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Abstract. Nowadays scientific endeavor becomes more and more hungry
for computational power of the state-of-the-art supercomputers. However
the current trend in the performance increase comes along with tremen-
dous increase in power consumption. One of the approaches allowing to
overcome the issue is tight coupling of the simplified low-frequency cores
into massively parallel system, such as IBM BlueGene/P (BG/P) com-
bining hundreds of thousands cores. In addition to revolutionary system
design this scale requires new approaches in application development and
performance tuning. In this paper we present a new scalable BG/P tai-
lored design for an automatic performance analysis tool - Periscope. In this
work we have elicited and implemented a new design for porting Periscope
to BG/P which features optimal system utilization, minimal monitoring
intrusion and high scalability.

Keywords: Performance analysis, Scalability of Applications & Tools,
Supercomputers.

1 Introduction

Traditional supercomputer design which relies on the high single core perfor-
mance delivered by high frequency has a natural scalability limit coming from
unaffordable power consumption and cooling requirements. The BlueGene [1]
developers addressed this challenge from two aspects: by utilizing moderate-
frequency cores and by tightly coupling them at unprecedented scales, which
allows power consumption to grow linearly with the number of cores. This leads
to a high density, low-power, massively parallel system design.

Unfortunately the peak performance offered by modern supercomputers can
not be achieved by straight forward application porting, one would have to in-
vest significant efforts in achieving reasonable execution efficiency. In order to
make this efforts affordable, new instruments supporting application develop-
ment have to be developed. This is specially true for performance analysis tools.
On one hand, the performance analysis results of small runs often can not be
extrapolated to the desired number of cores due to new performance phenomena
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manifesting itself only at large scales. On the other hand the amount of raw per-
formance data which has to be recorded for large real-world applications running
on hundreds of thousands cores is simply too big for the commodity evaluation
approaches. The way performance analysis is done has to be rethought as well as
other aspects of extremely parallel computing. Among the challenges to be over-
come are efficient recording, storing, analysis and visualization of the discovered
results.

Periscope [4], being an automatic distributed on-line performance analysis
tool, addresses the challenges of large scale performance analysis from multi-
ple aspects. The distributed architecture of Periscope allows it to scale together
with the application relying on multiple agents. On the other hand, on-line anal-
ysis of the profile based raw performance data significantly reduces memory
requirements. However even then the amount of performance data collected for
a large scale run is big enough to overwhelm the user with too much information.
Periscope addresses the issue in two ways, first, automatic search for performance
inefficiencies dramatically decreases the amount of presented results by report-
ing only important potential tuning opportunities. Second, performing scalable
reduction, based on clustering algorithms, allows to keep the amount of reported
results constant independently from the growing number of cores.

Historically the development of Periscope was carried out based on the ar-
chitecture of commodity clusters, where the maximum scalability levels were
considered to be in order of tens of thousands of cores running standard Unix-
like kernels. Therefore porting Periscope to a new cluster was a matter of minor
adjustments, whereas the overall architecture was being preserved. However with
the introduction of BlueGene/P systems it was realized that the straightforward
porting approaches would not work. The two main reasons for that were an order
of magnitude increase in number of cores and limited operating system func-
tionality. In order to adapt Periscope to the challenges posted by BlueGene/P,
significant improvements to the tool’s architecture were developed.

The rest of the paper is composed as follows: first we describe the architecture
specifics of BG/P as well as the analysis model and architecture of Periscope.
From the cross-analysis we derive three promising approaches, from which one
was implemented and is discussed in more details. Alternative tools are discussed
in related work. In the evaluation section we apply Periscope to the NAS Paral-
lel Benchmark running with 64k processors to demonstrate achieved scalability
levels.

2 BlueGene/P Architecture

The BlueGene/P [1] base component is a PowerPC 450 quad core 32 bit mi-
croprocessor with a frequency of 850 MHz. One quad-core together with 2 or
4 GB of shared memory forms a next building block of BlueGene - a compute
node ASIC. The compute nodes run under the IBM proprietary light-weight
Compute Node Kernel (CNK) and are dedicated to run exclusively MPI/hybrid
applications. CNK is, on one hand, striped down in order to minimize the sys-
tem overheads when executing an application and, on the other hand, appears
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to the application programmers as a Linux-like operating system, supporting the
majority of the system calls. However not all the system calls are executed by
CNK, instead this functionality is forwarded to the dedicated I/O nodes. Due
to the low OS jitter and a single application process per core, applications show
excellent performance reproducibility.

