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Abstract. Virtualization provides increased control and flexibility in
how resources are allocated to applications. However, common resource
provisioning mechanisms do not fully use these advantages; either they
provide limited support for applications demanding quality of service,
or the resource allocation complexity is high. To address this problem
we propose a novel resource management architecture for virtualized
infrastructures based on a virtual economy. By limiting the coupling
between the applications and the resource management, this architecture
can support diverse types of applications and performance goals while
ensuring an efficient resource usage. We validate its use through simple
policies that scale the resource allocations of the applications vertically
and horizontally to meet application performance goals.

1 Introduction

Managing resources of private clouds while providing application QoS guaran-
tees is a key challenge. A cloud computing platform needs to host on its limited
capacity a variety of applications (e.g., web applications, scientific workloads)
that possibly require different QoS guarantees (e.g., throughput, response time).
Thus, the resource management system is required to be flexible enough to meet
all user demands while ensuring an efficient resource utilization. The flexibility of
the resource management can be achieved by decoupling the application perfor-
mance management from the infrastructure resource management and passing
information about applications to the infrastructure in a generic way. An ef-
ficient resource management is possible by using virtualization technologies to
dynamically provision the resources in a fine-grained manner and to transpar-
ently balance the load between physical machines. However, common resource
management systems either fail to address these requirements or they achieve
them through algorithms that have a high computational complexity and would
not scale well with the size of the infrastructure [6].
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In this paper we present a resource management architecture for cloud plat-
forms that addresses the flexibility and efficiency issues through a market-based
approach. Each application is managed by a local agent that determines the
resource demand that meets the application’s performance goal, while a global
controller performs the infrastructure resource management based on the agent’s
communicated application preferences. The agent communicates its application
preferences by submitting bids expressing their willingness to pay for resources.
The global controller uses a proportional-share rule [5] to allocate resources to
applications according to their bid. The resource price variation provides ser-
vice differentiation between applications while the proportional share ensures
a maximum utilization of infrastructure resources. While this model does not
necessarily lead to a global optimal resource allocation, it allows applications
to closely meet their performance goals while keeping a simple resource man-
agement. We illustrate how this model supports application performance goals
through agents that scale the allocation of their applications using feedback-
based control policies. We simulated our architecture and validated the policies
in contention scenarios using the CloudSim toolkit [2].

This paper is organized as follows. In Section 2 we give an overview of our
solution and describe the main architecture elements and in Section 3 we describe
how the architecture can be used to execute different application types. Section 4
describes the related work. Finally, we conclude and present future steps in
Section 5.

2 Architecture

In this Section we describe the architecture of our solution. We detail the main
components and the interaction between them. We then describe the current im-
plementation of the proportional-share allocation algorithm and the assumptions
that we make regarding the infrastructure’s virtual currency management.

Overview. Figure 1 shows the main architecture components. Our architecture
consists of distributed application managers that receive a budget of credits from
a budget manager and execute applications submitted by users. To request re-
sources for their applications, the managers communicate with a resource con-
troller that provisions them virtual clusters (i.e., groups of virtual machines)
from a virtual infrastructure manager and charges them for their used resources.
This virtual infrastructure manager (e.g. OpenNebula [9]) supports operations
related to creation, destruction, and dynamic placement of virtual machines. We
also consider that it is capable of providing monitoring information about the
physical hosts and virtual machines to the resource controller.

The application managers are started when the applications are submitted to
the infrastructure and manage the application’s life-cycle. A manager requests
resources for its application by submitting bids of the form b(n, rmin, s) to a
resource controller. This bid specifies the size of the virtual cluster, n, a mini-
mum resource allocation, rmin, that a resource controller should ensure for any
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Fig. 1. Architecture overview

instance of the virtual cluster and the manager’s willingness to pay for the al-
located resources, s (spending rate). After its virtual cluster is allocated, the
manager starts its application. During the application execution the manager
monitors the application and uses application performance metrics (e.g., number
of processed tasks/time unit), or system information (e.g., resource utilization
metrics) to adapt its resource request to its application performance goal. This
can be done in two different ways: (i) by changing the virtual cluster size; (ii)
by changing the spending rate for the virtual cluster.

The resource controller allocates a resource fraction (e.g., 10% CPU or 1MB
memory) on a physical node for each virtual machine instance of a virtual clus-
ter. This allocation is enforced by a Virtual Machine Monitor (e.g., Xen [1])
and is proportional with the manager’s spending rate and inversely proportional
with the current resource price. If the allocation becomes lower than the min-
imum resource allocation requested by the manager then the virtual cluster is
preempted.

