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Abstract. Proposed exascale systems will present a number of consid-
erable resiliency challenges. In particular, DRAM soft-errors, or bit-flips,
are expected to greatly increase due to the increased memory density of
these systems. Current hardware-based fault-tolerance methods will be
unsuitable for addressing the expected soft error frequency rate. As a
result, additional software will be needed to address this challenge. In
this paper we introduce LIBSDC, a tunable, transparent silent data cor-
ruption detection and correction library for HPC applications. LIBSDC
provides comprehensive SDC protection for program memory by im-
plementing on-demand page integrity verification. Experimental bench-
marks with Mantevo HPCCG show that once tuned, LIBSDC is able to
achieve SDC protection with 50% overhead of resources, less than the
100% needed for double modular redundancy.

1 Introduction

With the increased density of modern computing chips, components are shrink-
ing, heat is increasing, and hardware sensitivity to outside events is growing.
These variables combined with the extreme number of components expected to
make their way in to computing centers as our computational demands expand
are posing a strong challenge to the HPC community. Of particular interest are
soft errors in memory that manifest themselves as silent data corruption (SDC).
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SDCs are of great importance due to their ability to render invalid results in
scientific applications.

Silent data corruption can occur in many components of a computer includ-
ing the processor, cache, and memory due to radiation, faulty hardware, and/or
lower hardware tolerances. While cosmic particles are one source of concern,
another growing issue resides within the circuits themselves, due to miniatur-
ization of components. As components shrink, heat becomes a design concern
which in turn leads to lower voltages in order to sustain the growing chip den-
sity. Lower component voltages result in a lower safety threshold for the bits
that they contain, which increases the likelihood of an SDC occurring. Further,
as the densities continue to grow, any event that upsets chips (i.e., radiation) is
more likely to both interact with and be successful at flipping bits in memory.

Currently, servers that use memory with hardware-based ECC are capable of
correcting single bit error and detecting double bit errors [1], but errors that re-
sult in three or more bit flips will produce undefined results including silent data
corruption which may produce invalid results without warning. Today, research
has been performed on the frequency and occurrence of single and double bit er-
rors [9], but data on the frequency of triple bit errors remains inconclusive even
though up to 8% of DIMMs will incur correctable errors while 2%-4% will incur
uncorrectable errors. Nonetheless, the overall occurrence of bit flips is expected
to increase as chip densities increase and computing centers move to millions of
cores.

To combat this growing problem, new methods to both detect and correct
faults that result in data corruption are essential. Specifically, it is critical to de-
velop a fault resilient framework that provides for SDC detection and continuous
execution in the face of faults. As applications increase in run time and scale
out, it is no longer feasible to rely on traditional checkpoint-restart solutions to
protect an application. Even with the bottlenecks that are checkpoint/restart
I/O aside, we can not guarantee that an execution will be able to fully execute
fault-free without interrupt due to a low average time between failures. Follow-
ing this thought, we may not be able to reliably verify application results by
simply running it twice if we are prone to a very high probability that a fault
will render the results of both runs incorrect.

One method to address silent data corruption is in the field of algorithmic
fault tolerance where researchers have proposed methods to protect matrices
from SDCs that corrupt elements within a matrix [3]. While it is possible for this
work to protect some matrix operations such as multiplication, this form of fault
tolerance may not be able to protect all types of possible matrix operations even
if we disregard the fact that matrices are only one of numerous important types
of structures. Although promising in some regards, fault tolerant algorithms
can be incredibly difficult or simply impossible to design for any arbitrary data
structure or operation on data. Worse, this type of protection does not provide
comprehensive coverage of the entire application, which leaves anything outside
of the algorithm such as other data and instructions entirely vulnerable to SDCs.
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For these reasons, there is a dire need to develop generic fault tolerance op-
tions that provide wide coverage to an application and its data while remaining
agnostic to the actual algorithms that applications utilize.

This paper outlines a generic memory protection library that increases the
resilience of all applications that it guards by protecting data at the page level
using a transparent, tunable on-demand verification system. The library pre-
sented within provides the following contributions:

– Provides transparent protection against SDC for all applications without the
need for any program modifications.