I/O nodes are the service nodes and are not intended to run user applications.
The hardware is identical to the one of compute nodes with the only difference
of physical placement within the system, which leads to different network con-
nections. I/O nodes use 10GB Ethernet to connect to the BlueGene/P frontend.
I/O nodes operate under the “standard”Linux kernel in a four-way SMP mode
providing file system access and socket communication. Each I/O node runs one
Control and I/O daemon (CIOD) which executes the function-shipped system
call requests coming from the back-end compute nodes. Applications are not
allowed to run on the I/O node, however upon a request one tool process is al-
lowed to be spawned by the CIOD [2]. This is a typical mechanism employed by
debugging tools to control application execution [3]. The tool process normally
gets started through additional -start tool argument of the mpirun. It is also
important to mention that the I/O node and all the associated compute nodes
share the same network address.

32 Compute nodes together with 0 or up to 2 I/O nodes form the next building
block called compute card. 32 compute cards in their turn form one midplane.
One BlueGene/P rack consists of 2 midplanes or 1024 compute nodes. 72 Blue-
Gene/P racks are needed to achieve 1 PFlop of peak performance.

The distinguishing feature of BlueGene/P are multiple high-speed networks
coupling numerous compute nodes. The most appreciated one is the torus net-
work that wraps the compute nodes of one midplane into a 3D torus. It al-
lows efficient low-latency nearest neighbor communication between ranks of
MPI COMM WORLD. MPI collective operations are carried out through the dedicated
tree-like collective network. In total each compute node has six connections to
the 3 dimensional torus network with a bandwidth of 3.4Gbps in each direction,
three connections to the global collective network with 6.8 Gbps per link, four
connections to the global interrupt network and one connection to the control
network JTAG.

As an alternative to the default High Performance Computing (HPC) mode
described above, High Throughput Computing (HTC) mode allows to run large
number of non-MPI applications simultaneously. Each application could be started
independently under different user names, with separate stdin, stdout and stderr.
In order to use HTC mode a partition has to be first booted by the system admin-
istrator.

3 Periscope Design

Periscope [4] is an automatic distributed on-line performance analysis system
developed by Technische Universität München (TUM) at the Chair of Computer
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Architecture. In comparison to other tools Periscope relies on profiling rather
than on tracing and searches automatically for predefined set of performance
inefficiencies during the application’s execution. The scalability requirements,
being the main design concern, resulted in a distributed tree-like reduction net-
work of agents scaling together with the application. The coordination of dis-
tributed components is carried out by Periscope’s registry service running in the
background.

3.1 Tool Architecture

Periscope consists of multiple agents where the root agent is called the Frontend
(FE). The FE is the only process which has to be started by the user. It is
responsible for starting the instrumented application processes, computing the
optimal agents hierarchy and mapping it to the underlying hardware as well as
starting the hierarchy. The FE will coordinate the distributed search by taking
global decision on controlling application’s execution and when necessary restart
application. The FE will also receive the aggregated set of found performance
properties and store them into an xml file.

The second layer of the tree-like Periscope network consist of the High-Level
(HL) agents. They are responsible for the efficient propagation of analysis deci-
sions from the FE downwards and the scalable aggregation of the results sent in
the opposite direction. The results, namely found performance inefficiencies, are
clustered on-line within the HL on their way to the FE.

The bottom level of the Periscope’s network is represented by Analysis Agents
(AA), which are the leaf nodes and are directly connected to the application
processes. AAs are responsible for executing the local search for predefined per-
formance inefficiencies on the assigned subset of application processes. An AA
instantiates performance hypotheses, creates and submits monitoring requests
required to evaluate them. The requests are submitted over sockets to the mon-
itoring library linked in the application processes. After one execution of appli-
cation phase, which is typically one iteration of the main loop (typically a time
loop in scientific simulations), the measured values for the submitted requests are
analyzed in order to prove or disprove the candidate hypotheses. The refinement
mechanism is then employed to drill the found performance inefficiency down
to the specific line of the code as well as down to the specific problem source.
An AA relies on a set of search strategies when searching for bottlenecks, which
allow efficient evaluation of numerous application code regions against the rich
set of available performance hypothesis. All known and measurable performance
bottlenecks are formalized following the APART Specification Language [7] and
are implemented as Periscope properties.

