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Abstract. We present Scout, a configurable source-to-source transfor-
mation tool designed to automatically vectorize C source code. Scout
provides the means to vectorize loops using SIMD instructions at source
level. Our main focus during the development of Scout is a maximum
flexibility of the tool in two ways: being capable of vectorizing a wide
range of loop constructs and being capable of targeting various modern
SIMD architectures. Scout supports several SIMD instructions sets like
SSE or AVX and is easily extensible to upcoming ones.

In the second part of the paper we present results of applying Scout’s
vectorizing capabilities to CFD production codes of the German Aerospace
Center. The complex loops used in these codes often inhibit the automatic
vectorization of usual C compilers. In contrast, Scout is able to vectorize
most of these loops. We measured the resulting speedup for SSE and AVX
platforms.

1 Introduction

Most modern CPUs provide SIMD units in order to support data-level paral-
lelism. One important method of using that kind of parallelism is the vectoriza-
tion of loops. However, programming using SIMD instructions is not a simple
task. SIMD instructions are assembly-like low-level intrinsics and often steps like
finalization computations after a vectorized loop become necessary. Thus tools
are needed in order to efficiently exploit the data-level parallelism provided by
modern CPUs.

In the context of the HI-CFD project [4] we needed a mean to comfortably
vectorize loops written in C. We are going to target various HPC platforms with
different instruction sets and different available compilers.

2 Related Tools

Naturally, a vectorization tool is best built in a compiler. Indeed, all current C
compilers provide auto-vectorization units. But a compiler must reason about
the correctness of the vectorized program automatically. This reasoning can be
done by an extensive dependency and aliasing analysis and a lot of approaches
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are available to vectorize various forms of codes, especially loops [7]. However in
practice it is not possible to always reason about the absence of dependencies
(e.g. in a loop with indirect indexing). Thus means are needed in order to provide
meta information about a particular piece of code. For instance the Intel compiler
allows a programmer to augment loop statements with pragmas to designate the
absence of inner-loop dependencies.

We have tested some compilers with respect to their auto-vectorization ca-
pabilities. For some loops in our codes the available means to provide meta in-
formation were insufficient (see Sect. 3.3). Sometimes subtle issues arose around
compiler-generated vectorization. For instance in one case a compiler suddenly
rejected the vectorization of a particular loop just when we changed the type of
the loop index variable from unsigned int to signed int. A compiler expert
can often reason about such subtleties and can even dig in the documentation
for a solution. But an application programmer normally concentrates on the
algorithms and cannot put too much effort in the peculiarities of each used com-
piler. The vectorization of certain (often more complex) loops was rejected by
all compilers regardless of inserted pragmas, given command-line options aso.

We have checked other tools specifically targeting loop vectorization. In [6]
a retargetable back-end extension of a compiler generation system is described.
Being retargetable is an interesting property (see also Sect. 3.2) but for our
project it did not come into consideration due to its tight coupling to a particular
compiler system. SWARP [9] seems to depend solely on a dependency analysis
– something we could not rely on.

3 The Vectorizing Source-to-Source Transformator Scout

We decided to develop a new tool in order to comfortably exploit the parallel
SIMD units. The tool shall transform C source code. The output is also C source
code, but with vectorized loops augmented by SIMD intrinsics. The respective
SIMD instruction set is configurable. Thus the tool is usable as an universal vec-
torizer and it is aimed to become an industrial-strength vectorizing preprocessor.
We have called this vectorization tool Scout.

Scout exposes a command line interface as well as a graphical user inter-
faces. Internally it uses the clang parser [1] to transform C source code to
an abstract syntax tree (AST). The vectorization and other optimizations are
then performed on that AST. Eventually the transformed AST is rewritten to
C code. Scout is published under an Open Source license and available via
http://scout.zih.tu-dresden.de

We have opted for a strict semi-automatic vectorization. That is, as with
compilers, the programmer has to annotate the loops to be vectorized with
#pragma directives. The directive #pragma scout loop vectorize in front of a
for statement triggers the vectorization of that loop. Before the actual vector-
ization starts, the loop body is simplified by function inlining, loop unswitching
(moving loop-invariant conditionals inside a loop outside of it [3]) and unrolling
of inner loops whereever possible. The resulting loop body is then vectorized
using the unroll-and-jam technique.

http://scout.zih.tu-dresden.de
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3.1 Unroll-and-Jam
Various approaches to vectorize loops exist. Traditional loop-based vectorization
transforms a loop so, that every statement processes a possible variable-length
vector [5]. With the advent of the so-called multimedia extensions in commodity
processors the unroll-and-jam approach became more important [8]. In [7] this ap-
proach is descibed mainly as a mean to resolve inner-loop dependencies. However,
we use this approach in a more general way. First, we partially unroll each state-
ment in the loop according to the vector size. Then we test whether the unrolled
statements can be merged to a vectorized statement. Unvectorizeable statements
(e.g. if-statements including their bodies) remain unrolled. Only their memory ref-
erences to vectorized variables are accordingly adjusted. All other statements are
vectorized by decomposing them to vectorizeable expressions. Scout allows the
user to vectorize arbitrarily complex expressions (see Sect. 3.2).

