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Abstract. This paper evaluates the performance of the HPC Challenge
benchmarks in several virtual environments, including VMware, KVM
and VirtualBox. The HPC Challenge benchmarks consist of a suite of
tests that examine the performance of HPC architectures using ker-
nels with memory access patterns more challenging than those of the
High Performance LINPACK (HPL) benchmark used in the TOP500 list.
The tests include four local (matrix-matrix multiply, STREAM, Rando-
mAccess and FFT) and four global (High Performance Linpack – HPL,
parallel matrix transpose – PTRANS, RandomAccess and FFT) kernel
benchmarks.

The purpose of our experiments is to evaluate the overheads of the
different virtual environments and investigate how different aspects of
the system are affected by virtualization. We ran the benchmarks on an
8-core system with Core i7 processors using Open MPI. We did runs on
the bare hardware and in each of the virtual environments for a range of
problem sizes. As expected, the HPL results had some overhead in all the
virtual environments, with the overhead becoming less significant with
larger problem sizes. The RandomAccess results show drastically differ-
ent behavior and we attempt to explain it with pertinent experiments.
We show the cause of variability of performance results as well as major
causes of measurement error.

1 Introduction

With the advent of cloud computing, more and more workloads are being moved
to virtual environments. High Performance Computing (HPC) workloads have
been slow to migrate, as it has been unclear what kinds of trade-offs will occur
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when running these workloads in such a setup [10,13]. We evaluated the over-
heads of several different virtual environments and investigated how different
aspects of the system are affected by virtualization.

The virtualized environments we investigated were VMware Player, KVM and
VirtualBox. We used the HPC Challenge (HPCC) benchmarks [6] to evaluate
these environments. HPC Challenge examines performance of HPC architectures
using kernels with memory access patterns more challenging than those of the
High Performance LINPACK (HPL) benchmark used in the TOP500 list. The
tests include four local (matrix-matrix multiply, STREAM, RandomAccess and
FFT) and four global (High Performance Linpack – HPL, parallel matrix trans-
pose – PTRANS, RandomAccess and FFT) kernel benchmarks.

We ran the benchmarks on an 8-core system with Core i7 processors using
Open MPI. We ran on bare hardware and inside each of the virtual environments
for a range of problem sizes.

As expected, the HPL results had some overhead in all the virtual environ-
ments, with the overhead becoming more significant with larger problem sizes
and VMware Player having the least overhead. The latency results showed higher
latency in the virtual environments, with KVM being the highest.

We do not intend for this paper to provide a definitive answer as to which
virtualization technology achieves the highest performance results. Rather, we
seek to provide guidance on more generic behavioral features of various virtual-
ization packages and to further the understanding of VM technology paradigms
and their implications for performance-conscious users.

2 Related Work

There have been previous works that looked at measuring the overhead of HPC
workloads in a virtualized environment. Often the works measure timing external
to the guest, or, when they use the guest, they do not explain in great detail what
problems they encountered when trying to extrapolate meaningful performance
measurements: the very gap we attempt to breach with this paper.

Youseff et al. [14] measured HPC Challenge and ASCI Purple benchmarks.
They found that Xen has better memory performance than real hardware, and
not much overhead.

Walters et al. [12] compared the overheads of VMWare Server (not ESX), Xen
and OpenVZ with Fedora Core 5, Kernel 2.6.16. They used NetPerf and Iozone
to measure I/O and the NAS Parallel benchmarks (both serial, OpenMP and
MPI) for HPC. They found Xen best in networking, OpenVZ best for filesystems.
On serial NAS, most are close to native, some even ran faster. For OpenMP runs,
Xen and OpenVZ are close to real hardware, but VMware has large overhead.

Danciu et al. [1] measured both high-performance and high-throughput work-
loads on Xen, OpenVZ, and Hyper-V. They used LINPACK and Iometer. For
timing, they used UDP packets sent out of the guest to avoid timer scaling is-
sues. They found that Xen ran faster than native on many workloads, and that
I/O did not scale well when running multiple VMs on the same CPU.
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Han et al. [2] ran Parsec and MPI versions of the NAS Parallel benchmarks
on Xen and kernel 2.6.31. They found that the overhead becomes higher when
more cores are added.

