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Abstract. This work concerns a general technique to enrich parallel
version of stochastic simulators for biological systems with tools for on-
line statistical analysis of the results. In particular, within the FastFlow
parallel programming framework, we describe the methodology and the
implementation of a parallel Monte Carlo simulation infrastructure ex-
tended with user-defined on-line data filtering and mining functions. The
simulator and the on-line analysis were validated on large multi-core plat-
forms and representative proof-of-concept biological systems.

Keywords: multi-core, parallel simulation, stochastic simulation, on-
line clustering.

1 Introduction

The traditional approach to describe biological systems relies on deterministic
mathematical tools like, e.g., Ordinary Differential Equations (ODEs). This kind
of modelling becomes more and more difficult when the complexity of the bio-
logical systems increases. To address these issues, in the last decade, formalisms
developed in Computer Science for the description of stochastically behaving
computational entities have been exploited for of biological systems [15].

Biochemical processes, such as gene transcription, regulation and signalling,
often take place in environments containing a (relatively) limited number of
some reactants, or involve very slow reactions, and thus result in high random
fluctuations, determining phenomena like transients or multi-stable behaviour.
Stochastic methods can give an exact account of the system evolution in all situ-
ations and are playing a growing role in modelling biological systems. Stochastic
modeling keeps track of the exact number of species present in a system and all
reactions are simulated individually. These methods can be highly demanding in
terms of computational power (e.g., when a large number of molecules or species
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is involved) and data storage (e.g., when the amounts of each species for each
time sample of a simulation have to be tracked).

A single stochastic simulation represents just one possible way in which the
system might react over the entire simulation time-span. Many simulations are
usually needed to get a representative picture of how the system behaves on the
whole. Multiple simulations exhibit a natural independence that would allow
them to be treated in a rather straightforward parallel way. On a multicore plat-
form, they might exhibit serious performance degradation due to the concurrent
usage of underlying memory and I/O resources.

In [2] we presented a highly parallelized simulator for the Calculus of Wrapped
Compartments (CWC) [5] which exploits, in an efficient way, the multi-core
architecture using the FastFlow programming framework [8]. The framework
relies on selective memory [1], i.e. data structure designed to perform the online
alignment and reduction of multiple computations. A stack of layers progressively
abstract the shared memory parallelism at the level of cores up to the definition
of useful programming constructs supporting structured parallel programming
on cache-coherent shared memory multi- and many-core architectures.

Even in distributed computing the data processing of hundreds (or even thou-
sands) simulations is often demoted to a secondary aspect in the computation
and treated as off-line post-processing tools. The storage and processing of sim-
ulation data, however, may require a huge amount of storage space (linear in
the number of simulations and the observation size of the time courses) and an
expensive post-processing phase, since data should be retrieved from permanent
storage and processed.

In this paper, we adapt the approach presented in [2] to support concurrent
real-time data analysis and mining. Namely, we enrich the parallel version of
the CWC simulator with on-line (parallel) statistics tools for the analysis of re-
sults on cache-coherent, shared memory multicore. To this aim, we exploit the
FastFlow framework, which makes it possible not only to run multiple parallel
stochastic simulations but also combine their results on the fly according to user-
defined analysis functions, e.g. statistical filtering or clustering. In this respect,
it is worth noticing that while running independent simulations is an embar-
rassingly parallel problem, running them aligned at the simulation time and
combining their trajectories with on-line procedures definitely is not as merging
high-frequency data streams. This, in turn, requires to enforce that simulations
proceed aligned according to the simulation time in order to avoid the explosion
of the working set of the statistical and mining reduction functions.

2 The CWC Formalism and Its Parallel Simulator

The Calculus of labelled Wrapped Compartments (CWC) [5,2] has been designed
to describe biological entities (like cells and bacteria) by means of a nested
structure of ambients delimited by membranes.

The terms of the calculus are built on a set of atoms (representing species
e.g. molecules, proteins or DNA strands) , ranged over by a, b, . . ., and on a set
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of labels (representing compartment types e.g. cells or tissues), ranged over by
�,. . .. A term is a multiset t of simple terms where a simple term is either an
atom a or a compartment (a � t′)� consisting of a wrap (a multiset of atoms a),
a content (a term t′) and a type (a label �).

