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Abstract. Accelerated growth in the field of bioinformatics has resulted in large 
data sets being produced and analyzed. With this rapid growth has come the 
need to analyze these data in a quick, easy, scalable, and reliable manner on a 
variety of computing infrastructures including desktops, clusters, grids and 
clouds. This paper presents the application of workflow technologies, and, 
specifically, Pegasus WMS, a robust scientific workflow management system, 
to a variety of bioinformatics projects from RNA sequencing, proteomics, and 
data quality control in population studies using GWAS data.  
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1 Introduction 

Advances in the fields of molecular chemistry, molecular biology, and computational 
biology have resulted in accelerated growth in bioinformatics research. In the last 
decade there have been rapid developments in genome sequencing technology, 
enabling large volumes of RNA and DNA to be sequenced from humans, animals, 
and plants. Advances in biochemistry have also enabled protein analysis and bacterial 
RNA studies to be carried out on larger scale than ever before. A sharp drop in the 
cost of genome sequencing instruments is enabling a larger number of scientists to 
sequence genomes from a wide variety of species. 

These developments have resulted in petabytes of raw data being generated in 
individual laboratories. These massive data need to be analyzed quickly and in an 
easy, efficient manner. At the same time, there is an increase in the availability of 
large-scale clusters at most universities as well as national grid infrastructures, and 
cheap and easily accessible cloud computing resources. Thus, scientists are looking 
for simple tools and techniques to manage and analyze their data to produce scientific 
results along with their provenance. This paper provides the motivation for the use of 
workflow technologies in bioinformatics, followed by a description of the Pegasus 
Workflow Management System (WMS) [1,2,28] and its application to the data 
management and analysis issues arising in a few bioinformatics projects. The paper 
concludes with related work and future plans.  



24 G. Mehta et al. 

2 Motivation 

Generally, most laboratories and small projects that perform data-intensive 
bioinformatics experiments lack the necessary expertise, tools, and manpower to create 
complex computational pipelines to analyze large datasets. Running these pipelines is 
often complicated, and requires researchers to gain access to computational resources, 
create pipelines, and train lab staff on running and maintaining complex software. 
Additionally, scaling these experiments to take advantage of the large computing 
infrastructure present in the laboratories, on campus, and in commercial cloud 
environments is an even bigger challenge. The generated datasets need to be moved 
efficiently to remote computational resources, analyzed, mapped to genomes, and 
reference files. The results need to be collected in a robust and secure manner. Finally, 
scientists require that the provenance of the generated data be recorded. In order to meet 
these requirements we have developed several bioinformatics application pipelines 
using Pegasus WMS workflow technologies, which enable the execution of large-scale 
computations on peta-scale datasets on a variety of resources. 

3 Workflow Technology 

Workflows are defined as a collection of computational tasks linked via data and 
control dependencies. Each task in a workflow is either a single invocation of an 
executable or a sub-workflow containing more tasks. Several workflow technologies 
have been developed over the last decade, each tackling different problems [22]. 
Business workflows attempt to coordinate business processes and are generally highly 
customized for a specific company. Scientific workflows, on the other hand, tend to 
be shared more frequently with collaborators and run on various types of platforms. 
To enable scientific workflows, there are a wide variety of software systems from 
GUI-based drag and drop workflow systems [19,20,21] to web services-based 
workflow enactors [19,21]. Pegasus WMS was originally developed to enable large-
scale physics experiments in the GriPhyN project [24]. As the scale of data and 
analysis of bioinformatics applications have grown it has been a natural fit to apply 
the experiences and technology of Pegasus to these projects as well. 

The Pegasus Workflow Management System is a software system that supports 
the development of large-scale scientific workflows and manages their execution 
across local, grid [1,2,28], and cloud [3] resources simultaneously. Pegasus provides 
API’s in Java, Python, and Perl to create workflow descriptions in the Abstract 
Directed Acyclic Graph in XML (DAX) format. A DAX contains information about 
all the steps or tasks in the workflow, including the arguments used to invoke the task, 
the input and output datasets used and generated, as well as any relationships between 
the tasks. DAXes are abstract descriptions of the workflow that are agnostic of the 
resources available to run it, and the location of the input data and executables. 
Pegasus compiles these abstract workflows into executable workflows by querying 
information catalogs that contain information about the available resources and 
sending computations across local and distributed computing infrastructures such as 
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the Teragrid [29], the Open Science Grid [30], campus clusters, emerging commercial 
and community cloud environments [31] in an easy and reliable manner using Condor 
[5] and DAGMan [6]. Fig. 1 shows the block diagram of Pegasus WMS. 

