment, MPC using the same approach
would result in poor performance. In this paper, we propose a mecha-
nism for MPC share distribution in such an environment and present an
analysis of the gain in robustness and the corresponding computational
and communication complexity. Our results show that the uneven share
distribution is a worthwhile approach in diverse computing systems.

Keywords: secure multi-party computation, distributed computing,
unequal shares, heterogeneous platforms.

1 Introduction

The increasing popularity of distributed computing in latter years has resulted
in a number of developments which use diverse distributed computing platforms
[12], [3]. Cloud computing adds virtualisation and additional management func-
tionalities to distributed computing and cloud services have become popular and
are readily available from a number of providers (e.g. Amazon, Google). Com-
munity clouds may be provided by multiple organisations, or private individuals.
Finally, recent research proposals [14] include cloud systems which bring together
in-home, mobile and data centre based computing resources, thereby adding the
continuously growing computational capacity from various personal and mobile
computing devices to the overall pool of computing resources.

The distributed computing systems may be used for a wide range of applica-
tions and services, including distribution and editing of media content, content-
rich social networks, gaming, data storage, home security and others. In the
majority of such applications, the data may be commercially sensitive or of per-
sonal nature e.g. family videos or images captured by a home security system.
This creates a strong requirement for processing of data in a secure and pri-
vate way by the distributed computing system. The argument for security and

R. Bestak et al. (Eds.): NETWORKING 2012, Part II, LNCS 7290, pp. 198–210, 2012.
c© IFIP International Federation for Information Processing 2012

Heterogeneous Secure Multi-Party Computation 199

privacy is further strengthened by the increasingly high level of diversity of the
distributed systems, which includes different computing devices, owners of such
devices and environments in which they are operated.

There have been a number of proposals that address the mechanism to process
sensitive or private data on distributed computing systems. The most widely
used technique to address this is obfuscation of data by encrypting/encoding
the values and performing a set of operations on the encrypted data [6,18,7]. Of
these, Secure Multi-Party Computation (MPC) [7] has the benefits of provable
security under specific adversary models where the security is comparable to an
ideal scenario where data is processed by a trusted third party. Furthermore, in
MPC, processing parties can compute over the the encoded data without having
a knowledge of the original data.

MPC most commonly assumes an equal distribution of encoded data (i.e.
shares) between the parties performing the secure processing [5]. This is a valid
assumption when these parties have similar capabilities and a similar level of
trust related to performing the required computations and the level of security
provided against malicious attacks. However, in the distributed computing plat-
forms which consists of heterogeneous entities, the capabilities, trust and security
of individual devices may be highly variable. Therefore, having equal sharing of
the MPC data and processing between such diverse participants should logically
result in a substandard performance.

In this paper we propose a method of uneven sharing of data and process-
ing in the MPC system, which further extends the hierarchical MPC proposals
[4]. Particularly, we present the concept of uneven distribution of encoded data
between participants performing secure computation and make the following
contributions. We propose a generalised MPC protocol which enables the use of
unequal share distribution among the computing devices, according to a given
set of criteria. We demonstrate the improved MPC computation integrity and
data privacy failure tolerance, as compared to the case when all participants
have a single share. We show that, with an appropriate choice of parameters,
the unequal distribution of shares does not adversely affect the performance of
MPC through increased complexity and communication overhead.

The paper is organised as follows. The overview of MPC and the related works
are presented in Sect. 2. Section 3 describes MPC protocol for heterogeneous
environment. In Sect. 4 we discussed the performance of the proposed protocol,
including methods to allocate shares, while in Sect. 5 we evaluate the overhead
induced by unequal share distribution. We conclude in Sect. 6.

2 MPC Overview and Related Works

MPC enables multiple entities to jointly compute a mathematical function which
takes inputs from a number of contributing entities, and provides a formal guar-
antee of the privacy of the input data and the correctness of the computed result
[7]. The two-participant version of MPC was originally proposed by Yao [19] as
the millionaire’s problem. Subsequent research efforts focus on improving the
security (e.g. [10]) and implementing MPC (e.g. SEPIA in [5]).