Multisets are denoted by listing the elements separated by a space. As usual,
the notation n ∗ t to denotes n occurrences of the simple term t. For instance,
the term 2 ∗ a (b c � d e)� represents a multiset containing two occurrences of
the atom a and an �-type compartment (b c � d e)� which, in turn, consists of a
wrap with two atoms b and c on its surface, and containing the atoms d and e1.

Interaction between biological entities are described by rewriting rules written
as � : P �→ O where P and O are terms built on an extended set of atomic
elements which includes variables (ranged over by X , Y ,...) and � represents the
compartment type to which the rule can be applied. An example of rewrite rule
is � : a b X �→ c X that is often written as � : a b �→ c giving X for understood
to simplify notations.2 The application of a rule � : P �→ O to a term t consists in
finding (if it exists) a subterm u in a compartment of type � such that u = σ(P )
for a ground substitution σ and replacing it with σ(O) in t. We write t �→ t′ to
mean that t′ cam be obtained from t by applying a rewrite rule.

The standard way to model the time evolution of biological systems is that
presented by Gillespie [9]. In Gillespie’s algorithm a rate function is associated
with each considered chemical reaction which is used as the parameter of an
exponential distribution modelling the probability that the reaction takes place.
In the standard approach this reaction rate is obtained by multiplying the kinetic
constant of the reaction by the number of possible combinations of reactants that
may occur in the region in which the reaction takes place, thus modelling the

law of mass action. In this case a stochastic rule is written as � : P
k�−→ O where

k represent the kinetic constat of the corresponding reaction.
The CWC simulator [6] is an open source tool under development at the Com-

puter Science Department of Turin University, implements Gillespie’s algorithm
on CWC terms. It handles CWC models with different rating semantics (law of
mass action, Michaelis-Menten kinetics, Hill equation) and it can run indepen-
dent stochastic simulations, featuring deep parallel optimizations for multi-core
platforms on the top of FastFlow [8].

3 On Line Statistical Tools

Most biological data from dynamical kinetics of species might require further
processing with statistical or mining tools to be really functional to biologists.
In particular, the bulk of trajectories coming from Monte Carlo simulators can
exhibit a natural unevenness due to the stochastic nature of the tool and are typ-
ically represented with many and large data series. This unevenness, in the form

1 For uniformity we assume that the term representing the whole system is always a
single compartment labelled � with an empty wrap.

2 We force exactly one variable to occur in each compartment content and wrap. This
prevents ambiguities in the instantiations needed to match a given compartment.



6 M. Aldinucci et al.

simulation
instances

offload
stream dispatch

Sim
Eng

Sim
Eng

gather

ack

schedule
next bulk

sim-objb@ti

Sk+2=[sima ... simn]@tk+2

F
ar
m

dispatch

Stat
Eng

P
ip
el
in
e+
F
ar
m

Sk+1=[sima ... simn]@tk+1

sim-objc@ti+1

sim-obja@ti

mean

variance

mean[Sw], variance[Sw], k-means[Sw,Sw+1...]

k-means
Stat
Eng

ne
+
F
ar
mwindow

buffering

ce[S ] k-m

Sk-1Sk

[Sk-2,Sk-3, ...]
[Sk-3,Sk-4, ...]

mean

variance

k-means

Parallel simulation Parallel on-line filteringsimulation-time-aligned data

dataset
windows

selective
memory

Fig. 1. CWC simulator with on-line parallel filtering: architecture

of deviant trajectories, high variance of results and multi-stable behaviours, often
represents the real nature of the phenomena that is not captured by traditional
approaches, such as ODEs.

Several techniques for analysing such data, e.g. principal components analysis,
linear modelling, canonical correlation analysis have been proposed. We envision
next generation software tools for natural sciences as able to perform this kind of
processing in pipeline with the running data source, as a partially or totally on-
line process because: 1) it will be needed to manage an ever increasing amount
of experimental data, either coming from measurement or simulation, and 2) it
will substantially improve the overall experimental workflow by providing the
natural scientists with an almost real-time feedback, enabling the early tuning
or sweeping of the experimental parameters.

