Cooperative Dynamic Scheduling of Virtual
Machines in Distributed Systems

Flavien Quesnel and Adrien Lebre

ASCOLA Research Group, Ecole des Mines de Nantes/INRIA /LINA, Nantes, France

firstname.lastname@mines-nantes.fr

Abstract. Cloud Computing aims at outsourcing data and applications
hosting and at charging clients on a per-usage basis. These data and ap-
plications may be packaged in virtual machines (VM), which are them-
selves hosted by nodes, i.e. physical machines.

Consequently, several frameworks have been designed to manage VMs
on pools of nodes. Unfortunately, most of them do not efficiently address
a common objective of cloud providers: maximizing system utilization
while ensuring the quality of service (QoS). The main reason is that
these frameworks schedule VMs in a static way and/or have a centralized
design.

In this article, we introduce a framework that enables to schedule
VMs cooperatively and dynamically in distributed systems. We evaluated
our prototype through simulations, to compare our approach with the
centralized one. Preliminary results showed that our scheduler was more
reactive. As future work, we plan to investigate further the scalability of
our framework, and to improve reactivity and fault-tolerance aspects.

1 Introduction

Scheduling jobs has been a major concern in distributed computer systems.
Traditional approaches rely on batch schedulers [2] or on distributed operating
systems (OS) [7]. Although batch schedulers are the most deployed solutions,
they may lead to a suboptimal use of resources. They usually schedule processes
statically — each process is assigned to a given node and stays on it until its
termination — according to user requests for resource reservations, that may
be overestimated. On the contrary, preemption mechanisms were developed for
distributed OSes to make them schedule processes dynamically, in line with
their effective resource requirements. However, these mechanisms were hard to
implement due to the problem of residual dependencies [I].

Using system virtual machines (VM) [14], instead of processes, allows to per-
form dynamic scheduling of jobs while avoiding the issue of residual dependen-
cies [4I12]. However, some virtual infrastructure managers (VIM) still schedule
VMs in a static way [6J10]; it conflicts with a common objective of virtual infras-
tructure providers: maximizing system utilization while ensuring the quality of
service (QoS). Other VIMs implement dynamic VM scheduling [5I8I15], which
enables a finer management of resources and resource overcommitment. However,
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Fig. 1. Scheduling in a centralized architecture

they often rely on a centralized design, which prevents them to scale and to be
reactive. Scheduling is indeed an NP-hard problem, the time needed to solve it
grows exponentially with the number of nodes and VMs considered. Besides, it
takes time to apply a new schedule, because manipulating VMs is costly [4]. Dur-
ing the computation and the application of a schedule (cf. Fig. , centralized
managers do not enforce the QoS anymore, and thus cannot react quickly to QoS
violations. Moreover, the schedule may be outdated when it is eventually applied
if the workloads have changed (cf. Fig. . Finally, centralization can lead to
fault-tolerance issues: VMs may not be managed anymore if the master node
crashes, as it is a single point of failure (SPOF). Considering all the limitations
of centralized solutions, more decentralized ones should be investigated. Indeed,
scheduling takes less time if the work is distributed among several nodes, and
the failure of a node does not stop the scheduling anymore.

Several proposals have been made precisely to distribute dynamic VM man-
agement [BII3I17]. However, the resulting prototypes are still partially central-
ized. Firstly, at least one node has access to a global view of the system. Secondly,
several VIMs consider all nodes for scheduling, which limits scalability. Thirdly,
several VIMs still rely on service nodes, that are potential SPOFs.

In this paper, we introduce a VIM that enables to schedule and manage VMs
cooperatively and dynamically in distributed systems. We designed it to be non-
predictive and event-driven, to work with partial views of the system, and to
require no SPOF. We made these choices for the VIM to be reactive, scalable
and fault-tolerant. In our proposal, when a node cannot guarantee the QoS for
its hosted VMs or when it is under-utilized, it starts an iterative scheduling pro-
cedure (ISP) by querying its neighbor to find a better placement. If the request
cannot be satisfied by the neighbor, it is forwarded to the following one until the
ISP succeeds. This approach allows each ISP to consider a minimum number of
nodes, thus decreasing the scheduling time, without requiring a central point. In
addition, several ISPs can occur independently at the same moment throughout
the infrastructure, which significantly improves the reactivity of the system. It
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should be noted that nodes are reserved for exclusive use by a single ISP, to
prevent conflicts that can occur if several ISPs do concurrent operations on the
same nodes or VMs. In other words, scheduling is performed on partitions of the
system, that are created dynamically. Moreover, communication between nodes
is done through a fault-tolerant overlay network, which relies on distributed hash
table (DHT) mechanisms to mitigate the impact of a node crash [9]. We eval-
uated our prototype by means of simulations, to compare our approach with
the centralized one. Preliminary results were encouraging and showed that our
scheduler was reactive even if it had to manage several nodes and VMs.