– Our solution is tunable to best match the data access patterns of an appli-
cation.

– Extensibility within the library provides for easy addition of new features
such as adding software-based ECC which can not only detect, but also
correct SDC that evades hardware ECC.

2 Design

In this paper we present LIBSDC, a transparent library that is capable of detect-
ing and optionally correcting soft-errors in system memory that cause corruption
in program data during execution. LIBSDC protects against SDCs by tracking
memory accesses at the virtual memory page level and verifies that the contents
of each accessed page have not unexpectedly been altered.

To ensure memory has not become corrupted, LIBSDC is responsible for mon-
itoring all read and write requests that an application incurs during execution
while simultaneously verifying these data accesses. Each memory access is hence-
forth assumed to be at the granularity of an entire page of virtual memory in-
stead of individual bytes. At a high level, each memory access that an application
makes will be intercepted by LIBSDC and the contents of the page in which the
memory address resides are verified against a previously known-good hash of
that page. If during execution an unexpected hash mismatch occurs between the
page and its last known value, then LIBSDC will terminate the process or roll
back to a previous checkpoint if available to ensure that the application does not
continue to compute and report invalid results. After a page’s integrity has been
successfully verified, then application is allowed to proceed with the memory
access and continue making forward progress.

Once a memory access completes verification, the entire page in which the
access resides will become available for use without further interception by LIB-
SDC. A page in this state will be referred to as unlocked. Likewise, all other pages
that have not yet been verified by LIBSDC will be considered locked. For each
additional locked memory access that occurs, LIBSDC will intercept the request
and verify the locked memory before unlocking it and allowing the application
to progress.
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Page accesses(unlocking) can be thought of as such:

On page request (initial read or write):

If page is locked:

Perform hash of page

Compare current hash with previously stored known-good hash

If any inconsistency found:

Notify the presence of SDC and report location

Terminate application / Rollback to previous checkpoint

Mark page as unlocked

Return control to application

As an application executes over time, it is inevitable that all needed pages
within an application’s address space will at some point become unlocked, which
means that no further page-level error checking will occur. Therefore it is neces-
sary for LIBSDC to occasionally put pages back in a locked state when they are
no longer being used so that they may be protected from SDCs while resident
in memory.

Page locking is shown as follows:

On page lock:

Calculate new hash of entire page

Storage hash in separate location

Mark page as locked

Return control to application

Managing locked and unlocked pages internally requires LIBSDC to hook mem-
ory allocation functions such as malloc, realloc, and memalign to learn of new
memory addresses that should receive protection. When a new memory range
has been allocated for an application, LIBSDC automatically locks all pages in
the range of the new memory so that all future accesses to that memory are
within the scope of protection that LIBSDC provides.

As the amount of allocated memory per application as well as the working-set
of pages required varies, LIBSDC allows the user to tune the maximum number
of pages to allow in the unlocked state. This tunable parameter, known as max-
unlocked, is set prior to invoking an application and permanently defines the
maximum number of pages to allow unlocked at any given time during execution.
When the max-unlocked limit of unlocked pages is reached, any further accesses
to pages in the locked state will require LIBSDC to lock some other unlocked
page to accommodate for the new page of memory.

Tuning the max-unlocked parameter requires consideration as its value is di-
rectly related to both application performance as well as the effectiveness of SDC
protection. Providing a relatively low max-unlocked value will force LIBSDC to
more frequently lock and unlock pages resulting in unnecessary verifications. In
this case, the overhead of intercepting page accesses combined with frequent
rehashing will quickly diminish application performance. The effect of a max-
unlocked value much less than the application’s work-set of pages will result in a



A Tunable, Software-Based DRAM Error Detection and Correction Library 255

reaction comparable to thrashing. On the other hand, if the max-unlocked value
is set too high, (i.e. a value much greater than an application’s working-set)
then the maximum level of SDC protection afforded by LIBSDC might not be
attained. Too high a max-unlocked value will affect pages that remain unlocked
for long periods of time without use while leaving them vulnerable to SDCs as
their contents are only protected once switched back to the locked state. For
these reasons it is important to tune applications using LIBSDC with an rea-
sonable max-unlocked value that adequately expresses the level of protection vs.
overhead desired.