Resource Allocation. The resource controller recomputes the allocations for all
running virtual machines periodically. At the beginning of each time period, the
resource controller aggregates all newly received and existing requests and dis-
tributes the total infrastructure capacity between them through a proportional-
share allocation rule. This rule is applied as follows.

We consider the infrastructure has a total capacity C that needs to be shared
between M virtual machine instances. Each virtual machine receives a resource
amount defined as a =

bj
P ·C, where si is the spending rate per virtual machine

and P = ΣM
i=1si is the total resource price. However, because the capacity of the

infrastructure is partitioned between different physical nodes, after computing
the allocations we may reach a situation in which we cannot accommodate all the
virtual machines on the physical nodes. Thus, instead of computing the allocation
from the total infrastructure capacity, we compute the allocation considering
the node capacity and we try to minimize the resulting error. For simplicity we
assume that the physical infrastructure is homogeneous and we treat only the
CPU allocation case.
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The algorithm applied by the resource controller has the following steps. To
ensure that the allocation of the virtual machine instances belonging to the
same group is uniform, the spending rate of the group is distributed between
the virtual machine instances in an equal way. Then, the instances are sorted
in descending order by their spending rates s. Afterwards, each virtual machine
instance from each virtual cluster is assigned to the node with the smallest price
p = Σm

k=1sk, given that there arem instances already assigned to it. This ensures
that the virtual machine gets the highest allocation for the current iteration,
fully utilizing the resources and minimizing the allocation error. The resource
allocations for the current period are computed by iterating through all nodes
and applying the proportional-share rule locally.

Finally, the application managers are charged with the cost of using resources
for the previous period, c = s

MΣM
i=1ui; ui represents the total amount of used

resource by a virtual machine instance i belonging to the virtual cluster of sizeM.

Budget Management. The logic of distributing amounts of credits to application
managers is abstracted by the budget manager component of our architecture.
For now we consider that this entity applies a credit distribution policy that
follows the principle ”use it or loose it”. That is, each manager receives an
amount of credits at a large time interval. To prevent hoarding of credits, the
manager is not allowed to save any credits from one time interval (i.e., renew
period) to another. We also consider that this amount of credits can come from
an user’s account, at a rate established by the user itself; we don’t deal with the
management of the user’s credits in the rest of this paper.

3 Use Cases

We illustrate how the agents can adapt either their spending rates or their virtual
cluster size to take advantage of the resource availability and to meet specific
application goals. We consider two examples: (i) a rigid application (e.g., MPI
job) that needs to execute before a deadline; (ii) an elastic application (i.e., bag-
of-tasks application) composed of a large number of tasks that can be executed
as soon as resources become available on the infrastructure; we assume that
a master component keeps the tasks in a queue and submits them to worker
components to be processed. For the first case the manager requires a virtual
cluster of fixed size to the resource controller and then it controls the virtual
cluster’s allocation by scaling its spending rate. For the second case the manager
requires a virtual cluster with an initial size which is then scaled according to
infrastructure’s utilization level. Both application models are well known in the
scientific community and are representative for scientific clouds.

We analyzed the behavior of our designed managers by implementing and
evaluating our architecture in CloudSim [2]. We don’t consider the overheads
of virtual machine operations as we only want to show the managers behavior
and not the architecture’s performance. As we focus on the proportional-share
of CPU resources, we consider that the memory capacity of the node is enough
to accommodate all submitted applications. We describe next the design and
behavior of each manager.
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3.1 Adapting the Agent’s Spending Rate

In this case we design a manager that uses application progress information
to finish the application before a given deadline while being cost-effective. We
describe the manager logic and we analyze its behavior under varying load.

Application Management Logic. To provision resources for its application, the
manager uses a policy that adapts its spending rate based on a reference progress.
This reference progress represents how much of the application needs to be pro-
cessed per scheduling period to meet its deadline:

preference =

{
min( total length

execution time ,
length

deadline−now ), if now < deadline
total length

execution time , otherwise
(1)

The length is a parameter specific to the application: it can be number of files
that the application needs to process to finish its execution, number of iterations
or instructions. The execution time represents the time in which the application
finishes if it runs alone on the infrastructure. If the current time is smaller than
the application deadline, the reference progress is computed as the remaining
application length distributed over the remaining execution time. Otherwise,
the application is already delayed, so it is desirable to make a maximum amount
of progress in its computation.