The remainder of this article is structured as follows. Section 2 presents re-
lated work. Section 3 gives an overview of our proposal, while Sect. 4 details its
implementation and Sect. 5 compares it to a centralized proposal [5]. Finally,
Sect. 6 discusses perspectives and Sect. 7 concludes this article.

2 Related Work

This section presents some work that aim at distributing resource management,
especially those related to the dynamic scheduling of VMs. Contrary to previous
solutions that performed scheduling periodically, recent proposals tend to rely
on an event-based approach: scheduling is started only if an event occurs in the
system, for example if a node is overloaded.

In the DAVAM project [16], VMs are dynamically distributed among man-
agers. When one VM has not enough resources, its manager tries to relocate it
by considering all resources of the system (the manager builds this global view
by communicating with its neighbors).

Another proposal [13] relies on peer-to-peer networks. It is very similar to the
centralized approaches, except that there is no service node, so that it is more
fault-tolerant. When an event occurs on a node, this node collects monitoring
information on all nodes, finds which nodes can help it to fix the problem, and
performs appropriate migrations.

A third proposition [I7] relies on the use of a service node that collects mon-
itoring information on all worker nodes. When an event occurs on a worker
node, this node retrieves information from the service node, computes a new
schedule and performs appropriate migrations. This approach does not consider
fault-tolerance issues.

Snooze [3] has a hierarchical design: nodes are dynamically distributed among
managers, a super manager oversees managers and has a global view of the
system. When an event occurs, it is processed by a manager that considers all
nodes it is in charge of. Snooze design is close to the Hasthi [11] one; the main
difference is that Snooze targets virtualized systems and single system images,
while Hasthi is presented to be system agnostic.

3 Proposal Overview

In this section, we describe the theoretical foundations of our proposal. After
giving its main characteristics, we explain shortly how it works.
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3.1 Main Characteristics

Reactivity, scalability and fault-tolerance are desired properties to make a VIM
with a better QoS management.

Keeping that in mind, we made the VIM follow an event-based approach. In
this context, scheduling is started only when it is required, on the reception of
events, leading to better reactivity. This contrasts with more traditional solu-
tions where scheduling is started periodically. This also differs from a predictive
approach, where new schedules are computed in advance to anticipate work-
load fluctuations; this kind of approach requires knowledge on workload profiles,
which is not always possible.

An event may be generated each time a virtualized job (vjob) [4] is submitted
or terminates, when a node is overloaded or underloaded, or when a system
administrator wants to put a node into maintenance mode.

Besides relying on events, our VIM is comparable to peer-to-peer systems.

There is no service node, all nodes are equal. Each node can (i) be used to
submit vjobs, (ii) generate events and (iii) try to solve events generated by other
nodes.

A node monitors only its local resources. However, it can get access on-demand
to a partial view of the system by communicating with its neighbors by means of
an overlay network similar to those used to implement distributed hash tables.
To facilitate understanding, we consider that the communication path is a ring.
Accessing a partial view of the system improves scalability (computing and ap-
plying a schedule is faster) while the DHT mechanisms enhance fault-tolerance
(the nodes can continue to communicate transparently even if several of them
crash).

3.2 The Iterative Scheduling Procedure

When a node N; retrieves its local monitoring information and detects a problem
(e.g. it is overloaded), it starts a new iterative scheduling procedure by generating
an event, reserving itself for the duration of this ISP, and sending the event to
its neighbor, node N;y1 (cf. Fig. ).

Node N;;1 reserves itself, updates node reservations and retrieves monitoring
information on all nodes reserved for this ISP, i.e. on nodes N; and N; ;. It then
computes a new schedule. If it fails, it forwards the event to its neighbor, node
NH_Q.

Node N;12 performs the same operations as node N, 1. If the computation of
the new schedule succeeds, node N, applies it (e.g. by performing appropriate
VM migrations) and finally cancels the reservations, so that nodes N;, N;;+1 and
N,y are free to take part in another ISP.