 

Fig. 1. Pegasus Workflow Management System 

Pegasus WMS optimizes data movement by leveraging existing grid and cloud 
technologies via flexible, pluggable interfaces. It provides advanced features to 
manage data transfers, data reuse, and automatic cleanup of data generated on remote 
resources. It also provides for optimization of the execution by allowing several small 
tasks to be clustered into larger jobs, thus minimizing execution overheads. Pegasus 
interfaces with several job-scheduling systems via the Condor-G [4] interface, 
allowing the various tasks in the workflow to be executed on a variety of resources. 

Reproducibility is a very important part of computational science. To enable 
scientists to track the progress of their workflows and tackle data reproducibility 
issues, Pegasus captures all the provenance of the workflow from the compilation 
stage to the execution of the generated data. Pegasus also monitors and captures 
statistics during the run of the workflow allowing scientists to accurately measure the 
performance of their workflow. 

Pegasus WMS also supports the use of hierarchal workflows allowing users to 
divide large pipelines into several smaller, more manageable sub-workflows. Each 
sub-workflow is planned and executed only when all the necessary dependencies for 
that sub-workflow have been satisfied. As a result an application can induce different 
sub-workflows to execute based on previous analysis in the upper level workflow. 

Pegasus WMS is a very reliable and robust system with several options for failure 
recovery. Cloud and grid environments are inherently unreliable, as are the applications 
themselves. In order to manage this, Pegasus automatically resubmits tasks that fail to the 
same, or another resource several times before the task completely fails. Pegasus will 
also finish as many tasks and sub-workflows as possible regardless of one or more failed 
tasks. When the workflow can proceed no further, a rescue workflow is created that can 
be resubmitted after fixing whatever caused the failures. If re-planning of the workflow is 
required (e.g. to make use of additional or new resources), Pegasus will reduce the 
original workflow, eliminating tasks that have completed successfully, leaving only those 
tasks that previously failed or were not submitted due to dependencies on the failed tasks. 
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4 Workflows in Bioinformatics 

Recently, an ever-increasing number of bioinformatics applications have started 
adopting workflows and workflow technologies to help them in their continuous 
analysis of the large-scale data generated by scientific studies. Below we present a 
variety of bioinformatics projects, including RNA sequencing, protein studies, and 
quality control in population epidemiology studies, which are among the many 
bioinformatics projects that use Pegasus WMS for their work. 

4.1 Proteomics: MassMatrix 

MassMatrix [7] is a database search software package for tandem mass spectrometric 
data. It uses a mass accuracy-sensitive probabilistic scoring model to rank peptide and 
protein matches. MassMatrix provides improvements in sensitivity over Mascot [26] 
and SEQUEST [25] with comparably low false positives.  

A major requirement in MassMatrix is the ability to handle a large degree of 
parallelism in the analysis jobs, as well as the ability to run these workflows on cloud 
computing environments that can scale in size. After evaluating several solutions to 
simplify and automate the process of these peptide and protein matches, MassMatrix 
implemented the proteomic workflows using Pegasus WMS as it offered the 
flexibility of incorporating parallel and serial codes in the same workflow, as well the 
ability to run these workflows on multiple computing infrastructures simultaneously.  

           

Fig. 2. a) Pegasus workflow template. b) Implementation of workflow for five shotgun proteomic 
data sets. c) Hierarchical cluster analysis of shotgun proteomic data. 

The MassMatrix workflow was generated using the Pegasus Python API, which 
produced the required XML workflow description, and executed on the available 
distributed resources [8], which includes high-performance clusters at the Ohio State 
University and Amazon EC2. Fig. 2 shows a MassMatrix workflow template, its 
instantiation for 5 shotgun datasets, and the final result shown as a hierarchal cluster 
analysis. Currently MassMatrix is looking at ways to optimize the allocation and 
efficient usage of computational resources for executing these workflows on a larger 
scale by balancing the costs and execution time requirements as well as dynamically 
modifying the parallelism in the workflows [1]. 
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4.2 RNA Sequencing: Transcriptional Atlas of the Developing Human Brain 

The Transcriptional Atlas of the Developing Human Brain (TADHB)[9] project seeks 
to find when and where in the brain a gene is expressed. This information holds clues 
to potential causes of disease. A recent study [23] found that forms of a gene 
associated with schizophrenia are over-expressed in the fetal brain. To make 
discoveries about abnormal gene expression, scientists first need to know what the 
normal patterns of gene expression are during brain development. To this end, the 
National Institute of Mental Health (NIMH), part of the National Institutes of Health 
(NIH), has funded the creation of TADHB. To map human brain transcriptomes, 
researchers identify the composition of intermediate products, called transcripts or 
messenger RNAs, which translate genes into proteins throughout development.  