200 M. Djatmiko et al.

MPC utilises other cryptographic schemes in its protocol. One important
scheme is secret sharing, which protects the privacy of the input data. The
most generally applicable secret sharing scheme, which we focus on in this pa-
per, is Shamir’s scheme [16] which uses polynomial interpolation. We note that
other secret sharing methods may also be applicable [8]. The concept of dis-
tributing unequal number of shares to participants based on the participants
characteristics (e.g., level of authority) is briefly discussed by Shamir in [16]
which is referred to as hierarchical scheme. However, this concept has not yet
been utilised in MPC. In this paper, we provide an approach which apply this
concept in MPC and evaluate the performance by comparing our approach to
the baseline mechanism where each participant receives a single share.

C1

.

.

.

C2

P1

P2

.

.

.

1

2

3
D

1
1

D
1
2

.

.

.

Y1

Y2

Cn

D
1
l

Pm

Yl

F(C1 Cn, ...,)

Contributors
MPC Participants

Reconstructing
Participant

Fig. 1. Illustration of SMPC

An example MPC system using secret sharing is shown in Fig. 1. The MPC
protocol consists of the three following stages:

1. Input sharing: a number of contributors provide input data for secure
computation. The input data are shared with the participants using secret
sharing scheme as discussed before. As shown in Fig. 1, each secure comput-
ing entity may be allocated one or more shares.

2. Arithmetic operations: the participants compute a mathematical function
using the inputs they have received. Addition of two values only requires
addition of two shares since the two are equivalent. Multiplication of two
values is a more complex operation, and re-sharing and reconstruction steps
are required after the local multiplication of input data shares.

3. Result reconstruction: one participant or an independent entity is in
charge of reconstructing the result. This is done by by computing a lin-
ear combination of the participants outputs, where the linear combination
is obtained from a polynomial interpolation algorithm, e.g., Lagrange inter-
polation and Neville’s algorithm.

MPC has a well defined notion of adversaries and their effect on the security and
privacy of the computations [7]. The participants which are involved in the attack
on the MPC system (adversaries) are considered to be corrupt, while the rest of
the participants are considered to be honest. Attacks can be classified into passive

Heterogeneous Secure Multi-Party Computation 201

attacks, where the adversaries attempt to breach the privacy of the data while
still conforming to the protocol, and active attacks, where the adversaries do not
conform to the protocol thus compromising the result integrity. As discussed in
[2], there are two possible attack models to be considered for corrupt participants:
collusion attack, in which corrupt participants collude to reveal the result of
computation and thus negate the privacy of MPC; integrity attack where corrupt
participants can also alter the intermediate computation result. For Shamir’s
secret sharing, privacy can be preserved if the number of corrupted participants
are less than half of the total number of participants, while the result integrity
can be guaranteed if the number of corrupted participants is less than one third
of this number [2].

3 MPC in a Heterogeneous Environment

We consider an application which has sensitive data and is processed on a het-
erogeneous distributed computing platform, with a number of diverse devices
and players which operate the devices. Various aspects of heterogeneity include
different security levels within various participating companies or personal (in-
cluding in-home) computing devices, trust levels on conforming to the agreed
collaboration protocol, and reliability variations of the included devices.

Having equal sharing of the data and processing between such diverse partic-
ipants, as is commonly done in MPC [5], is likely to result in substandard MPC
performance. This motivates our interest in exploring uneven sharing of data
and processing in a heterogeneous MPC system. The most obvious consequence
of unequal share distribution is that a participant may receive more than a single
share. Therefore, together with the potential performance gain, we also need to
explore the corresponding processing complexity and communication overhead.