2.1 Extensions for Error Correction

Through the design section of this paper we have referred to LIBSDC storing a
hash of pages that are under its protection. When a page is hashed, the hash may
be compared against a future hash taken on the same page to determine if any
changes have occurred, but this information alone is not suitable for correcting
errors that a hash may detect. To provide additional SDC correction capabilities
on top of the detection mechanisms, it is possible to additionally compute and
store error correcting codes (ECC) such as hamming codes that may be used to
fix bit flips in memory. For example, 72/64 hamming codes which are frequently
used in hardware may be employed inside of LIBSDC to provide single error cor-
rect, double error detect (SECDEC) protection at the expense of the additional
storage required for the ECC codes. Combining LIBSDC with hardware-ECC
can provide not only the ability to detect triple bit errors or greater, but can
also provide correction capabilities as the software-layered protection in LIB-
SDC may still retain viable error correcting codes. If LIBSDC is extended with
hashing plus ECC codes then it is possible to enjoy the protection and speed of
hashing while limiting ECC code recalculation only to times when a page has
been modified during execution resulting in a changed hash.

2.2 Assumptions and Limitations

LIBSDC’s protection extends only to memory and is not designed to protect
against faults that occur in the CPU or other attached devices. Since protection
is provided for data stored in main memory, LIBSDC requires the capability to
detect memory accesses. LIBSDC achieves this by altering process page tables
and removes read/write page permissions in order to receive OS signals that
indicate which memory addresses are being accessed upon a page fault.

For simplicity, our prototype of LIBSDC at present only protects memory that
is dynamically allocated using previously mentioned functions such as malloc.
There is no reason that extensions could not also provide protection to all data
regions including the code, initialized data, and BSS sections.

As LIBSDC verifies page contents upon transitioning from the locked to the
unlocked state, any SDCs that affect unlocked memory during the window in
which they are not protected are vulnerable. For this reason it is important to
choose a max-unlocked value that does not needlessly leave more pages than
necessary in an unlocked state when not being utilized.
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Any application that depends on DMA with devices such as network inter-
connects must ensure that buffers are in an unlocked state before DMA begins.
This assumption is necessary since DMA avoids the MMU and thus LIBSDC
is never notified of page accesses to buffers. Data written through DMA would
appear as corruption to LIBSDC because the changes were made while the data
pages written were in a locked state.

3 Implementation

LIBSDC protects memory from SDCs by comparing last known good hashes of
virtual memory pages with a hash of their current data upon page access by an
application. Therefore it is critical that LIBSDC be able to receive notification
when a page is being accessed by an application. To achieve this, LIBSDC uses
the mprotect system call to modify page permissions and take away read and
write access. By installing a signal handler for SIGSEGV (segmentation fault),
LIBSDC is notified by the operating system any time a locked page (one without
read/write permissions) is accessed. Upon notification, LIBSDC uses an internal
table to verify that the page being accessed is one that it intends to protect.
If it is, then verification is performed by taking a hash of the current page
and comparing it to the last known good hash which is stored in LIBSDC’s
table. After verification, the page’s read and write permissions are restored using
mprotect before returning control to the user application upon exiting the signal
handler.

Internally, the table that LIBSDC uses to store information on pages is com-
promised of several fields:

– A status flag to indicate locked, unlocked, or not managed by LIBSDC
– Storage for the page’s last known good hash
– Pointers to indicate which pages were accessed for use as a first-in-first-out

queue

Of particular interest of the LIBSDC’s table fields are the FIFO pointers. In
order to maintain a fair policy for evicting unlocked pages when the application
needs to access a page that is not currently available, LIBSDC maintains FIFO
ordering so that the oldest pages in the table are evicted first. Unfortunately
once a page is in the unlocked state it is not possible to track accesses to the
page until it is again locked. For this reason, the FIFO queue is based on the
order of unlocking, and while it may not exactly mirror an application’s data
access patterns, it should be similar.

Each locked page’s hash storage is tunable to accommodate the size of
whichever hashing algorithm is used. Additional fields can also be added to
accommodate storage for other needs such as ECC codes.