The biggest issue in creating the brain atlas was handling and analyzing the large 
amount of RNA sequence data in an easy and reliable manner without the need to 
train users on advanced software concepts and without worrying about configuring 
remote resources individually. The analysis was to be performed on a shared local 
campus cluster while ensuring that other users of the cluster are not adversely affected 
due to the large amount of I/O occurring in the application. To enable TADHB, 
workflows were developed to map the genetic sequences and to map environmental, 
or epigenetic, regulation of gene expression across development using the Pegasus 
Java API. The lab scientists were then able to run and submit an analysis of over 225 
sequence samples in a short time using the workflow and data management 
capabilities in Pegasus WMS. Two workflows using different mapping algorithms 
were created to analyze the RNA sequences: one based on the ELAND [10] algorithm 
from Illumina and the other using an alignment and mapping package, PERM [11]. 

 

Fig. 3. TADHB Workflow in production using Illumina ELAND 

Fig. 3 shows the ELAND-based production TAHBD workflow. Each workflow 
aligns to the human transcriptome a single lane of RNA sequence or a whole flowcell 
(8 sequences) in qseq format. The output of ELAND is an aligned sequence file in the 
export format. This aligned sequence file is then used to compute the expression 
levels of genes, exons and splice junctions.  
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Table 1. Statistics for workflow runs using the ELAND-based pipeline 

Workflow Lanes Tasks I/p Files 
O/p Files 

I/p Data O/p Data 
Saved Data 

Cumulative 
Runtime 

Eland WF 225 2,757 26,919 
20,198 

897GB 9.9 TB 
3.8 TB 

1,202hr 

The production run computed approximately 225 lanes of Brain RNA sequences, 
using about 50 days worth of CPU time and producing approximately 10 TB of data. 
Table 1 shows the number of lanes, files used and generated, and data size from the 
workflow runs. A production pipeline using PERM that aligns sequences to the 
transcriptome and the human genome, and computes advanced differential analysis 
[12] is currently being run. 

4.3 RNA Sequencing: Cancer Genome Atlas Using SeqWare 

SeqWare [13] is a project that provides several tools to perform genome mapping, 
variance calculation, and data management for events inferred from genetic sequence 
data that was produced using sequencing technologies provided by Illumina, ABI 
Solid and 454. The SeqWare Pipeline tool consists of many different programs useful 
for processing and annotating sequence data. These can be combined with other tools 
(BFAST, BWA, SAMtools, etc.) and strung together to form more complex 
workflows to support many experiment types.   

 

Fig. 4. Cancer Atlas RNA Seq Alignment and Variant Calls using Pegasus in SeqWare 

One of the requirements of SeqWare for running their workflows is the capability to 
easily run similar workflows on the local campus cluster, on Amazon EC2, or inside a 
simple Virtual Machine, enabling the user to scale the analysis in a flexible way. Also 
due to strict data privacy issues, SeqWare wanted to use their own mechanisms for data 
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transfers. SeqWare analyzed several workflow technologies used in bioinformatics, but 
nothing else provided the extensibility, scalability and reliability provided by Pegasus. 
SeqWare leveraged the advanced configurations available in Pegasus to transfer data 
between local computers, clusters and Amazon EC2 as well as Pegasus’ task clustering 
capability to optimize running a mixture of short- and long-running tasks. Additionally, 
SeqWare relied upon the automatic cleanup feature provided by Pegasus to 
continuously delete no longer needed files from the limited temporary storage space 
available in the cloud environment to enable large workflows to run. 

Fig. 4 shows the RNA sequence alignment and variant calls workflows developed 
for SeqWare. SeqWare is currently being used in production for supporting human 
RNA sequence processing as part of a $200 million grant for “The Cancer Genome 
Atlas project”. Using Pegasus the TCGA group at the University of North Carolina 
were recently able to process more then 800 samples of RNA sequences for the Atlas. 

4.4 Quality Assurance and Quality Control: Population Architecture Using 
Genomics and Epidemiology (PAGE) 

Genome-wide association studies (GWAS) have allowed researchers to uncover 
hundreds of genetic variants associated with common diseases. However, the 
discovery of genetic variants through GWAS research represents just the first step in 
the challenging process of piecing together the complex biological picture of common 
diseases. The National Human Genome Research Institute (NHGRI)-funded PAGE 
[14] project investigates genetic variants initially identified through GWAS research 
to assess their impact in diverse populations, to identify genetic and environmental 
modifiers, and to investigate associations with novel phenotypes. 