Table 1. Description of variables

k number of shares required or the threshold to recover the secret

n total number of contributors (i.e. input data provider)

m total number of MPC participants

l total number of shares in the system

r resolution, describes the relationship between m and l

li number of shares received by participant i from each contributor

c number of corrupt participants

Pi participant i

Dj input from contributor j

Dj
i share from contributor j’s input with index i

Table 1 lists the variables used in the paper. An MPC system consists of n
contributors (that provide the input data Di) and m participants (that per-
form MPC protocol). An entity can be a contributor, a participants or both.
Each of the n contributors generates l shares and distributed the shares over

202 M. Djatmiko et al.

m participants, where each participant receives li shares from each contribu-
tor. To simplify the analysis, we define resolution, r, the average units of shares
per participant which describes the relationship between m and l according to
l = r × m. In equal share distribution, l = m and li = 1 ∀i while in unequal
share distribution, l > m and li ≥ 1 ∀i ∈ [1..k− 1]. We also introduce the notion
of share index, which refers to the point where the polynomial is evaluated to
obtain the share. It is important that the contributors have agreed on li that
is allocated to each Pi before the protocol begins, to ensure the mathematical
function to be properly executed.

3.1 MPC Protocol for Unequal Share Distribution

For unequal share distribution, MPC protocol, described in Sect. 2, needs to be
modified to accommodate allocating of multiple shares to selected participants
and processing of multiple shares. Note that, while we only consider addition
and multiplication of two values in this paper, our method is also applicable to
other arithmetic operations.

For input sharing, unequal share distribution requires contributors to gen-
erate a larger number of shares, since l > m. Similarly, addition of two values
requires each participant to repeat the addition operation li times.

Algorithm 1. Multiplication of two values for Pi

Data: Two vectors of shares from two contributors: [Dα] and [Dβ]
Result: Multiplication result vector: [Dα×β]
for i ∈ li do1

dα×β
i = Dα

i ×Dβ
i2

Generates l shares for dα×β
i = {dα×β

i,1 , ..., dα×β
i,l }3

for j = 1 to l (except for j = lfirst, ..., llast) do4

Sends dα×β
i,j to the corresponding participant5

end6

end7

Computes recombination vector [r] = [r1, ..., rl] using polynomial interpolation8

for i ∈ li do9

Recovers the final multiplication results: Dα×β
i =

∑l

j=1
rj × dα×β

j,i10

end11

We present details of the multiplication of two input values for unequal
share distribution MPC in Algorithm 1. First, each participant needs to locally
multiply two shares with the same share index for each of the li shares. Each
participant then re-share each local multiplication result to all other participants.
In the final step, each participant needs to reconstruct the result. To do this, the
participant computes the recombination vector, [r] using interpolation to solve
the polynomial of size l. The final result for each li is then recovered by summing
up dα×β

1,i , ..., dα×β
l,i with [r] as weights.

Heterogeneous Secure Multi-Party Computation 203

For result reconstruction in unequal distribution MPC, each participant
must send li outputs to the reconstructing entity. The recombination vector
computation and result recovery are equivalent to the operations in MPC with
equal share distribution.

4 Share Allocation and Its Impact

Unequal share distribution in MPC aims to minimise the probability of data
privacy breach and the integrity failure of the result. Intuitively, participants
which are allocated a larger number of shares should be less likely to cause the
privacy and integrity failures. The adversary models presented in Sect. 2 relate
to the numbers of honest and corrupt participants. In reality, the participants
may have a probability of being honest or corrupt, which can be related to the
combination of trustworthiness and computing failure probability and integrity.
By trustworthiness, we consider the likelihood that the participant will conform
to the MPC protocol, i.e. will not collude to breach the privacy or intentionally
provide an incorrect individual computation result. Computing failure probabil-
ity quantifies the likelihood that a participant will (unintentionally) alter the
result integrity based on the reliability of it’s computing platform. Trustworthi-
ness and computing failure probability can be derived from an associated trust
mechanism using e.g. a reputation approach [15], in which the participants pro-
vide feedback on the integrity of transactions and from participant’s hardware
and operating system specification.

