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Abstract. In this work is presented a technique to transform sequen-
tial source code to execute it on parallel architectures as heterogeneous
many-core systems or GPUs. Source code is parsed and basic algorithmic
concepts are discovered from it in order to feed a knowledge base. A rea-
soner, by consulting algorithmic rules, can compose this basic concepts
to pinpoint code regions representing a known algorithm. This code can
be annotated and / or transformed with a source-to-source process. A
prototype tool has been built and tested on a case study to analyse the
source code of a matrix multiplication. After recognition of the algorithm,
the code is modified with calls to nVIDIA GPU cuBLAS library.

Keywords: comprehension, GPU, manycore, source-to-source,
reengineering.

1 Introduction

The development of software for scientific applications through the years has
seen different seasons. Continuous growth in performance requests to fulfil spe-
cific calculus needs, drove the birth of parallel machines and related concurrent
programming models. Lot of effort has been spent on developing parallelization
techniques to port applications on parallel, vectorial or super-scalar architectures
in the ninety.

Subsequently, continuous improvements on the hardware systems and mainly
on clock processors’ clock speeds, caused lacking of interest on research activities
on parallelization, since the performances of applications got a natural growth.

But in the last few years the processors’ clock speed growth has stopped due
to physical limits on junctions dimensions and to the dissipated power. Proces-
sor improvements have to follow a different path by multiplying the number of
processing units on a chip (multi-core systems). Chips producers nowadays an-
nounce systems, no longer with higher frequencies, but with increased number
of cores. Special purpose devices as the GPUs, designed for graphics applica-
tions, can be used to do parallel computations. Not only in systems for scientific
applications, but also in common personal computers, there are now multi-core
CPUs and GPUs.

It is hard to write parallel code and it requires skilled developers. Great effort
is needed to port existing software and manual parallelization of applications
with high orders of magnitude of lines of code is a critical and error-prone process.

M. Alexander et al. (Eds.): Euro-Par 2011 Workshops, Part II, LNCS 7156, pp. 188— 2012.
© Springer-Verlag Berlin Heidelberg 2012



Automatic Source Code Transformation for GPUs 189

Nowadays, research activities on automatic parallelization systems to migrate
existing code, in a more or less assisted way, to heterogeneous architectures, are
again hot-topics. Next years of compiler research will be mostly devoted to the
generation and verification of parallel programs[12].

In this paper we will see how to pinpoint potentially parallelizable code regions
from source code, starting from extracting basic algorithmic concepts, composing
them and reasoning upon them to find common algorithms implementations. The
outlined regions of code are processed with a source-to-source transformation
technique in order to take gain of the target architecture. If an optimized library
exists for the specific algorithm, the code is replaced with a function call.

The paper continues, after this introduction, with the section 2l with an anal-
ysis of related works on code comprehension and translation. In the section [3]
will be introduced the technique to analyse code to find concepts, to reason on
them and to translate related code for heterogeneous architectures.

The first implementation of a tool to drive the process and translate code
to CUDA[IT] code or CUBLAS calls is presented in section dl A case study to
validate the technique is shown in section [, and the paper ends with section
with conclusions and future work directions.

2 Related Works

A description of the Algorithmic Recognition used here can be found in [7] or in
[5] where is introduced the definition of algorithmic concept and the technique
to describe the algorithms by using an attributed grammar. Two tools to do
program comprehensions were presented in [6]. That work was tailored to be
used on the Vienna Fortran Compiler [3]. Present work, even if is still using the
same recognition engine, it is different since adds the source-to-source capabilities
for GPUs, adds support for object oriented languages as C++, and new source
code parsing technique.

Several papers have been presented on clone detection or searching for similar
code fragments in programs. These clones are potentially fault causes due to
the necessity to maintain multiple copies of the same code. The works in this
field have been developed with several approaches. Text-based approaches [§],
syntax-based [2], or graph-based [I4]. All of these techniques can only detect
duplicates that are nearly identical each other and so cannot identify implemen-
tation variants or code perturbations. They focus mainly on code that originates
from the copy actions (e.g. cut and paste), instead of investigating on the func-
tionality of the code. A semantic approach can be found in [I0] where the authors
investigate on extracting sub-graphs from Program Dependence Graph (PDG)
[9], convert them to a simpler tree form and do tree similarities studies with a
scalable method [13].