One of the main requirements of the PAGE project is to submit data from the various 
participating studies to the database of Genotypes and Phenotypes (dbGaP) [15]. One of 
the challenges in PAGE is to ensure the quality of the data that is being submitted to the 
repository. More often than not, the data submitted by individual studies is formatted 
inconsistently, fields may not be documented, and data may not be standardized in terms 
of given data types. To ensure that the data submitted to dbGaP adheres to the standards 
required by the service, we are developing Pegasus-based Quality Assurance and 
Quality Control (QA/QC) workflows that automatically check the data submission, 
coherence between data fields, and even between documents of the same submission 
and that can alert the submitter of the issues found via a brief report.  

Fig. 5 shows the QA/QC workflow being developed for PAGE. The four 
participating PAGE studies submit their results to the PAGE coordinating center 
website via ftp uploads. After the data is uploaded to the results archive, the data 
reception process checks the submission for completeness and re-runs sanity checks 
on the submission to quickly detect simple errors and type-checking certain cells, like 
adherence to a proper floating point number for some columns. Also checked during 
the data reception step is the strand orientation, a critical step when combining data 
from different genotyping assays. Once the reception process is complete, 3 sets of 
files for each set of submitted study data exist: the SNP summary, the phenotype 
summary, and the association results. These files are then loaded into a relational 
database. Rows with too low of a count are prevented from loading, indices are added,  
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Fig. 5. The PAGE Quality Control/Analysis Workflow 

and views are created as necessary for later QC steps. Each of these QC steps 
comprises a sub-workflow containing several steps to verify the submitted data. 
Failure of some steps is considered a critical failure resulting in rejection of the 
submitted data while other steps may flag interesting data that requires verification by 
the study. Additionally, the QC for association results is only performed if the QC for 
SNP summaries and phenotypes succeeded. Finally an aggregated report for each 
study data set submitted is produced and provided to the study for further manual 
analysis and verification. 

5 Workflows in a Virtual Machine 

A large number of bioinformatics projects deal with human data. These data have 
strict requirements regarding who can access the data, how it must be stored, etc. 
Because of these restrictions it can be difficult to have a hosted workflow service for 
users where they can upload their datasets for analysis. In order to provide users with 
an easy way to utilize existing workflows for analyzing their data, we have bundled 
Pegasus WMS with several workflow pipelines [12] that users can install and run 
directly on their laptops, desktops, or in a cloud environment. The virtual machine 
(VM) image is built and shipped as a vmdk file. This file can be used directly using 
Virtual Box [16], VMware [17] or kvm [18] software. Simple scripts are provided to 
upload data into the VM, configure the workflows and execute them in a few steps.  

Users can also use these virtual machines as an easy way to evaluate several 
different algorithms for their analysis, or as a way to get their application code and data 
ready to be used for cloud environments. Currently we have two virtual machines 
available: one with two RNA sequence analysis workflows, and the other with a portal 
interface that includes several smaller workflows such as copy number variation 
detection, association test, imputation etc. 
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6 Related Works 

Several workflow systems [22] provide a way to automate bioinformatics pipelines to 
aid the burgeoning field of bioinformatics. A few of the ones that are most popular are 
mentioned below. Galaxy [20] is a Python based GUI that allows a user to create 
bioinformatics pipelines by creating Python wrapper modules. Galaxy is primarily a 
desktop tool but now support is available to run Galaxy on clusters and clouds. 
Galaxy only supports scheduling tasks on a single set of resources that it is 
preconfigured to use. Taverna [21] is a GUI-based workflow manager that primarily 
supports web services-based pipelines. Recent support for non-web services 
workflows has been added by providing automatic wrappers around non-web service 
executables. While several bioinformatics projects have used Taverna to create and 
share small workflows, it has not been suitable for creating and running large-scale 
pipelines. Kepler [19] a workflow framework based on Ptolemy2 [27] provides both a 
GUI interface and a command-line interface to create and run workflows.  

7 Future Works and Conclusion 

With the explosion of data and computation in the bioinformatics field, a large 
number of researchers are now starting to use workflow technologies to manage their 
data movement and computation. While there are several different workflow systems 
available, Pegasus WMS provides a proven solution when the data and computation 
problems are quite large, involve legacy codes, are cross-institutional collaborative 
projects, or require using a large array of resources from local desktops to clusters, 
grids, and clouds. Currently, issues such as optimizing data transfers, advanced data 
placements, support for status notifications, and metadata management for the data 
products generated by the workflow are being investigated. 
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