4.1 Probability of Integrity and Privacy Failure

MPC result integrity failure occurs when the number of corrupt participants
exceeds the threshold number c ≥ m

3 (see Sect. 2). More generally, MPC result
integrity is guaranteed when the total number of shares belonging to the cor-
rupt participants is less than k, where k = l

3 . Similarly, privacy can be formally
guaranteed when the threshold related to the number of shares controlled by cor-
rupt participants is less than k = l

2 . In the following paragraphs we address the
probability of generic MPC failure, which relates to both integrity and privacy.

Let us assume that each participant Pi has an associated probability of be-
ing corrupt pci. We first need to consider all possible combinations of corrupt
participants, obtained by computing all possible subsets of the participants. For
each combination, s, the joint probability that all participants in the subset s
are corrupt, while the remainder of the participants are honest (assuming the
participants are independent), pc(s) =

∏
i∈s pci, can be computed. Once the

share distribution is known, we can determine which of the corrupt cases will
result in integrity or privacy failure, i.e., when ls ≥ k where ls =

∑
li ∈ s. The

failure probability can be derived as the sum of the probabilities of these corrupt
cases.

204 M. Djatmiko et al.

Given f(s) as a function determining whether s results in MPC failure, the
probability of failure pfail can be calculated as:

pfail =
∑

∀s
pc(s)× f(s). (1)

where f(s) = 1 if ls ≥ k, otherwise f(s) = 0. pfail is independent of the share
distribution or the algorithm used to generate the distribution.

4.2 Share Distribution Algorithms

The most direct method to find a share distribution that would minimise the
failure probability is exhaustive search. While it guarantees the optimal re-
sult, it is highly inefficient as the complexity1 of the search is ml. Therefore we
discuss two other share distribution algorithms which are more practical while
not guaranteeing the globally optimum result.

Heuristic method linearly estimates li based on pci. The method calculates
phi = 1 − pci ∀Pi and then normalises each phi by dividing it with the smallest
phi. The ideal number of shares can be obtained assuming that li = 1 for Pi

with the smallest phi and for a given l, li can be obtained by scaling the ideal
number of shares.

Genetic algorithm (GA) [1] is a stochastic optimisation technique inspired
by natural evolution which provides a trade-off between the optimum result and
complexity. GA iteratively searches for the optimum solution in an evolving
population of possible share distribution. The initial population is comprised of
randomly generated share distributions. The population is evolved by combining
and mutating the share distributions as well as retaining a few share distribu-
tions which have low pfail. The algorithm is terminated when either the optimal
solution of several consecutive generations of the populations are identical or a
fixed number of iterations have been reached.

4.3 Performance Evaluation

The gain of unequal share distribution MPC is evaluated by simulations based
on original implementation in C++. We have not performed an analytical eval-
uation since finding optimal share distribution for unequal MPC is essentially a
combinatorial optimisation problem which does not have an analytical solution.

Simulation, Results and Discussion: We consider a scenario where the par-
ticipants can be divided into two classes: resilient participants which have low
pci (close to fully honest) and vulnerable participants which have high pci (close
to corrupt). We note that this represents the upper bound on the potential per-
formance gains compared to the unequal share distribution, and that considering
participants with closer corrupt probabilities may result in lower performance
improvement. We present only the results for MPC integrity failure that is for
k = l

3 , as the improvement for privacy failure only relates to a threshold change.

1 The complexity depends on the representation of share distribution, which in this
case is by the number of shares allocated to each participant.

Heterogeneous Secure Multi-Party Computation 205

In the simulations, we vary m, r and the share distribution algorithm. m is
increased from 6 to 21, higher m is not simulated due to high complexity. We
use r = 2, 5, 10 for unequal share distribution MPC, where r = 2 represents
the smallest possible resolution and r = 5, 10 represent higher resolutions. Note
that r can be any positive integer. The performance of equal share distribution is
considered as a baseline, which we compare to the performance of the exhaustive
search, heuristic method and GA share distribution algorithms. For resilient
participants pci = 0.1 and for the remaining participants pci = 0.9.