The manager monitors its application and receives information about the
progress made in the last scheduling period. To save its budget for future use, if
the application made enough progress then the manager decreases its bid. When
the application cannot meet its reference progress the manager uses all its saved
credits. To adapt the bid, the manager uses a subtractive decrease/multiplicative
increase rule:

b =

{
max(pr, b− α ∗ pr), if pcurrent ≥ preference

min(bmax, β · b), otherwise , (2)

where α and β are configurable parameters that establish the scaling rate of the
bid and pr is the minimum price of using resources. To avoid depleting its budget
before the application completion, the manager limits its maximum submitted
bid to an amount bmax. For a more efficient use of the budget, we choose the
smallest time period between the remaining time to the budget renew and the
estimated remaining execution time of the application and we distribute the cur-
rent budget over it. The remaining execution time is estimated as the remaining
time to completion if the application continues to make pcurrent progress each
scheduling period. Given a budget B, the manager computes bmax as follows:

bmax = Bcurrent/(min(renew − now, remaining execution time) · Cnode) (3)

Evaluation. To illustrate the advantage of using a feedback-based control man-
ager, we simulate the execution of a deadline-driven application under varying
workload. We consider that the infrastructure is used to run best-effort and
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Fig. 2. Application progress variation in time

deadline-driven applications. For the best-effort application we define a man-
ager that distributes its budget equally over the renew period.

For our experiment we consider the following settings. The managers are given
an amount of 450000 credits that is renewed at 3600 seconds. The reserve price
is set to 1credit/second. 3 applications, each of them with a single task of length
of 360000 MIPS are submitted to a single physical node with 100 MIPS. The
first application is submitted with a deadline of 5400 seconds while the other two
are best-effort. These best-effort applications are submitted after 1800 seconds
at a distance of 5 minutes each. The scheduling period is set to 5 minutes. To
scale its bid, the manager uses the feedback control rule parameters: α = 0.5
and β = 2.

Figure 2 shows the results of adapting the bid to follow the application’s ref-
erence progress. During the first 1800 seconds the application executes alone
on the node so it makes a maximum amount of progress. Thus, its reference
progress also drops. After the first 1800 seconds the other two applications start
executing one by one so the manager needs to adapt its bid to follow the refer-
ence progress. The fluctuations in the real progress represent the result of this
adaptation. We compare this case with the best-effort manager. In our case, the
application completes before its deadline. However, in the case of the best-effort
manager, the application completes much later (1600 seconds past the deadline),
because the manager is not aware of the competition for resources.

3.2 Adapting the Virtual Cluster Size

We design a manager that uses its past virtual cluster resource allocation as a
feedback and scales its application to minimize its completion time. The manager
is willing to spend all its budget at a constant rate. We describe its logic and
behavior next.

Application Manager Logic. To scale its application, the manager applies an
additive increase/multiplicative decrease rule and uses its virtual cluster past
average CPU allocation as a congestion signal. To compute the past average CPU
allocation, the manager uses an EWMA filter. As long as the application master
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has tasks in its queue, the manager expands the virtual cluster. To ensure that
the application’s tasks already submitted to virtual machines are processed as
fast as possible, the manager shrinks the virtual cluster when the existing virtual
machines don’t have enough CPU. The virtual cluster size (i.e., the number of
virtual machines), n, is updated as follows:

n =

{
n+ α, if aavg ≥ Ta and remaining tasks to process > 0

� n
2β �, otherwise

(4)

where α and β are configurable parameters that establish the scaling rate of the
virtual cluster size and Ta is a threshold on the virtual cluster allocation.

Evaluation. To illustrate the benefits of the elastic scaling on the application
execution time, we analyze the behavior of the elastic application manager un-
der varying load. For our experiment we consider the following settings. The
elastic manager is given a budget of 1.800.000 credits and the other managers
120.000 credits ; their budgets are renewed at 3600 seconds. The infrastructure
has 10 nodes each with 100 MIPS and the scheduling period is set to 5 minutes.
An application with 200 tasks, with an average execution time of 10 minutes
each, starts executing. After 200 seconds 15 applications with a length of 360000
MIPS are submitted with an exponential inter-arrival time distribution, with
an average inter-arrival time of 160 seconds. The virtual cluster average alloca-
tion threshold is set to 85% of Cnode. The manager is conservative in scaling the
virtual cluster and uses the feedback control rule parameters: α = 1 and β = 0.5.

Figure 3 shows the resource allocation variation in terms of CPU (a) and
number of virtual machines (b). The manager starts its application with an
initial number of 5 virtual machines at full capacity. When the demand is low,
the manager gets more resources for its existing virtual machines and expands
its virtual cluster. This is noticed after the application is submitted and after the
other applications finish their execution. When all the submitted applications are
running, the allocation for the existing virtual machines drops and the manager
shrinks its virtual cluster to 4 virtual machines. Because the average allocation
is greater than the given threshold, when the infrastructure is free the manager
actually creates more virtual machines than the infrastructure’s capacity. Setting
a higher threshold would avoid this behavior.