Considering that a given node can take part only in one of these iterative
scheduling procedures at a time, several ISPs can occur simultaneously and
independently throughout the infrastructure, thus improving reactivity.

Note that if a node receives an event while it is reserved, it just forwards it
to its neighbor.
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Fig. 2. Iterative scheduling procedure

4 Implementation
4.1 Current State

We implemented our proposal in Java. The prototype can currently process
‘overloaded node’ and ‘underloaded node’ events; these events are defined by
means of CPU and memory thresholds by the system administrator. Moreover,
the overlay network is a simple ring (cf. Fig. B)) without any fault-tolerance
mechanism, i.e. it cannot recover from a node crash. Furthermore, the prototype
manipulates virtual VMs, i.e. Java objects.

4.2 Node Agent

The VIM is composed of node agents (NA).

There is one NA on every node, each NA being made of a knowledge base, a
resource monitor, a client, a server and a scheduler (cf. Fig. 3.

The knowledge base contains various types of information. Some information
is available permanently: monitoring information about the local node (resources
consumed and VMs hosted), a stub to contact the neighbor, and a list of events
generated by the node. Other information is accessible only during an iterative
scheduling procedure: monitoring information about the nodes reserved (if a
scheduler is running on the node) and a stub to contact the scheduler that tries
to solve the event.

The resource monitor retrieves node monitoring information periodically and
updates the knowledge base accordingly. If it detects a problem (e.g. the node is
overloaded), it starts a new ISP by generating an event, reserving the node for
this ISP and sending the event to the neighbor by means of a client.
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Fig. 3. Implementation overview

A client is instantiated on-demand to send a request or a message to a server.

The server processes requests and messages from other nodes. In particular,
it launches a scheduler when it receives an event.

The scheduler first retrieves monitoring information from the nodes taking
part in an ISP. It then tries to solve the corresponding event by computing a
new schedule and applying it, if possible. If the schedule is applied successfully,
the scheduler finally cancels node reservations. The prototype is designed so that
any dynamic VM scheduler may be used to compute and apply a new schedule.
Currently, the prototype relies on Entropy [5], with consolidation as the default
scheduling policy.

5 Experiments

We compared our approach with the Entropy [5] one by means of simulation.
Basically, the simulator injected a random CPU workload into each virtual VM
and waited until the VIM solves all ‘overloaded node’ issues. Comparison cri-
teria included the average time to solve an event, the time elapsed since the
load injection until all ‘overloaded node’ issues are solved, and the cost of the
schedule to apply. This cost is related to the kind of actions to perform on VMs
(e.g. migrations) and to the amount of memory allocated to the VMs that are
manipulated [5].

The experiments were done on a HP Proliant DL165 G7 with 2 CPUs (AMD
Opteron 6164 HE, 12 cores, 1.7 GHz) and 48 GB of RAM. The software stack
was composed of Debian 6/Squeeze, Sun Java VM 6 and Entropy 1.1.1. The
simulated nodes had 2 CPUs (2 GHz) and 4 GB of RAM. The simulated VMs
had 1 virtual CPU (2 GHz) and 1 GB of RAM. The virtual CPU load could take
only one of the following values (in percentage): 0, 20, 40, 60, 80, 100. Entropy
has timeouts to prevent it to spend too much time computing a new schedule;
these timeouts were set to twice the number of nodes considered (in seconds).
Our VIM considers that a node is overloaded if the VMs hosted try to consume
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more than 100% of CPU or RAM; it is underloaded if less than 20% of CPU
and less than 50% of RAM are used.

As we can see on Table [Il our VIM is more reactive, i.e. it quickly solved
individual events, especially the ‘overloaded node’ ones. This can be explained
by the fact that our VIM generally considers a few number of nodes, compared
to Entropy. This leads to a smaller cost for applying schedules.