3.1 Handling User Pointers with System Calls

The use of a SIGSEGV handler allows the application’s data it depends on to
automatically transition from the locked state to the unlocked on demand during
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execution. Unfortunately, any system calls that are executed in kernel space do
not enjoy this luxury as kernel space does not call the SIGSEGV handler during
a page fault in a system call. System calls that attempt to access user space
pointers will fail unpredictably if proper page permissions are not applied prior
to the system call occurring. Therefore all system calls that accept user space
pointers require hooking in order to unlock memory regions that the kernel is
likely to access during the system call.

While in many cases it is possible to override GLIBC calls between applica-
tion linking/loading and replace them with wrappers that unlock any pointers
present, the GLIBC implementation may make system calls directly within it-
self instead of using your wrapper. For this reason it is essential that all system
calls are wrapped no matter their source. For simplicity, our LIBSDC prototype
makes a clone process of the original using the clone system call with CLONE_VM

as a parameter to share address spaces, and then uses the ptrace system call to
trace the application as it executes in order to receive notification of all system
calls occurring. The ptrace interface is provided as part of the Linux kernel and
allows a process to intercept all system calls and signals that another process
generates.

It should be noted that there are other less portable solutions that may ac-
complish system call hooking, but would require extensive per-platform work
such as binary rewriting to hook system calls or specialized kernel modules that
wrap system calls. Our prototype’s goal was to provide a platform for gauging
the viability and costs of SDC protection through hashing and page protection
while avoiding writing a complex platform specific system call hooking scheme
that would not add to the research contributions.

4 Results

To gauge the overheads and demonstrate the effects of tuning the max-unlocked
value, the HPCCG Mantevo Miniapp[8] was run with matrix size of 768x8x8
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scaled over 256 processes. The compute nodes used consisted of 2-way SMPs
with AMD Opteron 6128 (Magny-Cours), 32GB of memory per node, and a
40Gb/s Infiniband interconnect.

In Figure 1 we compared normalized execution time vs. themax-unlocked value
to demonstrate the effects of LIBSDC on an application. The baseline execution
time was taken by running HPCCG without LIBSDC performing any mprotect

calls and by default leaving all memory in an unlocked state. As a comparison,
the dashed line with a constant normalized time of 2 demonstrates the overhead
of double modular redundancy. LIBSDC’s overheads are shown with the dashed
line indicating the run-times without hashing and the solid line indicating the
run-times with hashing.

The choice of a range for max-unlocked between 4096 and 5120 is due to the
maximum working-set of pages residing near the middle of that range at around
4672 unlocked pages. As depicted in Figure 1, there is a dramatic drop in the
normalized run-time when we tune LIBSDC to use a max-unlocked value that
corresponds well to the active number of working pages. From the max-unlocked
range of 4672 to 5120, the normalized execution time falls from 1.79 to 1.53
respectively, which shows good improvement over even double modular redun-
dancy. Although not shown, in the poorly tuned ranges below 4096 a normalized
run-time of 21 or greater was observed.

For the results reported above, the average time spent calculating hashes
during execution is 15%.

It is important to note that the performance of LIBSDC’s hashing is highly
dependent on both the hashing algorithm used and on the way it is computed.
Although we chose to use SHA-1 computed on the CPU, research on comput-
ing hashes of pages using GPUs[2] has demonstrated that hashing performance
on GPUs greatly outperforms CPUs. This research indicates that applications
requiring page hashes should not consider the hashing itself to be a bottleneck.

We also find that the reason for the substantial overhead incurred with LIB-
SDC for a max-unlocked value less than the working-set of pages is due to our use
of the ptrace system call. ptrace is known to have performance penalties due to
frequent context switching on each system call and each received signal as well as
generating O.S. noise. This is worsened because each page unlock is intercepted
by ptrace during execution. While our prototype shows good performance for a
well tuned max-unlocked value, we expect that a production version of LIBSDC
would not use ptrace to intercept system calls. This would also result in better
performance for applications running with a well tuned max-unlocked value, too.