 0

 0.2

 0.4

 0.6

 0.8

 1

 6 8 10 12 14 16 18 20

F
ai

lu
re

 p
ro

ba
bi

lit
y

Number of participants

Equal
Exhaustive

Heuristic
GA

(a) Resolution 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 6 8 10 12 14 16 18 20
F

ai
lu

re
 p

ro
ba

bi
lit

y

Number of participants

Equal
Heuristic

GA

(b) Resolution 5

Fig. 2. Failure probability of MPC with different share distribution algorithms for
resolution 2 and 5 in the scenario where a third of the participants are vulnerable

Fig. 2(a) and 2(b) present the failure probability results for r = 2 and r = 5.
We can see that pfail for unequal share distribution MPC is significantly lower
regardless of the share distribution algorithm used. Due to high complexity,
exhaustive search has been omitted for the subsequent evaluation, but it is ap-
parent from Fig. 2(a) that the performance of GA (and the heuristic method for
m = 12) closely follows exhaustive search. Fig. 2(b) shows the result for r = 5.
In this case, heuristic method performs slightly better than GA. The graph for
r = 10 is not included as the result is similar to r = 5 in this particular scenario.

The performance improvement of unequal share distribution is demonstrated
in Fig. 3(a) and Fig. 3(b). We can observe that the failure probability of equal

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.3 0.4 0.5 0.6 0.7 0.8

F
ai

lu
re

 p
ro

ba
bi

lit
y

Percentage of vulnerable participants

Equal
Heuristic

GA

(a) Resolution 2

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.3 0.4 0.5 0.6 0.7 0.8

F
ai

lu
re

 p
ro

ba
bi

lit
y

Percentage of vulnerable participants

Equal
Heuristic

GA

(b) Resolution 5

Fig. 3. Failure probability of MPC when the total number of participants is 18 and
the number of vulnerable participants is varied between 4 and 16

206 M. Djatmiko et al.

Table 2. Group computational complexity

Operations
Computational

Equal Unequal

Input sharing n.m(m− 1) n.r.m(r.m− 1)

Addition of two input values m r.m

Multiplication of two input values 2m3 +m2 (r2 + r3)m3 + r2.m2

Result reconstruction (m
2

9
+ 2m

3
− 1) ((r.m)2

9
+ 2r.m

3
− 1)

Table 3. Group communication complexity

Operations
Communication

Equal Unequal

Input sharing n.m n.r.m

Multiplication of two input values m(m− 1) r2.m(m− 1)

Result reconstruction m r.m

distribution MPC rapidly increases as the percentage of corrupt participants
increases. Complete failure (i.e. pfail = 1) for equal share distribution occurs
when at least 45% of the participants are vulnerable. On the other hand, unequal
share distribution MPC suffers complete failure when there are close to 90%
vulnerable participants in the system. The resolution only affects the rate of
change of pfail, where the rate of change is higher when r = 2 compared to when
r = 5. As can be logically expected, this demonstrates the improved resilience of
unequal share distribution compared to equal distribution MPC to the number
of low trustworthy participants.

While we evaluate a specific scenario, this result can be applied to a more
generic case where each participant has different pci.

5 Heterogeneous MPC Overhead

In this section we analyse the computational and communication complexity
of both the equal and the unequal share distribution in MPC. The analysis
and the numerical evaluation for a selected range of parameters is presented for
the aggregate of all MPC participants. We then discuss the tradeoff between
the performance improvements and the introduced overhead and recommend a
range of parameters which provide a good balance between the two.