Source to source transformation for parallelizzation can be found in several
works. In [I6] the semantics of standard abstractions as (C++ Standard Tem-
plate Library), or Array-Based Computation Loop drives the process of source
code transformation with the support of OpenMP directives and clauses. In [15]
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the transformation has been made on OpenMP code by analizing parallel con-
structs and work-sharing constructs to extract candidate kernels and transform
them to CUDA code. A framework for optimization of affine loop nests, with
polyhedral compiler model, has been described in [I]. All these works start with
code that is already parallel or user annotated code to drive the transformation
and not from sequential code as ours.

3 Source Code Transformation

The proposed technique, shown in figure[I] begins with a static analysis of code.
The source file is processed by a front-end that translates it into an interme-
diate representation (IR) which is an enriched Abstract Syntax Tree (AST).
The Extractor traverse this structure searching for patterns that can be recog-
nized as basic concepts and emits Prolog Facts corresponding to them. Now the
Transformer can submit queries to the reasoner to search for known algorithmic
concepts. The reasoner, by using these facts and by consulting a set of rules,
gives replies about any found algorithm. Answers include references to the code
region related to the algorithm and to the data involved. The transformer can
now pick from the repository an alternative implementation of the algorithm
that is suitable for the target architecture, and modifies the AST accordingly.
The user can interact in this phase by setting preferences on the selection of the
alternatives. A final unparsing of the IR can generate new source code for the
target architecture.

3.1 Algorithm Recognition

The recognition strategy is based on a hierarchical parsing. Starting from the
intermediate representation of code, basic concepts are recognized. They can be
seen as building blocks of composed concepts in a recursive way as described in
[7] and in [5].
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Fig. 1. The model of the process
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For example the analysis of the statement: int i = 0; produces the facts in
the listing [[1]

scalar var def (i, def list 1, elem update r, main).

scalar var inst(stp 1, i, elem update r, main).

val inst(stp 2, 0, elem update r, main).

assign r((def list 1, stp 1), stp 1, stp 2, elem update r,
main) .

Listing 1.1. Facts produced by variable declaration

We can see that four facts are generated: a) the definition of a scalar variable;
b) the usage of a scalar value; c¢) the usage of a constant; d) the assignment
statement. In detail, the second fact above indicates a basic concept named
scalar_var_inst. Its instance number is 1 (stp_1), its parameter is i (the
variable name), the rule is recognized by is the elem_update_r and the function
in which it is present is named main.

Similarly, in last fact, we see the composition of the previous concepts in a
tree.

Another example is the loop statement: for (i = 0; i < 10; i++) which
produces the facts in listing

for r(15,for (15,exit 115),init 6 ,exit 115 ,incr 7 ,elem update r
,main) .

scalar var inst(stp 11,i,elem update r ,main).

val inst (stp 12,0,elem update r ,main).

assign r(init 6 ,assign(init 6 ,stp 11),stp 11 ,stp 12,
elem update r ,main).

scalar var inst(stp 13 ,i,elem update r ,main).

val inst (stp 14,10, elem update r ,main).

less (exit 115 ,stp 13 ,stp 14 ,elem update r ,main).

scalar var inst(stp 15,i,elem update r ,main).

post incr (incr 7 ,stp 15 ,elem update r ,main).

Listing 1.2. Facts produced by for loop

In this case the numbers are the pointers to the nodes of the AST.

Control dependence facts generated have a syntax like:
control_dep(dependant_id, depend_from_id, type, class, method).

Data dependence facts have a syntax like:
data_dep(type,dependant_id,depend_from_id,variable,class,method) .

The concept recognition rules are the production rules of the parsing process;
they describe the feature set that permits the identification of an instance of
an algorithmic concept in the code. This feature set can be named algorithmic
pattern. The rules can be defined as the way in which abstract concepts, as groups
of statements in the code, are organized under an abstract control structure. With
this definition we include structural relationships as Control and Data Flow,
Control and Data Dependence and function calling.
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Each recognition rule identifies the concept by using a composition hierarchy,
specified with the set of composing sub-concepts, and a set of conditions and
constraints that sub-concepts must satisfy.

The main aspects of the method are:

— Basic concepts, the starting points of the hierarchical abstraction process,
are chosen among the elements of the intermediate representation of code.
Properties and relationships that characterize them are still part of the rep-
resentation [4]. Dependence informations are found in the PDG that is built
during the analysis phase.

— Properties and relationships are chosen in order to privilege the structural
features instead of syntax. So, dependences relationships assume a main role:
they become the features that drive the abstract control structure among the
concepts.

The chosen parsing strategy is top-down; so the concept parsing is descendant
and the recognition is demand-driven. This choice has been motivated by our
main objective that is the transformation of code to support parallelization of
certain algorithms. We do not want to comprehend entire code, but only find if
instances of particular algorithmic patterns are present. So the demand-driven
approach can be used, since it has a less complex search space than the code-
driven approach.