A nice consequence of using the unroll-and-jam approach is the possibility
to vectorize different data types (e.g. float and double) in one loop simulta-
neously. The vector sizes of vectorized data types may differ, but the largest
vector size has to be a multiple of all other used vector sizes. The loop is then
unrolled according to that largest vector size and vectorizeable statements of
other data types are then only partially merged together and remain partially
unrolled.

Listing 1 demonstrates the vectorization of different data types for a SSE
platform. The vector size for float is 4 and for double it is 2. Hence the loop is
unrolled four times. Then all operations for float values can be merged together
(in the example only the load/store operations). In contrast only two unrolled
consecutive operations for double values (one load and the division) are merged
to a vectorized operation leaving the double operations partially unrolled. Vec-
torized conversion operations are generated automatically whenever needed.

float a [100]; double b [100];
double x;
#pragma scout loop vectorize
for (int i=0; i <100; ++i) {

x = a[i];
x = x / b[i];
a[i] = x;

}

float a[100]; double b [100];
__m128 av;
__m128d xv1 , xv2 , bv1 , bv2 ;
for (int i=0; i <100; i+=4) {

av = _mm_loadu_ps(a + i);
xv1 = _mm_cvtps_pd(av );
xv2 = _mm_cvtps_pd(

_mm_movehl_ps(av , av ));
bv1 = _mm_loadu_pd(b + i);
bv2 = _mm_loadu_pd(b + i + 2);
xv1 = _mm_div_pd (xv1 , dv1 );
xv2 = _mm_div_pd (xv2 , dv2 );
av = _mm_movelh_ps(

_mm_cvtpd_ps(xv1 ),
_mm_cvtpd_ps(xv2 ));

_mm_storeu_ps(a + i, av);
}

Listing 1. Mixing types in vectorization
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3.2 Configuring Scout

A central requirement is the configurability of Scout with respect to existing as
well as upcoming SIMD architectures. This aspect is controlled by supplying a
configuration file to Scout which describes the properties of the target SIMD
platform. A configuration file is written in pure C++. Actually C++ is not
designed as a configuration language and thus we had to stretch the semantics.
However the choice of C++ has a lot of advantages: it is not necessary to learn
yet another configuration syntax, it is possible to use the usual preprocessing
means (conditional compilation, includes) in the configuration thus alleviating
the maintenance costs, and the AST of the configuration file can be generated
and processed by clang. The actual intrinsics are wrapped up in string literals
making the configuration valid C++ even if the headers for the actual target
SIMD platform are not available on the translation machine. Listing 2 shows
an excerpt of a configuration file for the data type float targeting the SSE
architecture.

namespace scout {

template <class , unsigned > struct config ;

template <>
struct config <float , 4> {

typedef __m128 type; // target SIMD type
enum { align = 16 }; // alignment requirement

static void store_aligned( float *, type ) { // function name
" _mm_store_ps(%1% , %2%)"; // predefined by Scout

}

static float add ( float a, float b) { // expression mapping
a + b; // statement is an expression
" _mm_add_ps (%1% , %2%)";

}

static float condition_lt( float a, float b, float c, float d) {
a < b ? c : d;
" _mm_blendv_ps (%3% , %4%, _mm_cmplt_ps (%1% , %2%))";

}

static float sqrt (float ) { // function mapping
float sqrtf ( float ); // statement is a function declaration
" _mm_sqrt_ps (%1%)";

}
}

} // namespace scout

Listing 2. Scout configuration for a typical SIMD architecture

For each supported data type the configuration provides a specialized class
template named config placed in the namespace scout. The first template
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parameter denotes the underlying base type of the particular vector instruction
set. The second integral template parameter denotes the vector size of that set.
A set of predefined type names, value names and static member functions are
expected as class members of the specialization.

There are two general kinds of static member functions. If the function name
is predefined by Scout, then the function body consists of only one statement –
the string literal denoting the intrinsic. Load and store operations are defined in
this way.