5.1 Complexity Analysis

The computational and communication complexities are summarised in Tables
2 and 3. As variables such as k and l can be reduced to m, n and r, we present
the complexities with respect to the latter set of variables. We define Ccomp

Heterogeneous Secure Multi-Party Computation 207

and Ccomm respectively as group computational and communication complexity.
Note that k = l

3 and
∑m

i=1 li = l. For equal share distribution l = m and
for the unequal distribution l = r.m. All operations are assumed to have the
same computational complexity. Finally, for share generation using polynomial
interpolation is Ccomp = 3k − 1.

Input sharing: n contributors generate and distribute l shares. In total, there
are nl shares generated and distributed in the system. The computational com-
plexity per contributor can be calculated as l(3k − 1) and for the group is
n.l(3k − 1). For equal distribution MPC, Ccomp = n.m(m − 1) and for unequal
distribution MPC Ccomp = n.r.m(r.m − 1). The communication complexity for
each contributor is proportional to li (see Table 1) and for the group is equal
to the total number of shares in the system, l. Therefore, Ccomm = m for equal
distribution MPC and Ccomm = r.m for unequal distribution MPC.

Addition of two input values: the number of computations that each par-
ticipant performs is proportional to li and the total number of computations for
the group is equal to l. For equal share distribution MPC, Ccomp = m, and for
unequal share distribution MPC, Ccomp = l = r.m. Note that this operation
does not require any communications.

Multiplication of two input values: note that the complexity of computing
the recombination vector using polynomial interpolation is quadratically propor-
tional to the degree of the polynomial [13]. For each participant, the number of
computations required for equal and unequal distribution MPC depends on li.
For equal distribution MPC, each participant needs to compute local multipli-
cation (one computation), re-sharing of the local multiplication result (l(3k− 1)
computations), computing recombination vector of degree-l polynomial (l2 com-
putations) and to recover the result using weighted sum (2l − 1 computations).
In total, each participant conducts l2 + 3l.k + l operations and the correspond-
ing complexity for a group of m participant is Ccomp = 2m3 +m2. For unequal
share MPC, each participant needs to repeat local multiplication, re-sharing and
result recovery li times. In total, each participant calculates l2+3li.l.k+ li.l and
therefore for the group Ccomp = (r2 + r3)m3 + r2.m2.

Communication occurs during the re-sharing step. The communication over-
head for individual participant in equal MPC is l − 1 and hence Ccomm =
m(m − 1). For unequal MPC, each participant distributes li(l − li) messages,
resulting in Ccomm =

∑m
i=1 li(l − li) which depends on the share distribution.

To simplify the analysis in the next Subsection, we consider the case where, on
the average li = r which gives Ccomm =

∑m
i=1 r(l − r) = r2.m(m− 1).

Result reconstruction: the share distribution does not affect the computa-
tional complexity as the result is reconstructed by an entity (which is either one
of the participants or an independent entity). Ccomp is the sum of the complexity
of generating the recombination vector (k2) and computing the weighted sum
(2k − 1). Therefore the group complexity is given by k2 + 2k − 1. For equal

distribution MPC, Ccomp = m2

9 + 2m
3 − 1 and for unequal distribution MPC,

Ccomp = (rm)2

9 + 2rm
3 − 1.

208 M. Djatmiko et al.

Each participant needs to send the outputs to the reconstructing entity. The
communication overhead per participant in result reconstruction is equal to li.
Furthermore, the communication overhead for the group is equal to the total
number of shares in the system. Hence, for equal distribution MPC Ccomm = m
and for unequal distribution MPC Ccomm = l = r.m.

5.2 Numerical Evaluation

We numerically evaluate the group computation and communication overhead,
defined as the ratio of the complexity of the unequal distribution MPC to the
equal distribution MPC, i.e. the increase in operations or messages required. m
is varied between 6 and 120, and for unequal MPC r = 2, 5, 10.