The application is instrumented and linked against Periscope’s monitoring
library which measures time, hardware counters and is capable of automatic
detection of MPI wait states. In addition, the monitoring library can control the
application execution according to the requests received from the AA.

In order to bring multiple distributed components of Periscope together,
Periscope’s registry service is used. Periscope agents as well as application
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processes publish their network address - identity-tag pairs and also look up
for the addresses of their communication partners at the registry service.

3.2 Current Design Shortcomings

Although the scalability of the tool was an important concern, the overall de-
sign was targeting commodity clusters [6] with tens of thousands of cores. Even
though, Periscope was showing good scalability at this scale [5], several weak
points, which could become a severe bottleneck at higher levels, were revealed.

One of the most severe potential bottlenecks was considered to be the registry
service used by all the distributed components (agents and instrumented applica-
tion processes) to register and find their corresponding communication partners.
Since every instrumented application process had to be registered and then is
queried by the responsible analysis agent, this can severely hit the analysis time,
which will quadratically grow together with the number of processes.

Another drawback of the current network startup implementation was that
the hierarchy of agents, the application process distribution, and the sequential
spawning of the agents was performed by the frontend agent. It will become a
severe startup bottleneck, when executed on a system like BlueGene/P.

Another issue for porting Periscope to the BG/P comes from the limited OS
support of the compute nodes, which is restricting compute nodes from running
anything else but an MPI application (except for the case of HTC mode or
MPMD programs, which will be discussed later), therefore excluding Periscope
agents from running on the same partition with application processes.

4 BlueGene/P Tailored Design Alternatives

Taking into account the requirements of Periscope and the architectural limita-
tions of BlueGene/P several porting approaches were elicited. The main question
to be answered here is Periscope agents placement, allowing the tool to overcome
the scalability bottlenecks considered before as well as achieve best utilization
of BlueGene/P avoiding additional overhead perturbations.

4.1 MPMD Approach

With the introduction of MPMD parallelization in the P generation of the Blue-
Gene series, the possibility to run multiple MPI programs within the same com-
munication domain became available. This allows to overcome the limitation of
only application processes being allowed to run on the compute nodes of the
same partition.

In this configuration the user starts the FE via mpirun on the allocated parti-
tion. The number of processes, which would have to account for both application
processes and periscope agents are specified using -universe size argument for
mpirun. After being started, the FE opens a port using MPI Open port and pub-
lishes the pair of port and service description. This mechanism, also employed by
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other agents and application processes, would allow us to drop the commodity
registry service. However this would not remove the bottleneck associated with
the thousands of application processes ports being published and then queried
at the same time.

After successful registration, the FE computes the agents hierarchy, however
this is much simplified since all agents are started at once with a single MPI Spawn

command. The hierarchy, in this case, is determined according to the fan-out of
the HL agents and the number of leaf agents, which is proportional to the number
of application processes.

After setting up the agent hierarchy, the application would be started by the
FE and the agents connect to the application processes and execute the analysis
as before. This design would also support the restart of the application which is
done by Periscope if the application terminated but additional search steps are
required.

However, several severe drawbacks of this design were considered. First, the
collective network of the BlueGene can not be properly utilized when the ap-
plication is running in the sub communicator of the MPI COMM WORLD, which is
the case when the application is started by Periscope in MPMD mode. Second,
as it was mentioned before, the bottleneck of publishing and querying of every
application process and the agents still significantly impacts the efficiency of
Periscope’s analysis at large scale. Finally, the additionally required, complete
reimplementation of the communication substrate of Periscope with MPI as well
as the need to port the AA to run under CNK would require significant amount
of programming efforts.

4.2 Implementation Based on the HTC Mode

Another design approach, that would allow to place the AAs on the compute
nodes, relies on the High-Throughput Computing mode of BlueGene. In this
mode multiple non-MPI programs are allowed to be independently started and
run simultaneously within the provided partition under the full Linux kernel.
Based on this mode, the current approach of starting agents need not be changed.