We compare our proportional-share mechanism to a static allocation mech-
anism. With the static allocation mechanism the manager doesn’t receive any
feedback from the infrastructure and is not able to scale its application. When
the application is executed with our proportional-share mechanism it finishes
in 300 minutes while in the static allocation case it finishes in 417 minutes.
The elastic behavior of the manager leads to a better resource usage, as seen in
Figure 3 (c), and to a smaller execution time of the application.

4 Related Work

Many recent research efforts focused on designing algorithms for dynamic
resource provisioning in shared platforms. However few of them decouple the
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Fig. 3. Application allocation in terms of CPU (a), number of virtual machines (b)
and datacenter utilization (c) in time

application performance management from the resource management. This de-
coupling can be achieved with two mechanisms: i) using utility functions with
which applications express their valuation for resources to the resource man-
ager; ii) using an economic model with which both applications and the resource
manager act selfishly to maximize their own benefit.

Utility functions were used to dynamically control the resource allocation
for applications in a virtualized [6] and non-virtualized [11] datacenter. The
users specify their valuation for certain levels of performance, which is then
expressed as a function of the application’s resource allocation (i.e., resource-
level utility). By knowing the resource-level utilities of all applications, a resource
manager computes the resource configuration according to a global objective,
i.e., maximize the sum of all resource-level utilities [11], ensure a (max-min) fair
allocation [3]. As the resource controller needs to determine the most efficient
allocation by considering any fraction of resource the application would get, the
computational complexity is high. Scaling with the size of the infrastructure
and the number of hosted applications clearly demands resource management
algorithms with a low run-time complexity.

Opposed to this approach, we use an economic model to dynamically pro-
vision resources to applications. Through an economic model [12] the resource
control becomes decentralized. Each entity from the system acts selfishly: each
application tries to meet its own performance goal while the resource provider
tries to maximize its own revenue. Applying this model to dynamically allocate
resources between competitive applications is not new. Both Stratford et. al. [10]
and Norris et. al. [7] proposed to use the dynamic pricing of resources as a mech-
anism to regulate the resource allocation between competitive applications. In
both cases resources were traded using a commodity market model. However,
this model would have a high communication overhead and it would be difficult
to use in a large scale system.

A popular approach to regulate access to resources in distributed systems is
to use an auction-based market. In auctions the price of the resource is given
by the bids of the participants. However, when considering divisible resources,
most auction models suffer from the same computational complexity as the
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utility functions, as the resource manager must compute an efficient allocation.
From this perspective, the simplest auction mechanism for resource allocation is
the proportional-share introduced by Lai et. al. [5]. This mechanism has a low
complexity as it applies a simple computational rule to distribute the resource
between competitive users and thus can scale with the size of the infrastructure
and the number of applications. We propose in our work to use this mechanism
for virtual machine provisioning to allow applications to adapt their resource
allocations according to their performance goals.

Several market-based systems [5, 4, 8] propose a proportional-share approach
but they do not specifically target cloud infrastructures. From this perspec-
tive, the most similar to our work is Tycoon [5]. In Tycoon, resources are allo-
cated through a proportional-share rule on each physical node while agents select
the nodes according to user’s preferences and budget. In our architecture, the
proportional-share rule is applied for the entire infrastructure capacity instead
of one physical machine, decoupling the resource provisioning from the physical
placement. Our agents are concerned with meeting application goals through
intelligently managing their budgets and adapting to the fluctuating resource
availability.

5 Conclusions

In this paper we presented a new architecture for managing applications and
resources in a cloud infrastructure. To allocate resources between multiple com-
petitive applications, this architecture uses a proportional-share economic model.
The main advantage of this model is the decentralization of the resource control.
Each application is managed by an independent agent that requests resources
by submitting bids to a resource controller. The manager’s bid is limited by its
given budget. To meet its application performance goals the manager can apply
different strategies to vary its bid in time. Through this approach, our archi-
tecture supports different types of applications and allows them to meet their
performance goals while having a simple resource management mechanism.

We validated our architecture by designing and simulating application man-
agers for rigid and elastic applications. We showed how managers can use simple
feedback-based policies to scale the allocation of their applications according
to a given goal. This opens the path towards designing more efficient managers
that optimize their budget management to meet several application performance
goals. For example, in the elastic application case, the manager would take de-
cisions to manage its budget and scale its virtual cluster based on an estimated
finish time of the tasks and a possible deadline. A further step would be then
to consider applications with time-varying resource demands. Optimizing the
resource allocation mechanism and adding support for multiple resource types
will also be our next focus. To improve the support of many application types,
we plan to add the possibility for applications to express placement preferences.
Finally, we plan to implement and validate our architecture in a real system.
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