Fig. 4(a) to 4(d) shows the overhead of unequal distribution MPC as m in-
creases. In all the graphs, the ratio converges to a value, which can be obtained
by dividing the complexity of unequal distribution MPC to equal distribution
MPC. For input sharing, the group overhead ratio is represented by Fig. 4(a),
where the ratio approaches r2 as m increases. Fig. 4(b) shows the overhead ratio
for addition of two values. We can observe that the ratio is equal to r, which is
expected from the results in Table 2. The group overhead for multiplication of
two values is presented in Fig. 4(c). The trend shows that the ratio approaches
r3+r2

2 for large m. Finally, Fig. 4(d) presents the overhead ratio for result recon-
struction. Similar to input sharing, the ratio approaches r2 when m increases.

 0

 20

 40

 60

 80

 100

 120

 20 40 60 80 100 120

O
ve

rh
ea

d
ra

tio

Number of participants

r=2:Equal
r=5:Equal

r=10:Equal

(a) Input Sharing

 2

 4

 6

 8

 10

 20 40 60 80 100 120

O
ve

rh
ea

d
ra

tio

Number of participants

r=2:Equal
r=5:Equal

r=10:Equal

(b) Addition

 0

 100

 200

 300

 400

 500

 600

 20 40 60 80 100 120

O
ve

rh
ea

d
ra

tio

Number of participants

r=2:Equal
r=5:Equal

r=10:Equal

(c) Multiplication

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 20 40 60 80 100 120

O
ve

rh
ea

d
ra

tio

Number of participants

r=2:Equal
r=5:Equal

r=10:Equal

(d) Result Reconstruction

Fig. 4. Group computational overhead in terms of the ratio of the computational com-
plexity of the unequal distribution MPC to the equal distribution MPC

Heterogeneous Secure Multi-Party Computation 209

The communication complexity in Table 3 shows that the ratio for input
sharing and result reconstruction is proportional to r while for multiplication of
two values the overhead ration is r2.

5.3 Discussion

We estimate the computation time of MPC operations on mobile devices to
evaluate the practicality of unequal share distribution. The multiplication of two
values is selected as it has the highest computational complexity among MPC
operations. The estimated computation time presented in Table 4 is computed by
using the expressions in Table 2 and the computation power of the mobile device
obtained using Linpack [11] benchmark (e.g., Android Nexus S device has the
computation power of 17 MFLOPS). While the MPC operations may not always
be floating point, this provides the upper bound on the expected values as the
floating point operations require more time to compute than integer operations.

Table 4. Estimated computation time for the multiplication of two values (ms)

�
��m
r

1 2 5 10

6 0.0046 0.027 0.33 2.36

12 0.018 0.10 1.29 9.39

30 0.11 0.64 8.0 58.41

60 0.43 10.19 127.24 932.47

The system is still considered to be practical if the computation time is below
or close to the Internet latency. Assuming that MPC participants are located
worldwide, the average latency is estimated to be 100 ms [17]. As can be seen
from Table 4, the computation time for small m is still well below the average
latency even for high resolution. The computation time becomes very high when
both m and r are high. The increase in communication load is considered less
critical than the complexity, as the size of MPC protocol messages is small [9].

Although the full impact of unequal distribution MPC will depend on the
protocol implementation and the computing platforms, we have clearly demon-
strated the improved performance of unequal distribution compared to that of
equal distribution on heterogeneous platforms. While the computation and com-
munication overheads increase with r, it is not always the case for the robustness
(see Sect. 4). Hence, it is important to carefully select the value of r.

6 Conclusion

We explore unequal share distribution in MPC used on heterogeneous platforms
and demonstrate that it can significantly improve the system’s robustness com-
pared to the standard case where all participants have the same number of
shares. However, such an improvement comes with the increase in complexity and

210 M. Djatmiko et al.

overhead. Therefore, we also consider the trade-off between the two in the choice
of parameter values. As a future work, we plan to investigate the methodology
to reduce the complexity and overhead of unequal share distribution in MPC.