Huang et al. [4] ran the MPI NAS benchmarks and HPL inside of Xen. They
measured performance using the Xenoprof infrastructure and found most of the
overhead to be I/O related.

Li et al. [5] ran SPECjvm2008 on a variety of commercial cloud providers.
Their metrics include cost as well as performance.

Mei et al. [7] measured performance of webservers using Xenmon and Xentop.
Performance of OpenMP benchmarks was studied in detail and showed a

wide range of overheads that depended on the work load and parallelization
strategies [9].

3 Setup

3.1 Self-monitoring Results

When conducting large HPC experiments on a virtualized cluster, it would be
ideal if performance results could be gathered from inside the guest. Most HPC
workloads are designed to be measured that way, and doing so requires no change
to existing code.

Unfortunately measuring time from within the guest has its own difficulties.
These are spelled out in detail by VMware [11]. Time that occurs inside a guest
may not correspond at all to outside wallclock time. The virtualization software
will try its best to keep things relatively well synchronized, but, especially if
multiple guests are running, there are no guarantees.

On modern Linux, either gettimeofday() or clock gettime() are used by
most applications to gather timing information. PAPI, for example, uses
clock gettime() for its timing measurements. The C library translates these calls
into kernel calls and executes them either by system call, or by the faster VDSO
mechanism that has lower overhead. Linux has a timer layer that supports these
calls. There are various underlying timers that can be used to generate the tim-
ing information, and an appropriate one is picked at boot time. The virtualized
host emulates the underlying hardware and that is the value passed back to
the guest. Whether the returned value is “real” time or some sort of massaged
virtual time is up to the host.

A list of timers that are available can be found by looking at the file
/proc/timer_list.

There are other methods of obtaining timing information. The rdtsc call
reads a 64-bit time-stamp counter on all modern x86 chips. Usually this can be
read from user space. VMs like VMware can be configured to pass through the
actual system TSC value, allowing access to actual time. Some processor imple-
mentations stop or change the frequency of the TSC during power management
situations, which can limit the usefulness of this resource.

The RTC (real time clock) can also generate time values and can be accessed
directly from user space. However, this timer is typically virtualized.

/proc/timer_list
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Others have attempted to obtain real wall clock time measurements by sending
messages outside the guest and measuring time there. For example, Danciu et
al. [1] send a UDP packet to a remote guest at the start and stop of timing,
which allows outside wallclock measurements. We prefer not to do this, as it
requires network connectivity to the outside world that might not be available
on all HPC virtualized setups.

For our measurements we use the values returned by the HPC Challenge
programs, which just call the gettimeofday() interface invoked by MPI Wtime().

3.2 Statistical Methods

As the VM environments are one step removed from the hardware and, conse-
quently, introduce additional sources of measurement errors, we make an effort to
counteract this uncertainty with a number of statistical techniques. Each of the
results we report is a statistical combination of up to five measurements, each
of which was taken under the same (or nearly the same) circumstances. One
exception is the accuracy-drift experiments from Section 5 that were explicitly
meant to show variability of performance measurement caused by inconsistent
state of the tested VMs. When applicable, we also indicate the standard devi-
ation on our graph charts to indicate the variability and a visual feedback on
trustworthiness of the particular measurement.

To combine multiple data points, we use the minimum function for time and
the maximum for performance. In our view, these two best filter out randomly
injected overheads that could potentially mask the inherent behavior of the
virtual environments we tested.

3.3 Hardware and Software Used in Tests

For our tests we used an Intel Core i7 platform. The featured processor was a
four-core Intel Xeon X5570 clocked at 2.93 GHz. The VMware Player was version
3.1.4, VirtualBox – 4.0.8, and KVM was compatible with kernel version 2.6.35.
All the VMMs were hosted on Linux with kernel 2.6.35. We aim this analysis
more towards the consumer grade solutions. Our intention is to focus on server
and enterprise level solutions in the follow up virtualization work. This would
close the gap in the test environments and extend our investigation to Xen and
VMware ESXi products. The decision is driven also by our ability to perform
our tests in parallel in multiple instances of the same hardware to accelerate the
testing process while retaining their quality by keeping the setup and running
environment consistent through out all runs.