If the function name of the static member functions is not predefined, then
the string literal in the function body is preceded by an arbitrary number of
expressions and/or function declarations. In that case expressions and function
calls in the original source code are matched against these configuration expres-
sions and functions and are vectorized according to the string literal if they fit.
This option adds great flexibility to Scout. Indeed it is not only possible to use
various instruction sets in their atomic shape but also combine them to more
complex or idiomatic expressions a priori.

Listing 3 demonstrates the vectorization capabilites of Scout by using the
condition_lt and sqrt functions of Listing 2.

float a[100] , b [100];
float x;
#pragma scout loop vectorize
for (int i=0; i <100; ++i) {

x = a[i] < 0 ? b[i] : a[i];
a[i] = sqrtf (x);

}

float a[100] , b [100];
__m128 a_v , b_v , x_v , c0_v;
c0_v = _mm_set1_ps (0.0);
for (int i=0; i <100; i+=4) {

a_v = _mm_loadu_ps(a + i);
b_v = _mm_loadu_ps(b + i);
x_v = _mm_blendv_ps(b_v , a_v ,

_mm_cmplt_ps(a_v , c0_v ));
x_v = _mm_sqrt_ps (x_v );
_mm_storeu_ps(a + i, x_v );

}

Listing 3. Vectorization of complex expressions and function calls

double a [100] , c [100];
int d [100];
#pragma scout loop vectorize
for (int i=0; i <100; ++i) {

int j = d[i];
double b = a[j];

// computations

// introduces an inner -loop
// dependency if d[i]== d[i+1]:
#pragma scout vectorize unroll

c[j] += b;
}

__m128d b_v ;
int j_v [2];
double a[100] , c[100];
int d [100];
for (int i=0; i <100; i+=2) {

j_v [0] = d[i];
j_v [1] = d[(i + 1)];
b_v = _mm_set_pd (a[j_v [0]] ,

a[j_v [1]]);
// vectorized computations

// compute every element separately :
c[j_v [0]]+= _mm_extract_pd(b_v ,0);
c[j_v [1]]+= _mm_extract_pd(b_v ,1);

}

Listing 4. Partial vectorization
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3.3 Partial Vectorization

Most loops in our codes follow very basic schemes: they read data from several
arrays, do some heavy calculations and then either write or accumulate the re-
sult in a different array. Hence and under the reasonable assumption, that there
are no pointer aliasing issues, pure writes normally don’t introduce any depen-
dencies. Accumulation operations however involve a read and write operation to
the same memory location and hence can introduce dependencies, especially if
there is indirect indexing involved. Such dependencies could prevent whole loops
from being vectorized. But actually most of the calculation can be performed in
parallel, just the accumulation process itself needs to remain serial. Thus we in-
troduced a pragma directive forcing a statement to compute each vector element
separately (Listing 4).

4 Practical Results

Beside the usual test cases we have applied Scout to two different CFD pro-
duction codes used in the German Aerospace Center. Both codes are written
in C using the usual array-of-structure approach. That approach is rather un-
friendly with respect to vectorization, because vector load and store operations
have to be composite. Nevertheless we did not change the data layout but used
the source code as is only augmented with the necessary Scout pragmas. The
presented measurements were mainly done on an Intel R© CoreTM 2 Duo P8600
processor with a clock rate of 2.4 GHz, operating unter Windows 7TM using the
Intel R© compiler version 11.1. The AVX measurements were done on a an Intel R©

Sandy BridgeTM processor, using the Intel R© compiler version 12.
The first code computes interior flows in order to simulate the behavior of jet

turbines. In the loops direct indexing is used meaning array indices are linearly
transformed loop indices. We have split the code in four computation kernels
and present the splitted results for a better understanding of the overall and
detailed speedup in Fig. 1. It shows typical speedup factors of the vectorized
kernels produced by Scout compared to the originals.

As expected, we gain more speedup with more vector lanes, since more com-
putations can be executed in parallel. Kernel 2 even outperforms its theoretical
maximum speedup, which is a result of the other transformations (in particular
function inlining) performed by Scout implicitely.

Table 1 shows the effects of AVX on the performance of a complete run. The
first row shows the average time of one run including the computation kernels
and some framework activity. Naturally, this measurement method reduces the
overall speedup gained due to the vectorization but leads to very realistical
results. After all, the application of Scout reduces the runtime automatically by
about 10%. We expected a much better speedup by stepping up from SSE4 to
AVX because the vector register size has doubled on AVX.