On-line data processing requires data filtering and mining operators to work
on streamed data and, in general, the random access to data is guaranteed only
within a limited window of the whole dataset, while already accessed data can
be only stored in synthesized form. When data filtering techniques, requiring to
access the whole data set in random order, cannot be used, on-line data filtering
and mining requires novel algorithms. The extensive study of these algorithms is
an emerging topic in data discovery community and is beyond the scope of this
work, which focuses on the design of a parallel infrastructure with the following
general objectives: 1) efficient support for data streams and its parallel processing
on multi-core platforms, and 2) easy engineering of battery of filters, that can
be plugged in the tool without any concern for parallelism exploitation, data
hazards and synchronisations.

These issues will be demonstrated by extending the existing CWC parallel
simulator with a sample set of parallel on-line statistical measures computation
including mean, variance, quantiles and clustering of trajectories (according to
different methodologies such as K-means and Quality Threshold). The flexibility
given by the possibility of running many different filters is of particular interest
for the present work, as in many cases the searched pattern in experimental
results is unknown and might require different kind of analysis tools.
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The CWC parallel simulator, which is extensively discussed in [2] and sketched
in Fig. 1 (left box), employs the selective memory concept, i.e. a data structure
supporting the on-line reduction of time-aligned trajectory data by way of one
or more user-defined associative functions (e.g. statistic and mining operators).
Selective memory distinguishes from standard parallel reduce operation because
it works on (possibly unbound) streams, and aligns simulation points (i.e. stream
items) according to simulation time before reducing them: since each simulation
proceed at a fixed time step, simulation points coming from different simulations
cannot simply be reduced as soon as they are produced [1].

In this work, we further extend the selective memory concept by making it
parallel via a FastFlow accelerator [8], which make it possible to offload selective
memory operators onto a parallel on-line statistical tools implementing the same
functions in parallel fashion. The pipeline has two stages: 1) statistic buffering,
and 2) a farm of statistic engines. The first stage creates dataset windows (i.e. a
number of arrays of simulation-time-aligned trajectory data from different sim-
ulation). The second stage farms out the execution of one or more filtering or
mining functions, which are independently executed on different (possibly over-
lapping) dataset windows. Additional filtering functions can be easily plugged in
by simply extending the list of statistics with additional (reentrant) sequential
or parallel functions (i.e. adding a function pointer to that list). Overall, the
parallel simulation (Fig. 1, left box) and parallel on-line filtering (Fig. 1, right
box), work, in turn, in a two-stage pipeline fashion.

3.1 Typical Patterns for Biological Trajectories

Monostable Systems Analytical mathematical methods for steady-state analysis
of deterministic models give insights on the dynamic equilibrium of a biological
system over time. In the case of stochastic models are usually performed statistics
on the mean and standard deviation of the system comparing the results with
the correspondent deterministic mathematical model. Another useful analysis is
the one based on quantiles calculation which approximate the distribution of
simulation trajectories data over time.

Multi-stable Systems. Multi-stable biological systems play a significant role in
some of the basic processes of life. The core behavior of these systems is based on
genetic switches. Stochastic effects in these systems can be substantial as noise
can influence the convergence to different equilibria.

Deterministic modeling of multi-stable systems is problematic. Bifurcation
analysis of ODE based models traces time-varying changes in the state of the
system in a multidimensional space where each dimension represents a particular
concentration of the biochemical factor involved.

The effect of molecular noise in stochastic simulations causes the switching
between the two stable equilibria if the noise amplitude is sufficient to drive the
trajectories occasionally out of the basin of attraction of one equilibrium to the
other. When stochastic simulations are performed a useful mining tool to capture
these multi-stable behaviors is represented by curves clustering techniques. In
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the presence of stochasticity in the data, direct clustering methods on aligned
simulation results is not reliable. In order to keep the structure of the molecular
evolution over time, we propose to apply the clustering procedure on data stream
portions filtering numerically the data from the noise of the stochastic simulation
and calculating the relative local trends.