References

1. Alba, E., Cotta, C.: Evolutionary algorithms. In: Handbook of Bioinspired Algo-
rithms and Applications, ch. 2, pp. 3–19. Chapman & Hall (2006)

2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Proceedings of the 20th
AnnualACMSymposiumonTheory ofComputing, pp. 1–10.ACM,NewYork (1988)

3. BOINC author: Boinc, http://boinc.berkeley.edu/wiki/System_requirements
4. Brickell, E.: Some Ideal Secret Sharing Schemes. In: Quisquater, J.-J., Vandewalle, J.

(eds.) EUROCRYPT1989. LNCS, vol. 434, pp. 468–475. Springer, Heidelberg (1990)
5. Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.: SEPIA: privacy-

preserving aggregation of multi-domain network events and statistics. In: Proceed-
ings of the 19th USENIX Conference on Security, p. 15. USENIX Association,
Berkeley (2010)

6. Cao, N., Yang, Z., Wang, C., Ren, K., Lou, W.: Privacy-preserving query over
encrypted graph-structured data in cloud computing. In: 2011 31st International
Conference on ICDCS, pp. 393–402 (June 2011)

7. Cramer, R., Damgaard, I., Nielsen, J.B.: Multiparty Computation, an Introduction
(May 2008)

8. Cramer, R., Damg̊ard, I., Maurer, U.: General Secure Multi-party Computation
from any Linear Secret-Sharing Scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)

9. Damg̊ard, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous Multiparty
Computation: Theory and Implementation. In: Jarecki, S., Tsudik, G. (eds.) PKC
2009. LNCS, vol. 5443, pp. 160–179. Springer, Heidelberg (2009)

10. Damg̊ard, I., Desmedt, Y., Fitzi, M., Nielsen, J.B.: Secure Protocols with Asym-
metric Trust. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp.
357–375. Springer, Heidelberg (2007)

11. Dongara, J.: Linpack for android,
http://www.netlib.org/benchmark/linpackjava/

12. Estrin, D.: Participatory sensing: applications and architecture [internet predic-
tions]. IEEE Internet Computing 14(1), 12–42 (2010)

13. Goldman, R.: Pyramid Algorithms: A Dynamic Programming Approach to Curves
and Surfaces for Geometric Modeling. In: Lagrange Interpolation and Neville’s
Algorithm, ch. 2. Morgan Kaufmann (2003)

14. Kannan, S., Gavrilovska, A., Schwan, K.: Cloud4home – enhancing data services
with @home clouds. In: 2011 31st International Conference on Distributed Com-
puting Systems (ICDCS), pp. 539–548 (June 2011)

15. Michiardi, P., Molva, R.: Core: a collaborative reputation mechanism to enforce
node cooperation in mobile ad hoc networks. In: Conference on Communications
and Multimedia Security, p. 121. Kluwer, BV (2002)

16. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
17. Verizon: Ip latency statistics (2011),

http://www.verizonbusiness.com/about/network/latency/
18. Wang, C., Ren, K., Wang, J., Urs, K.: Harnessing the cloud for securely solving

large-scale systems of linear equations. In: 2011 31st International Conference on
ICDCS, pp. 549–558 (June 2011)

19. Yao, A.C.: Protocols for secure computations. In: Annual IEEE Symposium on
Foundations of Computer Science, pp. 160–164 (1982)

http://boinc.berkeley.edu/wiki/System_requirements
http://www.netlib.org/benchmark/linpackjava/
http://www.verizonbusiness.com/about/network/latency/

	Heterogeneous Secure Multi-Party Computation
	Introduction
	MPC Overview and Related Works
	MPC in a Heterogeneous Environment
	MPC Protocol for Unequal Share Distribution

	Share Allocation and Its Impact
	Probability of Integrity and Privacy Failure
	Share Distribution Algorithms
	Performance Evaluation

	Heterogeneous MPC Overhead
	Complexity Analysis
	Numerical Evaluation
	Discussion

	Conclusion
	References