Table 1. Experimental results

128 VM / 64 nodes 256 VM / 128 nodes
DVMS  Entropy DVMS  Entropy

Iteration length (s) Avg 83 198 114 475
(time between two Std dev 41 56 82 37
iterations) Max 232 240 427 489
. ‘ Avg 12 N/A 12 N/A
;Iél)me to solve an event Std dev 18 N/A 19 N/A
Max 149 N/A 299 N/A

Time to solve an Avg 6 N/A 6 N/A
overloaded node event  Std dev 12 N/A 12 N/A
(s) Max 52 N/A 48 N/A
Number of nodes Avg 8 64 10 128
considered (partition Std dev 8 0 14 0
size) Max 60 64 115 128
Maximum cost for Avg 7134 24405 8479 39977
applying the schedule  Std dev 2690 12798 2756 20689
(arbitrary unit) Max 13312 49152 18432 87040
Percentage of nodes Avg 55 o3 b4 o3
hosting VMs (%) Std dev 2 2 2 2
Max 58 58 59 59

(Distributed VM Scheduler vs Entropy Centralized approach)
Avg: average values, Std dev: standard deviation, Max: worst case

In details, the first row shows the iteration length that corresponds to the
required time to solve all events occurring during one iteration. The second row
gives the time to solve one event. That is the time between the event appearance
and its resolution. The third row focuses on overloaded events. These events refer
to QoS violations and must be solved as quickly as possible. For these two rows,
we do not mention the values of the centralized approach since it relies on a
periodic scheme: Entropy monitors the configuration at the beginning of the
iteration, analyzes the configuration and applies the schedule at the end. The
fourth row shows the size of each partition: i.e. the number of nodes considered
for a scheduling. As we can see on the fifth row, the smaller the partition is, the
cheaper is the reconfiguration cost. However, it is worth nothing that the values
for the Entropy approach, as previously, consider the total cost for the whole
iteration whereas the cost of the reconfiguration related to one event is considered
for the DVMS approach. As a consequence, the sum of each reconfiguration in
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the DVMS approach can be higher than the cost corresponding of the Entropy
one. However, since we are trying to solve each event as soon as possible, we are
not interested by the global cost but by the cost for one event. Finally, the last
row presents the consolidation rate, which is the percentage of nodes hosting
at least one VM. We can see that, despite the fact that our approach is more
reactive, it does not impact negatively the consolidation rate.

6 Future Work

Several ways should be explored to improve the prototype, with regard to event
management, fault-tolerance and network topology.

Event Management. Event management could be enhanced by merging it-
erative solving procedures, rethinking event definition and implementing other
kinds of events.

Using ISPs can result in deadlocks, as they rely on dynamic partitions of
the system. A deadlock occurs when each node belongs to a partition and all
partitions need to grow, i.e. each ISP needs more nodes to solve the corresponding
event. Deadlocks can be resolved by merging ISPs, which implies to merge the
related events and partitions. A basic algorithm was implemented to do that,
but it will not be detailed in this article due to space limitations.

ISP merging can also be used to combine complementary events (e.g. an ‘over-
loaded node’ event with an ‘underloaded node’ one) to make ISPs converge faster,
thus increasing reactivity.

‘Overloaded node’ and ‘underloaded node’ events are currently defined by
means of CPU and memory thresholds. It may not be always relevant. For ex-
ample, if a load balancing policy is used while the global load is low, many
nodes will send ‘underloaded node’ events that cannot be solved. Refining event
definition by taking the neighbors’ load into account may be a solution.

Other kinds of events should be implemented, like those related to vjob sub-
missions or terminations, or to a node that is put into maintenance mode. More-
over, it may be interesting to take other resources than CPU and memory into
account, like network bandwidth.

Fault-Tolerance. Currently, the VIM is not fault-tolerant: if a node crashes, it
breaks the overlay network. This can be fixed with mechanisms used in DHT's [9].

Network Topology. The current prototype does not take the network topology
into account. However, the knowledge of network bandwidth between each pair
of nodes could lead to faster migrations in a heterogeneous system.

7 Conclusion

In this article, we proposed a new approach to schedule VMs dynamically and
cooperatively in distributed systems, keeping in mind the following objective:
maximizing system utilization while ensuring the quality of service.
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We presented the current state of implementation of a prototype and we eval-
uated it by means of simulations, to compare our approach with the centralized
one. Preliminary results were encouraging and showed that our solution was
more reactive and scalable.

On-going work has focused on performing larger-scale simulations and on
evaluating the prototype with real VMs. Future work will be done with regard
to event management, fault-tolerance and network topology. This work fits into
a broader project that seeks to implement a framework for managing VMs in
distributed systems the same way an OS manages processes on a local machine.
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ing the Grid’5000 experimental testbed, being developed under the INRTA AL-
ADDIN development action with support from CNRS, RENATER and several
Universities as well as other funding bodies (see https://www.grid5000.fr).
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