The overall startup and analysis flow is done as follows. The user starts
the FE on the frontend node of BG/P. Then either the user or the FE sub-
mits the standard job to run the instrumented application in the HPC mode.
While the application is waiting for the dispatch, the FE first computes the
tree hierarchy with the explicit assignment of the children-parent relations and
then starts the agents within the previously booted in HTC mode partition. The
rest of the analysis follows the current procedure including the registration of
all the distributed components, which would again be a bottleneck. Additional
complications come from the fact, that on the majority of BG/P installations
privileged access rights are required to boot the HTC partition, which seriously
limits the tool’s usability. On the other hand, this design can be realized with
little porting effort.
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4.3 I/O Nodes Agents Placement

Following this approach, the tool distribution would utilize compute nodes exclu-
sively for application processes linked with the monitoring library, I/O nodes for
running AAs and the frontend node for Periscope’s FEs. There is one important
advantage emerging from such a setup, the agents would neither waste com-
putational resources by occupying additional cores, nor disturb the application
processes during execution like in the case of the MPMD or HTC approaches.

The placement of HLs is, however, a more complicated issue, since it is not
allowed to run more than one process on the I/O nodes. The two solutions
here are either to run HLs on the frontend node or to merge the reduction
functionality of the HL into the AAs and reuse the AA to form the tree hierarchy.

It is also worth mentioning that the number of compute nodes affiliated with
one I/O node is installation-defined and fixed and, what is even more important,
they share the same network address. This simplifies agent placement and re-
moves the need for the registry service, since addresses are by definition known.
Thus one of the most severe scalability issues of the current design is eliminated
when the AAs run on the I/O nodes.

Usually I/O nodes are not accessible to an unprivileged user. The only process
allowed to run by a regular user is a debug process of CIOD and is started
normally by the -start tool argument of the mpirun command. mpirun will
spawn the tool process on all of the I/O nodes affiliated with the allocated
partition. The startup will no longer be done sequentially by the FE, which
removes another scaling issue. However there is an important drawback, since the
AAs will be automatically killed when mpirun exits. Thus Periscope’s application
restart capability becomes not possible.

4.4 Comparison of Design Alternatives

Considering the current architecture of Periscope, its scalability issues and Blue-
Gene/P system specifics, a set of selection criteria were recognized, i.e., amount
of changes, system utilization during analysis, application intrusion and tool
usability. The amount of changes, associated with porting, is an important fac-
tor influencing both the porting effort as well as the further maintenance of
an additional branch of Periscope. In addition, system utilization becomes very
important when large scale experiments are considered. Even one additional pro-
cess per few application processes might severely hit the computational budget
of the user. The easy metric allowing to estimate the system utilization would
be the amount of additional cores needed to run Periscope’s agents. Overheads
and application execution intrusion is another critical factor which can poten-
tially corrupt the measurements, therefore the design should not introduce any
additional overheads. The last factor is the tool’s usability. It is severely limited
if privileged rights are required to run Periscope. The possibility of application
restart within one Periscope run is also a valuable functionality which is impor-
tant to preserve.

The summary comparison of the derived design alternatives against the selec-
tion criteria is presented in Table 1.
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Table 1. Design alternatives comparison

Selection criteria MPMD HTC mode I/O node placement
Amount of changes high low medium
Administrative issues no yes no
Application restart possible possible not possible
Additional user input no yes no
Additional cores #agents #agents 0
Additional overheads yes no no

The comparison table shows that the design relying on the MPMD function-
ality of MPI 2.1 standard is the less preferable failing to meet the majority of
the selection criteria.

The design approach utilizing the HTC partition to run Periscope agents
features low efforts to be invested in porting and maintenance, however suffers
from the fact that booting a HTC partition is a privileged operation. In addition,
the system utilization is worse since additional cores are required to run agents.

The best match with the selection criteria is the I/O node agent placement
design and therefore was chosen for implementation. This approach features best
system utilization, since it doesn’t require any additional compute nodes to run
Periscope’s agents. Instead it runs them on the I/O nodes which are not intended
for computation by design. However the efforts to port Periscope following the
described design are considered to be moderate. In oder to prove the selected
concept fast and minimize associated porting risks, it was decided to split the
porting efforts in two phases. Within the first phase the idea of running the
AAs on the I/O nodes and the application processes on the affiliated compute
nodes was evaluated and considered to be a low-effort task. The other agents are
intended to run on the frontend node of BlueGene/P in this phase. The majority
of the efforts, though, come from the task to merge the functionality of the AA
and the HL in order to run them within the single user process allowed to run
on the I/O nodes. Therefore this task was assigned to be implemented in phase
two, which will deliver optimal tool distribution and capability to operate at the
full-scale 72-rack BlueGene/P.