However, the additional gains were rather negligible. The second row shows
the main reason for this behavior. The CPI metric (Clockticks per Instructions
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Fig. 1. Speedup of CFD kernels on Intel Core 2 Duo due to the vectorization (left side:
single precision, four vector lanes, right side: double precision, two vector lanes)

Retired) is an indication of how much latency affected the execution. Higher CPI
values mean there is more latency. In our case the latency is caused mainly by
cache misses. This comes with no surprise, because with a doubled vector size
also a doubled amount of data gets pumped through the processor during one
loop iteration. Even if this effect is well documented [2] a CPI value of 2.0 still
means there is a lot of room for improvements. In Sect. 6 we outline a possible
approach in order to address that issue.

Table 1. Effects of Scout to a CFD production code on Intel Sandy Bridge

Intel 12 Intel 12 Scout + Intel 12 Scout + Intel 12
SSE4 AVX SSE4 AVX

avg. Runtime [sec] 6.31 6.32 5.70 5.65
CPI 0.88 0.88 1.34 2.00

The second CFD code computes flows around an air plane. Unlike the other
code it works over unstructured grids. That is, the loops use mostly indirect
indexing to access array data elements. Most loops in that kernel could only be
partially vectorized (see Sect. 3.3). Nevertheless we could achieve some speedup
as shown in Table 2. We had two different grids as input data to our disposal.
First we vectorized the original code. However the gained speedup of about 1.1

Table 2. Speedup of a partially vectorized CFD kernel on Intel Core 2 Duo (double
precision, two vector lanes)

Relation original to merged to original to
vectorized merged and vectorized merged and vectorized

Grid 1 1.070 1.391 1.489
Grid 2 1.075 1.381 1.484
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was not satisfying. Then we merged some loops inside the kernel together to
remove repeated traversal over the indirect data structures. This made the code
more compute-bound and resulted in a much better acceleration of about 1.4
just due to the vectorization. Eventually the overall speedup was nearly 1.5.

5 Summary and Conclusion

Traditionally, auto-vectorization is considered to be a compiler feature. However,
for various reasons compilers fail to vectorize a wide range of loops. Thus we have
introduced Scout in order to better exploit existing SIMD features supplied by
most modern processors. By using the unroll-and-jam approach we were able
to extend loop vectorization by some new and unique features and capabilites.
We are not aware of a compiler or another vectorization tool which provides the
means for a partial vectorization (Sect. 3.3). In addition, at least all compilers
available to us refused to vectorize loops with mixed data types (Sect. 3.1). Most
compilers have the capability to detect and vectorize common expressions to
idiomatic vectorized counterparts. However, these capabilities are mostly hidden
in the code of the compiler and cannot be configured by the user. On the other
hand the configuration framework of Scout provides a great tool in order to be
able to vectorize code for various target platforms, even for user-specific ones
(Sect. 3.2).

Section 4 presents the use of vectorization technology from a practitioners
point of view. It is worth mentioning that by just augmenting the source code
with pragmas and using Scout we could always achieve considerable speedups. Of
course, a further hand-tuning of code may lead to even better results (Table 2).
However, we emphasize that Scout nowadays is used nearly transparently in the
software production process of the German Aerospace Center in order to speedup
their codes automatically.

6 Future Work

While the achieved acceleration presented in this paper was already rather good,
it was not as exciting as one would expect due to the number of available vector
lanes. Of course Amdahl’s law plays a rather large role in our results. We did
not change the data layout and thus had to live with composite load and store
operations. That in turn leads to a smaller parallel portion of code and hence
lesser speedup.

But the presented AVX results, especially the raise of the CPI value, indicate
memory accesses as another major obstacle for performant SIMD code. Actu-
ally, compute-bounded code often gets memory-bound due to vectorization. Of
course, the cache pressure can be reduced by a carefully hand-crafted data lay-
out. But the cache size is a hard limit and even hand-crafting sometimes is
not worth the rather huge effort. Thus, in order to regain a load balance be-
tween memory and computation, we will explore the energy-saving possibilites
of memory-bounded computations.
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Our approach combines Scout and a performance event governor (pegov)[10].
pegov increases a CPUs p-State - thereby reducing its frequency and voltage -
during the execution of memory-bound code. As presented in [10] this can lead
to substantial energy savings. Thus, first Scout makes the code faster, but also
increases the memory burden. Even though memory-bounded regions are rarely
speed up by vectorization, one can increase the performance metric "energy
efficiency" by using a performance aware governor like pegov. We expect, that
the combination of these approaches can produce faster and more energy-efficient
code automatically.

Acknowledgments. This work has been funded by the German Federal Min-
istry of Education and Research within the national research project HI-CFD (01
IH 08012 C) [4].
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