4 Disparity between CPU and Wall Clock Timers

Among other things, HPCC attempts to underscore the difference between CPU
time and wall clock time in performance measurements. The former may sim-
ply be measured with a C library call clock() and the latter with either BSD’s
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Fig. 1. Variation in percentage difference between the measured CPU and wall clock
times for MPIRandomAccess test of HPC Challenge. The vertical axis has been split
to offer a better resolution for the majority of data points.

gettimeofday() or clock gettime() from real-time extension of POSIX. A common
complaint is the low resolution of the primitives for measuring the CPU time.
Under greater scrutiny, the complaint stems from the workings of CPU time
accounting inside the kernel – the accuracy is closely related to the length of the
scheduler tick for computationally intensive processes. As a result, CPU and wall
clock time tend to be in large disagreement for such workloads across shorter
timing periods. This observation is readily confirmed with the results from Fig-
ure 1. The figure plots the relative difference between readings from both timers
across a large set of input problem sizes:

∣
∣
∣
∣

TCPU

Twall
− 1

∣
∣
∣
∣
× 100% . (1)

We may readily observe nearly a 50% difference between the reported CPU and
wall clock times for small problem sizes on bare metal. The discrepancy dimin-
ishes for larger problem sizes that require longer processing times and render
low timer resolution much less of an issue. In fact, the difference drops below a
single percentage point for most problems larger than 222. Virtual environments
do not enjoy such consistent behavior though. For small problem sizes, both
timers diverge only by about 5%. Our understanding attributes this behavior to
a much greater overhead imposed by virtual environments on system calls such
as the timing primitives that require hardware access. More information on the
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Fig. 2. Variation in percentage difference between the measured wall clock times for
HPL (a computationally intensive problem) for ascending and descending orders of
problem sizes during execution

sources of this overhead may be found in Section 2. In summary, for a wide range
of problem sizes we observed nearly an order of magnitude difference between
the observed behavior of CPU and wall clock time.

Another common problem is a timer inversion whereby the system reports
that the process’ CPU time exceeds the wall clock time: TCPU > Twall. On bare
metal, the timer inversion occurs due to a large difference in relative accuracy
of both timers and is most likely to occur when measuring short periods of time
that usually result in large sampling error [3]. This is not the case inside all of the
virtual machines we tested. The observed likelihood of timer inversion for virtual
machines is many-fold greater than the bare metal behavior. In addition, the
inversions occur even for some of the largest problem sizes we used: a testament
to a much diminished accuracy of the wall clock timer that we attribute to the
virtualization overhead.

5 Accuracy-Drift of Timers with VM State Accumulation

Another important feature of virtual environments that we investigated was the
accuracy drift of measurements with respect to the amount of accumulated state
within the VMM. This directly relates to a common workflow within benchmark-
ing and performance tuning communities whereby a given portion of the code
is run repeatedly until a satisfactory speedup is reached. Our findings indicate
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that this may lead to inconsistent results due to, in our understanding, a change
of state within software underlying the experiment. We understand that this
may be related to the fact that VMs maintain internal data structures that
evolve over time and change the virtualization overheads. To illustrate this phe-
nomenon, we ran HPL, part of the HPC Challenge suite, twice with the same
set of input problem sizes. In the first instance, we made the runs in ascending
order: starting with the smallest problem size and ending with the largest. Then
after a reboot, we used the descending order: the largest problem size came first.
On bare metal, the resulting performance shows no noticeable impact. This is
not the case inside the VMs as shown in Figure 2. We plot the percentage dif-
ference of times measured for the same input problem size for the ascending and
descending orders of execution:

∣
∣
∣
∣

Tdescending

Tascending
− 1

∣
∣
∣
∣
× 100% . (2)

The most dramatic difference was observed for the smallest problem size of
1000. In fact, it was well over 50% for both VirtualBox and VMware Player. We
attribute this to the short running time of this experiment and, consequently,
a large influence of the aforementioned anomaly. Even if we were to dismiss
this particular data point, the effects of the accuracy drift are visible across the
remaining problem sizes but the pattern of influence is appreciably different.
For VMware Player, the effect gradually abates for large problem sizes after
attaining a local maximum of about 15% at 4000. On the contrary, KVM shows
comparatively little change for small problem sizes and then drastically increases
half way through to stay over 20% for nearly the rest of the large problem sizes.
And finally, the behavior of VirtualBox initially resembles that of VMware Player
and later the accuracy drift diminishes to fluctuate under 10%.