5 Evaluation

The phase one porting task was implemented and Periscope was installed on
the IBM BlueGene/P supercomputer operated by King Abdullah University of
Science and Technology (KAUST). The machine consists of 16 racks containing
in total 65536 IBM Power450 cores delivering 222 TFlops of peak performance.

In order to prove the scalability of the new Periscope design a large scale
performance analysis run was carried out on a standard BT benchmark from
NAS Parallel Benchmark suite [9]. The benchmark is Block Tridiagonal solver of
a synthetic system of nonlinear PDE’s. The benchmark was built to solve the E
problem size which corresponds to 1020x1020x1020 grid size. The MPI call sites
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were instrumented by Periscope’s instrumenter and then the application com-
piled using the IBM mpxlf Fortran compiler with -O3 optimization flag and the
BlueGene/P MPI library. The analyzed application was running on all the avail-
able 65536 cores and was analyzed with Periscope’s MPI strategy automatically
detecting MPI wait states.

The elapsed analysis time reported by the FE was 432 seconds, from which
the 382 seconds took the tool startup. However it is important to mention that
the majority of the startup time is spent on booting the partition, in this case
the whole machine. The automatically computed agents hierarchy included 20
HL agents running in the service node of the BG/P and 128 Analysis Agents
running on the I/O nodes. Only one iteration of the BT main loop was executed
to complete the analysis for MPI wait states. For each process the monitoring
library measured 7 relevant MPI inefficiency related metrics resulting in 458752
measurements in total. Out of the received measurements, the Analysis Agents
instantiated 393216 candidate properties out of which only 196608 properties
were evaluated true. The found properties then were clustered while being prop-
agated to the FE and the final analysis report contained only 3 properties.
The found properties were “Excessive MPI communication time”reported for
one MPI Waitall and two MPI Wait call sites with a maximum severity of 5.6%.
This property identifies MPI communication overhead which is 5.6% of one main
loop iteration time. Synchronization properties were also checked but appeared
to be below threshold and thus not reported.

6 Related Works

There are only a few performance analysis tools available on BlueGene/P, and
even less of them are specially designed for large scales. SCALASCA [8], being
one of them, is an open-source performance analysis toolset specifically designed
for an evaluation of codes running on hundreds of thousands of processors. The
tool performs parallel trace analysis searching for MPI bottlenecks, which allows
it to scalably handle the trace size linearly increasing with the number of cores.
However it was found that the time spent for the analysis as well as the re-
port size were growing linearly with the employed parallelism scale. In contrast,
Periscope performs on-line profile based search, thus omitting tracing. Also on-
line reduction allows it to keep the report size independent from the number of
processes.

7 Conclusion and Outlook

The new scale of supercomputing is being currently rapidly developed with more
and more petaflop capable machines being installed world-wide. However achiev-
ing reasonable levels of sustained performance becomes a tremendously compli-
cated task for the application developers. New instruments are needed to sup-
port programmers in particular in the area of performance analysis. However
tool development faces challenges induced by the growing number of cores such
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as proportional growth in analysis times, measurements and final report sizes.
In this paper we have presented a tailored adaptation of the Periscope toolkit
for the IBM BlueGene/P supercomputer. According to the Periscope require-
ments, revealed scalability issues, and the limitations of the BG/P architecture
several porting approaches were elicited. The design, following the idea of plac-
ing Analysis Agents on the I/O nodes, was considered to be superior to the
other alternatives due to optimal system utilization, no additional overheads,
high usability and therefore was implemented.

The large scale performance analysis experiment with the NPB BT benchmark
has shown very promising scalability of the Periscope analysis. Due to optimal
placement of multiple Periscope agents and optimized analysis flow the analysis
time was kept constant and independent of the number of cores. The size of the
report was shown also to be independent from the employed parallelism scale
due to on-line results reduction.
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