A knowledge base with the definition of recursive composition rules permits to
describe an algorithm. It relies on Prolog as a system shell and takes advantage
of Prolog’s deductive inference-rule engine to perform the hierarchical concept
recognition.

The Prolog engine is queried for specific goals. When one of them is satis-
fied, the result contains the recognized algorithm, the references to AST nodes
involved, and the input and output data related.

After reasoning, composed concepts are recognized. Some examples of recog-
nized concepts are:

elem_update: This represents the update of the value of an element by an

expression that depends on previous value of the same element.

— count_loop: This represents a for loop where the init, test and output
statements are based on expressions involving only constants, except the
loop variable.

— scan: This is the access (read or write) of a sequence of elements in an array.

— dot_product: This is concept of the product of two dimensions of two arrays.

3.2 Source to Source Transformation

The information obtained after the recognition of the algorithm drives the trans-
former module. The source code region that implements the algorithm can be
replaced by optimized parallel code or by call to optimized libraries. The al-
gorithm repository contains, for each target architecture, one or more possible
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implementations, stored in a parametric source code format. The parameters
should be mapped to input and output data involved in the algorithm. The user
can drive the selection of the code among the repository by setting preferences
on alternative implementations. The transformer directly manipulates the inter-
mediate representation of the analysed source program. By using the references
given by the reasoner, the abstract syntax tree is modified with the following
steps:

— The sub-tree corresponding to the code region is pruned from the AST and,
if desired, a comment block with the original code is inserted.

— A new sub-tree is generated with transformed code. If needed (as in GPUs),
it contains also: memory allocation on device, memory transfer from CPU
to device, library invocation, memory transfer from the device back to the
CPU and memory deallocation.

— This tree is appended in the AST at the removal point, just after the com-
ment block.

After all the transformations done on the AST, an unparsing operation permits
to generate the code ready to be compiled on the target platform.

4 Prototype Tool

To test the technique a prototype tool has been built. The reasoner has been
implemented with SWI-Prolog [19] as a stand-alone module with a shell interface.

The rest of the work has been done by using Rose Compiler [I8]. This is a
complete compiler infrastructure, tailored for source-to-source transformations.
It uses two front-end modules, one that can parse C/C++ and the other for
Fortran 2003 and earlier. The intermediate representation used by Rose is very
reach and preserve all the information from the source code (including source file
references, code comments, macros and templates for C++). This can be valuable
in the unparsing process to produce source code that can still be readable by
humans. The programming interface of Rose Compiler is C++, so our work was
done in this language.

Starting from the intermediate representation obtained by the front-end, the
AST should be traversed in order to find basic concepts. We built a class that im-
plements the Visitor Design Pattern [IT] by extending the ROSE_VisitorPattern
class and overriding the visit() methods for each node type we need to pro-
cess. The AST is so traversed and the series of facts corresponding to the basic
concepts are produced in a text file. Similarly control-dependence and data-
dependence facts are produced by using the related Rose Library functions. Now
the reasoner is invoked with a series of goals each corresponding to a known al-
gorithm that is present in the repository. If a goal is satisfied the reasoner replies
with the name of the algorithm, the references to the code region that imple-
ments it and the data involved. Since multiple queries can be done to search for
different algorithms and the reasoning is a time consumption process it can be
done separately from the transforming and results saved in intermediate files.
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The transformer, starting with that information, cuts the original code (or sim-
ply enclosed in comments, depending on the preferences of the user), builds new
code from the templates for the platform the user has chosen, and modify the AST
accordingly. But before doing the code removal, a test to prove legality of the trans-
formation is done. All the code that is enclosed in the AST sub-tree of the algorithm,
but is not mapped to basic concepts of the algorithm (eg. extra added lines), is
checked for data dependencies with the data involved in the algorithm.

To add new code and comments to the AST, Rose Compiler furnishes the so
called Rewrite mechanism. It uses three simple functions: insert (), replace()
and remove () that can be used at different levels of abstractions. Two low levels
which interact directly with the nodes of the tree and permit a fine grained control
on the generated nodes but they are extremely verbose, an intermediate level which
lets the user express the transformation with strings and an higher level which can
be used during the traversal operations. We have used the mid level since it gave
use the best compromise between complexity and power of use.

After all the transformations, a final call to backend () function can be used
to generate the source code from the AST in a new file.