In this work we employed two clustering techniques: K-means [10] and Quality
Threshold (QT) [11] clustering. The clustering procedure collects the filtered
data contained into the constant sliding time windowΔW centered in the current
data point xi ≡ f(ti) where ti ≡ t0+iΔS (whereΔS is a constant sampling time)
for all simulation trajectories and the extrapolated forecast point xE

i referred to a
future trend in time using the information of the Savitzky-Golay filter. Savitzky-
Golay filter fSG replaces the data value xi by a linear combination of itself and
some number of equally spaced nearby neighbors to the left (nL) and to the
right (nR) of the data point xi: x

SG
i = fSG(xi) = ΣnR

j=−nL
cjxi+j . The idea of

the numerical filter is to find the coefficients cj to approximate the underlying
function within the sliding time window by a polynomial of degree M . The
extrapolated forecast point xE

i is calculated at a chosen time step ΔF exploiting
the derivatives coming from the filter in a Taylor series truncated at third term.
The couple (xSG

i , xE
i ) represents the trend of the curve at time ti. A weighted

metric distance employed by the clustering procedures on these couples phrase
the similarity of behaviour between curves at time ti using the information of
data stream portions contained in the sliding time window ΔW . This method
is comparable with other curve clustering techniques (traditionally performed
off-line) that partition the data keeping their functional structure.

Oscillatory Systems. Many processes in living organisms are oscillatory (e.g. the
beating of the heart or, on a microscopic scale, the cell cycle). In these systems
molecular noise plays a fundamental role inducing oscillations and spikes. We
are currently working on statistical tools to synthesize the qualitative behavior
of oscillations through peak detection and frequency analysis [16].

4 Examples

We now consider two motivating examples that illustrate the effectiveness of the
presented real-time statistical and mining reduction functions.

Simple Crystallization. Consider a simplified CWC set of rules for the crystal-
lization of species “a”:

� : 2 ∗ a 1e−7�−→ b � : a c
1e−7�−→ d

We here show how to reconstruct the first two moments of species “c” using the
on-line statistics based upon 100 simulations running for 100 time units using
a sampling time ΔS = 1 time unit. The starting term was: T = 106 ∗ a 10 ∗ c.
Figure 2(a) shows the on-line computation of the mean and standard deviation
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Fig. 2. Mean and standard deviation on the simple crystallization and on the stable
switch. The figures report also the raw simulation trajectories.

for species c. Notice that in these cases of mono-stable behaviors, the mean of
the stochastic simulations overlap the solution of the corresponding deterministic
simulation using ODEs.

Switches. We here consider two sets of CWC rules abstracting the behavior of
a stable and an unstable biochemical switch [4] showing how to reconstruct the
equilibria of the species using the on-line clustering techniques on the filtered
trajectories. The stable switch with two competing agents a and c is based on a
very simple population model (with only 3 agents) that computes the majority
value quickly, provided the initial majority is sufficiently large. The essential idea
of the model is that when two agents a and c with different preferences meet,
one drops its preference and enters a special “blank” state b; b then adopts the
preference of any non-blank agent it meets. The rules modeling this case are:

� : a c
10�−→ c b � : c a

10�−→ a b � : b a
10�−→ a a � : b c

10�−→ c c

The unstable switch is based on a direct competition where a species a catalyzes
the transformation of another species b into a and, in turn, b catalyzes the
transformation of a into b. In this example any perturbation of a stable state
can initiate a random walk to the other stable state. The set of CWC rules
modeling this case are:

� : a c
10�−→ a a � : c a

10�−→ c c

In these cases, simple mean and standard deviation are not significant to summa-
rize the overall behavior. For instance in Fig. 2(b) the mean is not representative
of any simulation trajectory.