5 Related Work

Similar to LIBSDC, another approach [10] that is transparent to the application
achieves software-implemented error detection and correction using background
scrubbing combined with software calculated ECC to periodically validate all
memory and correct errors if possible. While this approach and LIBSDC are
both entirely transparent to the application, LIBSDC differentiates itself by
providing on-demand page-level checking based on the application’s data access



A Tunable, Software-Based DRAM Error Detection and Correction Library 259

patterns. In a HPC environment, software-based background scrubbing would
likely consume too much of the already limited memory bandwidth and generate
substantial noise during execution.

Other techniques involve modifying either the application source or the com-
piled form of the application to generate redundancy in data, instructions, or
both:

Source-to-source transformation techniques [6] have been investigated that
generate a redundant copy of all variables and code at the source level. Through-
out the transformed source code there are additional conditional checks that ver-
ify agreement in the redundant variables after each set of redundant calculations
are performed. If at any point throughout the execution redundant variables do
not agree then the application aborts. Unfortunately however, this technique
is unable to handle pointers, only supports basic data-types and arrays, and
doubles the required memory. SDCs that occur in the instruction memory may
not be detected thus causing unpredictable results. Due to a high number of
conditional jumps used for consistency checking, the efficiency of pipelining and
speculative execution suffers. LIBSDC differentiates itself from this work by not
requiring source modifications, lowering the memory requirement overheads sub-
stantially, supporting any type of code (pointers, data-types, etc are irrelevant
to LIBSDC), and can be instructed to protect any region of memory at run-time.

Duplicated instructions is another proposed technique to increase SDC re-
silience in software. EDDI [4] duplicates instructions and memory in the com-
piled form of an application in a manner similar to the source-to-source transfor-
mations, but achieves more support for programming constructs at the cost of
platform dependence. Unlike the source-to-source transformations, EDDI com-
piles applications to binary form, redundantly executes all calculations, ensures
separation between calculations by using differing memory addresses and differ-
ing registers, and attempts to order instructions to exploit super-scalar processor
capabilities. During execution the results of calculations are compared between
their redundant variable copies, but as a result, available memory is halved
and register pressure is doubled. LIBSDC differentiates itself from this work
by being platform-independent, not requiring redundant execution or program
modifications, and protecting instruction memory without the need for complex
control-flow checks.

Extensions to the EDDI have been proposed [7] that achieve better efficiency
by assuming reliable caches and memory, but still require redundant registers and
instructions. Their experiments showed an average normalized execution time of
1.41, but without protection for system memory. The similarity to EDDI may
indicate that even without protecting memory there is a substantial overhead
due to register pressure, additional instructions, and highly frequent conditionals
that come with duplicating instructions and registers. This work also showed that
compiled executables with the added fault tolerance were 2.40x larger than the
original unaltered executables.

Control-flow checking is another area of research that attempts to detect the
effects of SDCs in applications [5]. Unfortunately control-flow integrity
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verification does not necessarily protect against SDCs that only alter data with-
out affecting the execution path of an application.

6 Conclusions and Future Work

In this paper we have presented a prototype implementation of the silent data
corruption detection library, LIBSDC. LIBSDC is a transparent, tunable library
that provides page-level protection against DRAM memory corruption. Initial
results show that this library is capable of providing SDC protection to parallel
HPC applications at a cost less than that of double modular redundancy.

Using LIBSDC, we were able to protect all dynamically allocated memory re-
gions of the HPCCG application with a 53% increase in run-time over a baseline
that lacked any SDC protection. Provided with hints from the application on
which regions of memory to protect, LIBSDC’s coverage can be tuned for an
application, therefore further reducing run-time overheads.

The results of this work are very promising, but further work is needed. One
considerable source of run-time overhead in our prototype implementation is
the ptrace mechanism. Once again, we use ptrace to intercept system calls
and ensure proper memory tracing and tracking is performed before the OS
performs the call. We believe that we can remove ptrace from the library and
provide an optimized system call wrapper to intercept these calls, though special
care must be taken in these wrapper functions as issues such as reentrancy
become critical to performance and correctness. In addition, we are investigating
mechanisms to enable LIBSDC to use a software-based error-correcting code
side-by-side with its current hash-based detection mechanisms. Use of these more
advanced error-correcting codes, for example codes that can correct double-bit
errors, will provide a level of protection beyond what is currently available today
in enterprise-class hardware.
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