5 Case Study

As a case study we used the source code for a sequential C implementation
of a matrix-matrix multiplication. This contains one of the algorithms we can
recognize at present.

In listing [[.3] we can see a fragment of the code that is given in input to the
tool.

double x[10][10]
double y[10][10];
double z[10][10]
double temp = 0;

int i = 0;
int j = 0;
int k = 0;

for (i=0;i <10;i++) {
for (j=0;j<10;j++) {
temp = O0;
for (k=0;k<10;k++) {
temp = temp + x[i][k] = y[k][]];

2[i11j] = temp;

Listing 1.3. Sequential Matrix multiplication

In listing [[.4] is shown a small excerpt of the Prolog facts with basic concepts
and dependence information produced for the code.
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array var definition (def list 1 ,double,2,x,[10,10],simple mmp,

do mmp) .

array var definition (def list 2 ,double,2,y,[10,10],simple mmp,
do mmp) .

array var definition (def list 3 ,double,2,2z,[10,10],simple mmp,
do mmp) .

scalar var def(i,def list 4 ,simple mmp,do mmp) .
scalar var inst(stp 1,i,simple mmp,do mmp).

val inst (stp 2,0,simple mmp,do mmp) .

% .... omitted

control dep (17,19 ,true,simple mmp ,do mmp) .

control dep (15,17 ,true,simple mmp ,do mmp) .

control dep(100011,17,true,simple mmp ,do mmp) .
control dep (100014,15,true,simple mmp ,do mmp) .

%

data dep (true,100014,100011,z,0, simple mmp ,do mmp) .

Listing 1.4. Prolog Facts produced

In listing we can see the response of the reasoner for a query of the goal
matrix_matrix_r.

% hierarchy of concepts: references omitted
matrix matrix product (
simple scan (...),
matrix vector product (
simple scan (...),
dot product (...),
simple scan (...)
)

simple scan (...)

Listing 1.5. Prolog hierarchy response for matrix matrix r goal

After that recognition, in listing is shown the added source code with the
calls to CUBLAS library, assuming the user has chosen that implementation.
We have omitted the commented code block.

// .... omitted commented code

// ——> Added by Transformer —

voidx dptr x;

voidx dptr y;

void*x dptr z;

// Memory allocation

cudaMalloc ((void *%)& dptr x, 10%10xsizeof(double));
cudaMalloc ((void **)& dptr y, 10%10xsizeof(double));
cudaMalloc ((void **)& dptr z, 10%10xsizeof(double));
cublasCreate (&handle );

// Data transfer CPU->GPU
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cublasSetMatrix (10, 10, sizeof(double), x, 10, dptr x, 10);

cublasSetMatrix (10, 10, sizeof(double), y, 10, dptr y, 10);

// Matriz = Matriz Multiplication

cublasDgemm (handle, CUBLAS OP N, CUBLAS OP N, 10, 10, 10,
0.0, dptr x, 10, dptry, 10, 0.0, dptr z, 10);

// Data transfer GPU->CPU

cublasGetMatrix (10, 10, sizeof(double), dptr z, 10, z, 10);

// Memory deallocation

cublasDestroy (handle);

cublasFree ( dptr x);

cublasFree ( dptr x);

cublasFree ( dptr x);

Listing 1.6. Code region added for Matrix multiplication with CUBLAS

6 Conclusion

In this work we have seen how to do source code analysis in order to recognize
basic algorithmic concepts, to reason on them and drive a source to source
transformation of code so that it can execute on new parallel architectures as
GPUs. A prototype tool has been presented to validate the technique and a test
on a case study has been shown.

The work must be intended as a starting point for future investigation. At
present the rules can recognize basic linear algebra algorithms as matrix and
vector multiplication, dot product, maximum and minimum search, reduction.
One direction on which we are now working is the extension of the set of rec-
ognized algorithms and their implementation variants (i.e. variants with use of
pointers and dynamic memory allocation). At the same time, since the reasoning
is a time-consuming process, the recognition process does not scale well with the
increasing in the number of recognized algorithms. We are studying techniques
to finding code clones that maybe can be adapted to extract basic concepts.

Another research path is to add performance investigation on the transformed
code; at present the transformation is done with no regards on the size of the
problem. We know that for small problems, the overhead added by memory
transfers can vanish the improvements obtained by the use of the parallel device.
Conversely, large problems may not fit the device memory. We are working on
adding test points on code so that they can be used to select, at runtime, different
implementation variants depending on the size of the data involved. In this
direction, an extension of the transformation to produce OpenCL code can be
used to tailor heterogeneous architectures as many-core sytems.
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