Figures 3 a) and b) show the resulting clusters (black circles) computed on-
line using K-means on the stable switch and QT on the unstable switch for
species a over 60 stochastic simulations. The stable switch was run for 2 · 10−4

time units with ΔS = 4 · 10−6 . The number of clusters for K-means was set to
2. The starting term was: T = 105 ∗ a 105 ∗ c. The unstable switch was run for
0.1 time units with ΔS = 2 · 10−3 . The threshold of clustering diameter for QT
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Fig. 3. On-line clustering results (black circles) on the stable and unstable switches
using K-means and QT, respectively. The figures report also the raw simulations.

was set to 100. The starting term was: T = 100 ∗ a 100 ∗ c. Circles diameters are
proportional to each cluster size.

K-means is suitable for stable systems where the number of clusters and their
tendencies are known in advance, in the other cases QT, although more compu-
tationally expensive, can build accurate partitions of trajectories giving evidence
of instabilities with a dynamic number of clusters.

Figure 4 shows the speedup of the simulation engines equipped with mean,
standard deviation, quantiles, K-means, and QT filters on a 8 cores Intel plat-
form against number of Simulation Engines with one and two Statistic Engines,
respectively, on varying number of simulations and sampling rates. The first ex-
periments show the ability of selective memory of reducing the I/O traffic as the
speedup remain stable with increased number of simulations, thus output size.
In the second experiment, the speedup decreases while the number of samples
increases highlighting that the bottleneck of the system is in the data analysis
stage of the pipeline: any further increase of Simulation Engines does not bring
performance benefits.

5 Related Work

The parallelisation of stochastic simulators has been extensively studied in the
last two decades. Many of these efforts focus on distributed architectures. Our
work differs from these efforts in three aspects: 1) it addresses multicore-specific
parallelisation issues; 2) it advocates a general parallelisation schema rather than
a specific simulator, 3) it addresses the on-line data analysis, thus it is designed
to manage large streams of data. To the best of our knowledge, many related
works cover some of these aspects, but few of them address all three aspects.

The Swarm algorithm [14], which is well suited for biochemical pathway opti-
misation has been used in a distributed environment, e.g., in Grid Cellware [7], a
grid-based modelling and simulation tool for the analysis of biological pathways
that offers an integrated environment for several mathematical representations
ranging from stochastic to deterministic algorithms.
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DiVinE is a general distributed verification environment meant to support
the development of distributed enumerative model checking algorithms including
probabilistic analysis features used for biological systems analysis [3].

StochKit [13] is a C++ stochastic simulation framework. Among other meth-
ods, it implements the Gillespie algorithm and in its second version it targets
multi-core platforms, it is therefore similar to our work. It does not implement
on-line trajectory reduction that is performed in a post-processing phase. A first
form of on-line reduction of simulation trajectories has been experimented within
StochKit-FF [1], which is an extension of StochKit using the FastFlow runtime.

StochSimGPU [12] exploits GPU for parallel stochastic simulations of biologi-
cal systems. The tool allows to compute averages and histograms of the molecular
populations across the sampled realizations on the GPU. The tool leverages on a
GPU-accelerated version of the Matlab framework that can be hardly compared
in flexibility and performance with a C++ implementation.

6 Conclusions

Starting from the Calculus of Wrapped Compartments and its parallel simulator
we have discussed the problem of the analysis of stochastic simulation results,
which can be complex to interpret also due to intrinsic stochastic “noise” and
the overlapping of the many required experiments by the Monte Carlo method.

At this aim, we characterised some patterns of behaviour for biological sys-
tem dynamics, e.g. monostable, multi-stable, and oscillatory systems, and we
exemplified them with minimal yet paradigmatic examples from the literature.
For these, we identified data filters able to provide statistically significative in-
formation to the biological scientists in order to simplify the data analysis.

Both the simulations and the on-line statistic filters, which are both parallel
and pipelined, can be easily extended with new simulation algorithms and filters
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thanks to FastFlow-based parallel infrastructure that exempt the programmer
from synchronization and orchestration of concurrent activities.

Preliminary experiments demonstrated a fair speedup on a standard multi-
core platform. We plan to further investigate the performance tuning of the
simulation pipeline on larger problems and platforms.
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