From a performance measurement standpoint this resembles the problem
faced when benchmarking file systems. The factors influencing the results include
the state of the memory file cache and the level of file and directory fragmenta-
tion [8]. In virtual environments, we also observe this persistence of state that
in the end influences the performance of VMs and the results observed inside its
guest operating systems. Clean boot results proved to be the most consistent in
our experiments. However, we recognize that, for most users, rebooting the VM
after each experiment might not be the feasible deployment requirement.

6 Results

In previous sections we have outlined the potential perils of accurate performance
evaluation of virtual environments. With these in mind, we attempt to show in
this section the performance results we obtained by running the HPC Challenge
suite across the tested VMs. We consider the ultimate goal for a VM to match
the performance of the bare metal run. In our performance plots then we use
a relative metric – the percentage fraction of bare metal performance that is
achieved inside a given VM:
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Fig. 3. Percentage of bare metal performance achieved inside VMware Player, Virtu-
alBox, and KVM for HPC Challenge’s HPL test. Each data bar shows the standard
deviation bar to indicate the variability of the measurement.

performanceVM

performancebare metal

× 100% . (3)

Due to space constraints we cannot present a detailed view of all of our results.
Instead, we focus on two tests from the HPC Challenge suite: HPL and MPI-
RandomAccess. By selecting these two tests we intend to contrast the behavior
of two drastically different workloads. The former represents codes that spend
most of their running time inside highly optimized library kernels that nearly op-
timally utilize the cache hierarchy and exhibit very low OS-level activity which
could include servicing TLB misses and network card interrupts required for
inter-process communication. Such workloads are expected to suffer little from
the introduction of a virtualization layer and our results confirm this as shown
in Figure 3. In fact, we observed that virtualization adds very little overhead for
such codes and the variability of the results caused by the common overheads is
relatively small across a wide range of input problem sizes. On the contrary, MPI-
RandomAccess represents workloads that exhibit high demand on the memory
subsystem including TLBs and require handling of very large counts of short
messages exchanged between processors. Each of these characteristics stresses
the bare metal setup and is expected to do so inside a virtualized environment.
Our results from Figure 4 fully confirm this prediction. The virtualization over-
head is very high and could reach 70% performance loss. Furthermore, a large
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Fig. 4. Percentage of bare metal performance achieved inside VMware Player, Virtu-
alBox, and KVM for HPC Challenge’s MPIRandomAccess test. Each data bar shows
the standard deviation bar to indicate the variability of the measurement.

standard deviation of the measurements indicates to us that long running codes
of this type can accumulate state information inside the VM that adversely af-
fects the accuracy of the measurements. Such accumulated accuracy drift may
persist across a multitude of input problem sizes.

7 Conclusions and Future Work

In this paper we have shown how virtualization exacerbates the common prob-
lems of accurate performance measurement. Furthermore, we have observed new
obstacles to reliable measurements which we related to the accumulation of state
information that is internal to all the tested VMs. This leads us to present our
results with clear indicators of their statistical quality and a detailed description
of settings and circumstances of the runs to render them repeatable. This, we be-
lieve, should be strongly stressed for measuring performance with virtualization
enabled – even more so than it is customary for the bare metal runs.

We also showed two drastically different workloads in terms of how they stress
the virtualization layer. In the future, we will focus on detailed examination
of these workloads and devising new ones that will help us better understand
the resulting overheads and performance variability and how hardware features
such as nested paging could help. As mentioned earlier we would like to extend
our tests beyond desktop-oriented solutions. In particular, we are looking into
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testing Xen and VMware ESXi to see how our observations carry over to these
technologies. They are much closer to the hardware and we believe that it will
give them an advantage over the virtualization platforms presented in this paper.
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